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1 The Implementation of the Sigma Pressure
Hybrid Coordinate into the GF'S

The derivation of the hybrid coordinate is based on ECMWEF’s publications.
The distance between the set of equations and the corresponding computer code
is considerable and many details have to be specified and expanded. These overly
detailed notes attempt to provide a DOCUMENTATION of what was actually
derived and coded into the existing GFS over-structure. Attached to these notes
is a calling tree of the various key routines of the hybrid GFS with accents on
the new hybrid codes or the replacement of the old sigma codes.

Some of the equations contain partial vertical sums which may be delicate
to code. In these cases a detailed exposition of the code is provided for a four
level model so that all terms, especially near boundaries are accounted for. It
is pointed out that the hybrid sigma-pressure coordinate presented here does
not become a pure sigma structure as defined in the current GFS. Comparison
of the tendencies produced by NCEP’s sigma definition and the corresponding
ECMWEF definition reveals very similar forecasts at most model levels except at
the very top of the model, as expected.

The reader is advised to refer to the notation and vertical structure pages
at the end of this document before proceeding with the derivation.

Indexing in the defining equations is from the top of the atmosphere to
bottom. Indexing in the GFS has always been from bottom to top and the
reader is cautioned to exercise care when switching between notes and codes.

We begin with the discrete definition of a hybrid coordinate.

Ay
Let U(O,Ps) =0. U(Pmps) =1 M+l = 5o + BkJr%




Ay 1 Bk+ 1 are scaled to model units, k=0 at top of atmosphere, and
po = 101.325 cb. It is noted that the actual values of 7 are only required for
semi-lagrange interpolations, not for the derivation of the model’s equations.

Therefore, A = 0. Let (U, V) = cosb (u,v)

The model equations without diabatic forcing terms are:

oUu 1 ou ou Nel
At " acos?f (U oA = Vcosh 89) 778_77
0¢ B
—fV+- (8A+RT alnp) =0 (1.0.1)
oV 1 oV ov 2 9 oV
5 T 2028 (Ua +V0089@ +sind (U* +V )) —l—na
cosf (D¢
+fU + " (5‘9+R aglnp> 0 (1.0.2)
aT, 1 aT, oT, 0T,
—_— —_— 0
9t acos?6 <U ox TV eostg > T,
KTyw 1+ eq
= 1.0.3
== (109
For eq. (1.0.3) see treatment of the thermodynamic equation.
The moisture specific humidity equation is:
dq 1 dq 9q 3q
2t T 2o d (Uﬁ)\ + VCOS089 877 =0 (1.0.4)



and the continuity equation is written as:

0 (0p dp 0 (.0p
o (9 o P L9 (9P 1.0.5
ot (377) V o * on (nfh;) (1.05)

vy = (u,v) unscaled

The hydrostatic equation is:

8¢ RdTv 8p
— = — 1.0.6
on p O (1.0.6)
and w is diagnosed from:
n
w:—/ V- <UH@> dn + vy - Vp (1.0.7)
0 on

eq. (1.0.7) follows from w = % = % +uvg - Vp+ ﬁg_f]

substitute g—’t’ in eq. (1.0.5), then
. o) - 0

= (w—vH-Vp—ng—f,) +V-ongh+ & (77%) =0

integrate 0ton (w—vy-Vp)|g+ [) V- ng—f]dn =0

if wy=0=0 and (vg Vp),_o=0 eq. (1.0.7) follows.

9Ops

An equation for <




integrate eq. (1.0.5) fol ()dnp anduse 7(0)=n(1)=0

f01% (g_g) d77+f01 (V ’UH?3 + 5 (ﬁg—f]))dn:()

1 . p .
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ot
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8p9 / V. vH—dn (1.0.8)
or:
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For the vertical advection terms we need an expression for

. 9p
an
integrate eq. (1.0.5) [ ()dn, then

n 0

0 m(gﬁ)_fz)ChH'fo V- UHapdn"'fo an (ﬁg—f,)dnzo

%(p—po)—kfov UHa dn—i—nap—O since (7'78—”) 0:0
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77877 =% /0 \Y vHandn (1.0.9)

1.1 Vertical Discretization

Define at interfaces

P+t = Apys + Brypips (1.1.1)



The surface pressure eq. (1.0.8) becomes:

dlnps 1

% = _p% Zkeii (V- vurApr) , Apy, =DPp+l ~Pr-1 > 0
note that vy is the unscaled horizontal velocity at layer &k

let Dy =V -vgy , then,

levs

Jlnpg 1

b _p_sgv.kaApk (1.1.2)

1
— > [DeApx + vuk - V (Apy)]

D 1
= - Z {—kAPk + VHE - (p—VAPk>]

Ps

We want to express pressure dependent quantities in terms of the natural
log of surface pressure, therefore:

LVAp, = -V [(AH% +Bk+%ps> - (Ak—% + kaépsﬂ

= AByVInp, where AB;= Bk+% — Bk_%
o5 = - (%Apk + ABjvpy - Vlnps)
Similarly from eq. (1.0.9) at interface k

. O Y k
(ﬂa_f,)kJr% = "otPrtl — Zj:l V- UHjAPj



k
Bk+— ot Zj:l V- vm;Ap,

9ps 1 k
= —Ps (Bk-'r%pls 5+ Ps Zj:l V- UHjAPj)

dlnpg k
= —ps {BH% e+ o 2o (DiAp; + v - VAPJ')}

81np5

k
= —Ds + Z < J Ap; + ABjvg; - Vlnps) (1.1.3)

Jj=1

1.2 Vertical Advection

For conservation of angular momentum, the vertical advection of scalar x at
layer k is:

(.@) 1
77877 k 2Apk

For the hydrostatic eq. we have:

Ppl
Frps — Shoy = —Ra(Ty),In ()

or:

levs Pjr1
Oy = s+ 2jmpr Ra(To) ;I (pﬂﬂ)

Since we need ¢y, in layers, we define o, as in Simmons and Burrage,



(bk = ¢k+% +arR (Tv)k (1.2.2)

Pp—1 P41
ap=1— —"2 [ L2 (1.2.3)
Apy, Pr.—

1
2

fork>1, and a3 =In2. (another choice could be aa=1)

The implication of the choice of «j affects the computation of V¢ . This
choice will not in general result in the sigma system used at NCEP (when
Ay, = 0). The semi-implicit matrices will also be different and will be rederived.

1.3 The Pressure Gradient Term

R4T,V1Inp is discretized as follows:

Ry(T )k

Ry (T,Vinp), = Ay

D1

Pra 1
111 < k+2 ) ka—% —+ CYkVApk‘| (131)

The above choice of ay in eq. (1.2.3) will reduce eq. (1.3.1) to RTxV In p,
when A, = 0. In this case:

R
TTVPk = RyT}y {Aka (kar% hlkar% — Pl lnp,%%)}

which is a discrete analog of RdTVg—p (plnp) = RyTVInp



1.4 The Time Discretization of the Momentum Equations

—x

let: 0 =237~ Ay=a"—-2x+2 , T, isareference Temp.

let:  A(x)= (UZ% +Vcos022) + ﬁg—f} (3D advection)

a cosz 0

then from eq. (1.0.1) and eq. (1.0.2)

U = ~AW) + 1V~ 1 (5 4 RT,22) — £ 0 (VEE + BT up,)

a acos? 6

6V = —A(V) = fU - <=0 (3¢ 4 RT, 22 — 2524, (U2 4 V?)

BN, (YOL + RT, 2 Inp,)

The semi-implicit terms are treated as follows:
% = (%)explicit + g (Lt + L~ =2L)

= (g_f)explicit + gAttL
where L is the linear part of the tendency.

Now let (A (U)), =ADU (A(V)), = ADV

ADU =

(U %3 + Vi cos 0553 ) o, Kﬁg—fr)k% Uk = Ti) + (n6">k e = Us- 1)}

a cosz 0

ADV = Lo (U B + Vi cos 05 )+ 53— [(Uan>k+ (Vi1 — Vi) + (ﬁg—f,)k (Vi = Vk—1)]
2 -2

Also define coding variables as follows:



_1(as)  _
L(%), = upm
—cos Vo =
__cosf (09 —
=0 (3%) = VPHI
—f ( VB 1np) = UPRS
—RT,cosfVInp =
—fcosép Olnp - — yPRS
then for coding purposes:
6:U = duds = ~ADU + fV + UPHI+ UPRS — £ - Ay (Y 5% + RT, 2552+ )

5,V = dvdt = —ADV — fU + VPHI+ VPRS — 25220 A, (YBT 4 RT, 61“1’6)

_ _sinf (U2+V2)

acos?f

1.5 The Thermodynamic Equation

Conservation of energy and hydrostatic conditions imply:
dQ@ = c,dT — adp , a:%:ﬂ

If dQ=0

We also have
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& = Cpa+ (Cp = Cypa) 4 = Cpa [1+ (522 = 1) q]

and k= cRd . We may then write eq. (1.0.3) as:
p

dT _ RT,w _ rkTyw
W Gl (G gy G- Daw
_ Cpv _ 1846 __
where ¢ = 7 * = 10016 — 1.837
6—1=0.8375
dr __ rTyw
dt — [1+(6—1)glp

For T, as history variable: let €= g—;’ —1=0.6077

To=(1+eq)T, =(1+eq)dL +e1de

dr, __ T, d
‘@ = (1 ed) it + T

dT, _ kTyw (1+eq) dg
= mie-—ng Tl

r fr

calculated in dynamics calculated in physics

1+0.6077¢

l4eq __
— 1+0.8375q

41 3 ”
The “correction” term TF-1)q

for large ¢ = 123

l+eq __
1+(6-1)g — 0.99
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1.6 The Thermodynamic Energy Conversion Term

We will use the ECMWF energy conversion term (Ritchie 95, eq. 2.25).

Let C;= 1+1(j;f‘11)q , the ECMWF energy conv. term is:

Tyw 1+e _ 1+eqp
(” 1+<67q1>q)k =k (To)y v Dar <

Pryl _
_Aka {111 <p:%;) Zlel [D;jAp; + ps (vj - Vinps) AB;]

+ ap [DrApr + ps (v - Vinpy) ABk]}

Ps

+
Apy

Ck Pryl
AB, + —1n 2 vk - Vinpg 1.6.1
b (pﬂ (o p>> (16.1)

where
Cr = AkJr%ka% - AkféBkJr%

The dynamics grid computations are performed in subroutine gfidi. We now

define variables for coding purposes. These variables are components of eq.
(1.6.1).

K(To)y, . 1+eqp
Apy, 1+(6-1)gx

workay =

workby, = In ( 2% Zkil[D}A -+ ps (v; - Vinp,) AB;]
k= Pp_l j=1 [FjRPj T Ps \Uj bs b

+ ay [DrApi + ps (v - VInp,) ABy]

workc, = ps [ABk + Ac—sz In (:;:L%)] v - Vinpg
-2
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Noting that Aka was absorbed in worka; we have:

(ﬁvaﬁ> - workay, (—workby, + workcey,)

and the full thermodynamic equation (Ritchie 95, eq. 2.30) can now be
programmed:

TH-T; _ (kTyw(lteq) 1 ATy, oT,,
2At 7( 14+(6—1)q k_ acos? 6 Uk O\ + Vi cos § a0

) - 0
_—QAlpk [(na_f])]“ré (T’L)k+1 - Tvk) + (nd_f])k, (T’uk - Tvk_1):| - gAtt (TD)k

1
2

The matrix 7 is defined by:

(rD), = KTy ( &-1 Phrd S D AP+ af D
TE)e = mhr \ mpp M 7 j=1 Fimp; T Lk

_1
2
and

D= (D;y ... Dpeys)

1.7 Calculation of (UPRS, VPRS)

In order to maintain conservation properties in the discretized formulation, the
expression of the pressure force term requires the following form:

Rgcos0(Ty), pk+%

Ry (T, cosV Inp), = ap [ln (p ) Vp,_1+ akVApk]
k k-3 2

Since:

VAp, =V (Ak_i,_% + Bk+%ps - (Ak_% + Bk—%ps)) = VAByps = AByVps

13



We may write

(UPRS, VPRS) =

RyTycosf 7 Ilnp = — Ry C‘EZ]ET’”)’“ [1n <§:+% > Bk_%Vps 4+ ap ABpVps| =
-2

Rg cos0(T, Prtd
= _def)k [Bk_% In <Pt;§) + akABk:| psV Inps

p 1
= _ﬁ [Bk—% In <pi+z > + akABk:| Rq (T,),, ps cos 8V In py

in the code  cosfV In p, = (DPDLAM, DPDPHI)

Pp_1
k=3

let cofb= —ﬁ [Bk% In (pk+%) + akABk]

Then (UPRS, VPRS) = cofb Ry (T,), ps (DPDLAM, DPDPHI)

for k=1 1n<Z—)Vp;.

1
2

Iholeo

Since pL = 0, we have to find the limit:

limpl_,o (hl (2—) Vpﬁ) = 0
2

therefore  (UPRS, VPRS),_, = —Rqcos 0524 (DPDLAM, DPDPHI)

olco

=

1.8 Calculation of (uphi, vphi)

(uphi, vphi) = — cos OV ¢y

14



evs pj +
¢k = ¢k+% + agRqg (Tv)k ) ¢k+2 = ¢€ + Z]L k+1 (TU)]‘ In <p,+2 )

P Pyl
ag=In2 or (=1), ozkzl—g;k?l (—p:+%) E>1.
-3

then: —cosOVey = —cosV [qbg + Z]Lm]ﬁl d (Tv)j In (pﬁ% ) + arRy (Tv)k}

— 08OV, — Ry cos b {zfj;il [(Tv)j Vi + )V (Tv)j} +arV (1), + (T, vgk}

Pit1
where 7; =In_——2
Py 1

let  (uphi, vphi) = pz; + pxs + pr3 + pxs + prs  (for coding purposes)
pri = —cosOVos , pr3=—Ryg COSHZ;“EZ?I (Tv)j Vr;
pr3 = —Rgcosf Efe;;i_l ™V (Ty);
—
Py

= —Rgcosba,V (Ty), , prs = —Rgcosf (T) Vou,

Evaluate pzs

Lev:
pT3 = —Rqcos03 " (T,), V,

Pl Vp, 1 Vp,_1
Vrj=Vln|—*|=—"2 - T2 =
P31 Pjtd P31
B. 1 B. 1 B., 1 B, 1
J+2v J*jv _ its i—3 v1
= — = — n
Pl Ps P31 Ps Pl P31 Ps Ds

— Levs Bj+2 BJ' %
prz = —Racos03 ;0 (1), Pt psVInps
T2

15



|

Levs BJ+% Bj*%
prs = =RadiZha (00); 57, = %7, ) p. (DPDLAM, DPDPHI)

—
cos OV In p,
fi di A 0 Biog By _ 1 0
or a pure o coordinate ki = Py — 5y ==

bS]
sl
[ V)
I
o

Evaluate pz3

—_— Levs pj+%
pr3 = —Racosf3 ;)7 In oy V(1)

In the code cos VT = cos?# (dtdl, dtdf)

P73 = —Rgcos? 0 250 In f;* (dtdl(j), dtdf(j))

2

pri = —Rgycos0a,V (T,), = —Rgcos? oy, (dtdl(k), dtdf(k))

Evaluate pz3

D5 = —Rgcosf (1), Vay

now

Pp_1 Pyl Pp_1 Ppil Pryl
Vag =V (1 iy (p_)) S {vm (p_k_z)}_m (—pk_) {v
evaluate

Ppy1 Vp, 1 Vp,_1 Bi.i1 B, 1
Vln< 2> = z — 2 = Z — 2 psV In pg
3

Pyl Pryl Pyl Pryl P

16




vic: oy
Apr Apr VPs T Pi—3ap,)?

T L = N ) SRR - SR B N I (e S N R A
= Apn Ds Bpr)? k+3 k—1 Ps| = Apn (Apn)? k| PsV INps

Pr_t [ Bryl B _) Pr4l B, _1 Pr_1
Vap = - Ap,f ( < — D )pthlps—ln (pkz Ap,: - (Ap;)z ABjy, psV Inps

Pry k

Nl= frop—=

Pp_1 Pl Pp_ 1
Voy, = —z5- {ﬁBH% —Bj_1 +n (p}’ff) (Bk_% - =2 ABk>}psVlnps
2

Pyl

let

cofa(k) = _Aka {pk% kti— Bi_1+1n (%) (B,%% - pg;f ABk>} in code
2

Vai = cofa(k) psV In p
and finally:
prs = —Rycos0 (T,), Vay = —Rgcosf (T,), cofa(k)psV Inps

prs = —Rq (T,),, cofa(k) ps (DPDLAM, DPDPHI) in code

17



for pure sigma  A; =0

1.9 Semi-Implicit Time Integration

The momentum equation is:

<L

=a* — BNy (AVT + RiT,VQ) Azy =2t +2~ -2z, Q=lp,

o

Operating with the divergence operator we have

9D — g — BNy (AVT + R4T,V?Q)

where z* and x are the appropriate non-linear terms.

We are dealing with the three coupled equations:

9D — g4 820D AT+ 4 T~ —2T) + RyT, (QF + Q™ — 2Q)}

9 =y - SAyBD =Y - 8B(D* + D~ - 2D)
99 — 7 8N4 (S-D)=2-5S- (Dt + D~ —2D)

S X = Ef@vs S: X R S; = Ap_[:i , p=p ref. = 850 mb.

Now finite difference in time, solve for DT then T+ , QT
Dt = D™ + 2Ata + ARG (A (T~ — 27) + RT, (Q~ — 2Q)} + SR (AT + RyT, Q)
T+ =T~ +2AtY — BAtB (D~ — 2D) — BAtBD*

Qt = Q™ +2AtZ — BALS - (D~ —2D) — BALS - DT

18



then
D+ = D= +2Atz+n (n+ 1) {A (T~ —2T) + T (Q~ — 2@)}+n (n+1) (AT+ + TTQ+>
Let

Bl = D~ +2Ate +n(n+1) {A(T— o)+ T, (Q — zQ)}
FL =T~ + 2AtY — BAtB (D~ — 2D)

Gl = Q™ +2AtZ — BALS - (D~ —2D)

then:

Dt =E, +n(n+1) (AT+ + TTQJF)
T+ =F. — BAtBD* (1.9.1)

QT =G — BALS - Dt
Solve for D+
D+ = Bl +n(n+1) {A(F], - pALBD?) + T, (G}, - pAts - D)}
collect terms with D% :
{1 +n(n+1)BAt (AB + TTS-) } Dt =E. +n(n+1) (AF,i + T,«Gil)

let Dy, =1I+n(n+1)BAt (AB+TTS)

19



Table 1: Vertical Structure Indexing top to bottom
| k| k+3] aks | bks | pks | op |

0] L |aks(1) | bks(1) | pks(1) (ng—g) _=Dot(1)
1| 11 |ak5(2) | bks(2) | pks(2) (ng—g) Dot (2)
2 | 21 | aks(3) | bks(3) | pks(3) (ng—g) ,, Dot
3| 3L | aks(4) | bk5(4) | pk5(4) (nf’—g) ,,~Dot()

Then Dt =D} {El +n(n+1) (AF}L +1,GL

~——
—

The predicted values of TT and QT are given by eq. (1.9.1)

INDEXING AND LOOPING.

. —
consider pzs :

B, 1
+1
let [y =2, px() = > (B, (freg —fimy) k=1, .., Levs
Pits j=k+1
Let Levs=4 k=1,2, 3,4 pr = px2 scalar, in code

—

px3 = (px2u, px2v)



k=Levs px(4) = Z?=4+1 =0
4
k=Levs- | px(3) = Xy = (T0)y (Farg — fuy)
3
k=Levs2 | px(2) = X oy = Simg = (D) (fary = facg) + (D) (fary = fay)
2
= (L) (fouy — foy) +px(3)
4 4
k=Levs-3 | px(1) = X1 = Xjs = (Tu)y (fory = oy ) +x(2)
1
DO k=24-1 (k=2,3)
k=2 px(2) =px(3) - Ra (B - 280 ) Tg()
k=3 px(1) =px(2) - Ra (B - 23 ) Tz(2)

w (n) in the physics.

The vertical velocity w is calculated as in the energy conversion term and is

passed on to the physical parameterization routines.

Indexing is assumed top to bottom
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1.10 Schematic Vertical Grid

LEVS = number of model layers
Py i1 = pressure at interfaces

Py = pressure in model layers

Prpvs-1

PLEVSJr%

apyy, byyy are defined at interfaces
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1.11 Notation

A longitude
0 latitude
n hybrid vertical coordinate

Ay By level dependent constants defining 7

t time

a radius of the earth

f coriolis parameter

(u,v) horizontal velocity components

P pressure

s surface pressure

Pr reference pressure used in linearization for semi-implicit

time integration

o=t
T temperature

T reference temperature

T, virtual temperature

¢ geopotential

P density

a= % specific volume

q specific humidity

Q energy per unit mass

Ry dry air gas constant

Cp dry air specific heat at constant pressure
Cy dry air specific heat at constant volume
K = Ra/cp

€ =R,/Rq+1

) Cpv/Chpa

Y hydrostatic matrix

24
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