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Abstract

Of the various space-filling curves invented since their introduction by Peano the Hilbert curve
is probably the simplest to define and to work with. Its value as a tool for optimizing both
adaptive and static domain decompositions is now well established in the practice of massively
parallel computing. Other important applications of interest to atmospheric scientists involve
the thinning of data from remote sensing instruments in regions where these data are distributed
with excessive density relative to the assimilation grid resolution, or the aggregation of clusters
of such dense data into more manageable numbers of approximately equivalent surrogates known
as ‘super-observations’. Hilbert curves also enable observational data to be partitioned into
disjoint subsets suitable for applying cross-validation methods to the problem of estimating
statistical parameters for an assimilation scheme. In these applications involving randomly
distributed observations it is desirable that equal intervals in the parameter of the space-filling
curve map to equal areas of the globe. This brief note shows how this can be most conveniently
done for the sphere in a way that does not unduly distort the pattern traced by the curve. The
extensions of these methods to curves filling spherical domains that include the vertical, and
even the temporal dimensions, are also discussed briefly.

1. Introduction

Space-filling curves were first introduced by Peano (1890) and quickly refined by Hilbert
(1891) and many others (for example, see Sagan 1994). In the atmospheric sciences Behrens
and Zimmermann (2000) have shown how the ability to parameterize all the points in space in
a continuous and serial manner enables efficient algorithms to solve the problem of optimizing
the decomposition of domains for parallel computation in a dynamically adaptive way. Even
for the static geometry of subdomains for a massively-parallel climate model, Dennis (2003) has
shown that the Hilbert-curve technique provides a superior domain decomposition compared to
other standard algorithms. A very different exploitation of the serial parameterization of space
was shown by de Pondeca et al. (2006) to lead to natural methods for grouping excessively
dense data into super-observations (‘super-obs’) of a more manageable quantity, or simply to
thin such data in a way guaranteed not to leave inadvertent voids. The present note briefly
reviews the construction of the classical Hilbert curve in a plane square, before tackling the
main result, which is to show how the ‘isometric’ parameterization of the square, in which
equal curve parameters map to equal areas (or volumes) of the space filled by the curve, can be
extended to a reasonably simple version of the Hilbert curve covering the sphere and preserving
the same isometric property.

2. The Hilbert curve on the square

The construction of a Hilbert curve is a recursive procedure which begins with a ‘tour’
through one or several squares. The rules of construction can be stated very simply.

(i) Each square is visited once during the tour.
(ii) Entry is made through a definite edge and in the neighborhood of one of its corners.



TABLE 1. A binary Cartesian co-
ordinate tabulation of one step of
the refinement of a generic tran-
sit of the Hilbert curve in a unit
square region, 0 ≤ x < 1, 0 ≤ y < 1.
Bisecting the x and the y ranges
so as to cut this square into quar-
ters, and labeling each sub-square
by its corner closest to the origin,
we see that the four pairs of bi-
nary coordinates in the left pair of
columns describes a ‘tour’ through
these sub-squares. The entry and
exit sub-squares have precisely one
edge, [(0, 0), (0, 1.)], of the original
square in common, are thus suf-
ficient to indicate that, upon re-
finement, the entry and exit points
remain these same two corners of
the unit square. The right pair of
columns show the tour at a resolu-
tion enhanced by a factor of two
where each successive pair of rows
indicates the edge of the respec-
tive sub-square through which en-
try and exit of this segment of the
refined curve into the sub-square is

made.

(.0 .0)
(.00 .00)

(.01 .00)

(.1 .0)
(.10 .00)

(.10 .01)

(.1 .1)
(.10 .10)

(.10 .11)

(.0 .1)
(.01 .11)

(.00 .11)

(iii) Exit is made through another definite edge and in the neighborhood of another corner
not diagonally-opposite to the first one.

(iv) Upon refinement by quartering an existing square, the rules of transit are maintained
through each of the four daughter squares in such a way as to preserve the original entry and
exit edges and neighborhoods.

The allowable ways (within proper rotations by a right-angle) of transitting a square are
shown schematically in Fig. 1, where it is evident that transits labeled D, E, and F are simply
the mirror images of those marked A, B, and C, respectively. Transit D is also the reversal of
A, while B and C are the reverses of each other, as are E and F.

Given the sequence of original abutting squares visited, and the entry-edge of the first square
of the sequence, the rules (i)—(ii) restrict the configuration of tours at this first stage to just two
– one that enters the first edge near the right corner and one that enters it near the left corner
of that edge, since, after resolving this initial choice, the rest of the tour is then determined
uniquely. Moreover, the quartering rule (iv) of refinement, together with the other rules applied
in the daughter squares uniquely define the tour at this higher resolution. The refinement rules
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Figure 1. The different modes of transit of a square in an elementary segment of the tour at a finite stage of
the construction of the Hilbert curve. The final three cases, D, E, F, are just the mirror-images of the first three,
A, B, C, respectively. The transit enters the square through a given edge near one corner and departs through
one of the three other edges, and alway close to a corner which, with the first-mentioned corner, forms an edge

of the square .

for transits A, B and C are shown schematically in Fig. 2.
We can list the refinement rules for each transit mode as follows, where each segment of a

tour is read from left to right:

A → CFBE,

B → CFBD,

C → ACEB,

D → FCEB,

E → FCEA,

F → DFBE.

Through iterations of the refinement rules, all geometrically possible couplings of the transit
types can appear in a consecutive pair except: AB, CD, DE, FA.

The process of successive refinement is seen more clearly when we join the centers of the
smallest sub-squares of each stage, in the order in which they are visited, by a polygonal curve.
Fig. 3 shows the first few steps in the refinement for the generic square with a transit consistent
with types A and B of Fig. 2.

An equivalent symbolic representation of the refinement process is obtained by encoding
the steps of the polygonal curve as binary expansions. In Table 1 the left column shows the
binary expansion (requiring only a single digit beyond the binary point) of successive half-width
sub-squares visited in the coarsest representation of the tour. The coordinates give the lower
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Figure 2. Illustration of the refinement rules for coarse transits, A, B and C, when the old square is quartered.
The construction rules preclude any other pattern in each case.

(a) (b) (c)

Figure 3. Graphical depiction of the first few refinements of the Hilbert curve that fills a square. The thick
lines show the polygonal path connecting the ceneters of the subsquares at each level of refinement. The entry

and exit points are associated with the left edge of the domain square in this case.

left corner of each sub-square. The first, (.0,.0), and the last, (.0,.1), of these can be taken to
infer that the edge of the domain square at whose end points the entry and exit points lie is
the left edge, [(0., 0.), (0., 1.)]. Similarly, the four successive pairs of points listed in the right
column can be taken to indicate the directed edges of the corresponding squares in the left
column of the table. This information is what is needed by the algorithm that generates the
next stage of the refinement.
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The initial state of the iterated curve can be parameterized by a segment of the real line that
assigns equal measure to each square visited. Then, at each stage of refinement, the daughter
squares of a parent square can equally share the parameters of that parent square by simply
dividing this portion of the parameter range by four and making the assignment in the proper
sequence to preserve continuity. The equal-measure property is then inherited throughout the
process of sequential refinements. This is very naturally done by employing base-4 parameters
so that each iteration of refinement adds a new ‘digit’ to the numerical representation of the
parameter. The base-4 representation also makes the process of locating the image of a given
parameter quite straight-forward once the configuration of the initial unrefined tour is specified.
In a similar way, we can employ base-8 digits for the parameters of the successive stages of the
refinement of the 3-dimensional space-filling curve in a cube, and base-16 for a curve filling a
hyper-cubic region of three space and one time dimensions, as will be discussed in section 4.

The true Hilbert curve is the limiting case of the refinement procedure but the ‘isometric’
property of the image area being proportional to the parameter segment length still holds, and
is a property which is desirable to preserve when we generalize the construction to the surface
of the sphere. The next section describes a continuous mapping between the sphere and the
plane squares forming the surface of a cube, that possesses the equal-area mapping property.
When this property holds, the desired isometry is assured between Hilbert curve parameter
segments and the spherical areas they map to.

3. Isometric Hilbert curve exploiting an equal-area mapping between the faces

of a cube and the sphere

The Cartesian map coordinates, longitude and sine(latitude), map the sphere to a rectangle
in an equal-area way and, by linearly stretching the map to give it a 2 : 1 aspect ratio, it may
be tiled by two squares and filled with a Hilbert curve. However, this simple solution involves
an infinite degree of map-deformation at the poles and makes the Hilbert curve unsuitable as
a tool for constructing super-obs at high latitudes.

Figure 4. Cartoon showing how a triangular region may be covered by three quadrilaterals. However, the
Hilbert curve’s entry and exit points are not both located at the ends of an edge of the triangle; one end of the
Hilbert curve can be put at a corner of the triangle and the other end at the center of the opposite side, as is

evident from Fig. 5 below.

We can seek a less distorting mapping between the sphere and the six plane squares forming
the faces of cube — the ‘cubed sphere’ (whose use in providing gridded domains for numerical
weather prediction has been discussed in, for examples, Ronchi et al. 1996, Rančić et al. 1996,
McGregor 1996). The simplest of these is the gnomonic cube, obtained by central projection
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(a) (b) (c)

Figure 5. Like Fig. 3 but now a depiction of the first few refinements of the Hilbert curve that fills an L-shaped
region of three main sub-squares which, as shown in Fig. 4, can be folded into a triangular region (such as the
octant of a sphere). In this case, the end points of the refined curve cannot both be at the ends of the same edge
of the triangle; instead we arrange the tour to put one end at a corner of the triangle and the other end at the

midpoint of the opposite edge.

between the cube and the sphere inscribed within it. The faces of the cube are squares which
can be linked by a Hilbert curve filling each one in turn. However, this would mean leaving
and reentering each hemisphere several times before completely covering the global domain. A
more elegant tour that does complete one hemisphere before entering the other is possible. We
first subdivide each face of the cube into four smaller squares (24 in all), and cluster the trios
of the sub-squares that meet at each of the eight original corners into an ‘octant’ of the sphere.
Effectively, each octant of three sub-squares projects to a triangular shape and the tour can be
constructed so that each successive eighth of the Hilbert parameter range maps to the interior
of such an octant. Figure 4 shows how an L-shaped region of three sub-squares can be folded
into a triangle. But Fig. 5 shows that the Hilbert curve refinement can no longer place both
the entry and exit points at the ends of one edge of the triangle; instead, the most convenient
configuration has one end of the parameter segment mapping to a corner of the triangle and the
other end mapping to the midpoint of the opposite edge. Table 2 shows the binary-expansion
representation of the coarse-scale polygonal tour, in the same style as Table 1.

TABLE 2. A binary Cartesian coor-
dinate tabulation of one step of the
refinement of a generic transit of
the Hilbert curve in an L-shaped re-

gion in two dimensions.

(.0 .0)
(.00 .00)

(.01 .00)

(.1 .0)
(.10 .00)

(.10 .01)

(.1 .1)
(.10 .10)

(.11 .10)

Completing the tour through eight octants and two hemispheres in turn is accomplished
as illustrated schematically in Fig. 6. The relatively high degree of symmetry should keep
the distortion of the mapping to the cube fairly small. However, the most direct (gnomonic)
mapping is not of the equal-area type. Fig. 7a shows the image of a random uniformly dis-
tributed set of sample points from the Hilbert curve mapped, first, to the randomly-oriented
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Figure 6. A cyclic tour satisfying the rules of construction for an arrangement of quadrilaterals covering the
north and south hemispheres. Each hemisphere is visited and completed in turn, as is each octant (quarter

hemisphere).

gnomonic cube, and then to the sphere by central projection. Following this step is an equal-
area projection from the sphere to a plane disk. This second mapping is accomplished by a
rotationally-symmetric mapping from the sphere to a map radius r on the disk, where

r = 2 sin(θ/2), (3.1)

for a co-latitude (angle to the north pole) of θ radians. The geometrical construction of this
equal-area mapping between the unit sphere and the disk of radius two units is shown in
schematic cross-section in Fig. 8. But it is quite evident from Fig. 7a that the random
orientation of the cube is betrayed by the marked pattern of the density inhomogeneity of the
random scatter produced by gnomonic mapping between the sphere and the cube.

The remedy is a slightly more complicated continuous transformation which is constructed
as follows. Let us consider Earth-centered Cartesians, (X, Y, Z), with X and Y spanning the
equatorial plane, and Z pointing along the north polar axis. Take one representative face of the
cube to be the one containing the north pole, and span this face with gnomonic coordinates,

x =
X

Z
, (3.2a)

y =
Y

Z
, (3.2b)

or

X = Zx, (3.3a)
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(a) (b)

Figure 7. Each panel shows a scatter of points chosen randomly and with uniform distribution over the length
of the parameterized Hilbert curve that covers a square dihedron. In both cases, a continuous mapping is defined
between the cube and the sphere, and thence to the disk shown, where this last step is via the area-preserving
mapping defined as illustrated by Fig. 8. However, in (a) we see the results obtained when the step mapping
between the cube and the sphere is not itself an equal-area mapping, and the systematical irregularities of the
density in this randomly oriented view are clear to the eye. In (b) the equal-area mapping between cube and
sphere guarantees an essentailly uniform scatter plot that does not betray the orientation of the cube. The

Hilbert curve is thus said to possess an ‘isometric’ parameterization over the sphere.

sphere

disk

paraboloid

Figure 8. A schematic depiction of the geometry of the equal-area projection between the surface of the unit
sphere and the disk of radius 2 units. The projection from the sphere to the mediating paraboloid is radially

outward from the polar axis.

Y = Zy, (3.3b)

Z = (1 + x2 + y2)−1/2. (3.3c)

As defined, the map coordinates of this entire square face range within −1 ≤ x ≤ 1 and −1 ≤
y ≤ 1. If A denotes the area on the sphere and a the corresponding map area, it is not hard to
see from the geometry of the situation that

dA

da
= Z3. (3.4)

At the map corners, where Z =
√

3/3 the Jacobian dA/da drops to less than a fifth, which
explains the irregular density in the scatter plot of Fig. 7a.

In order to remedy this defect we first find the spherical area associated to each concentric
square of the map so that another centered square of sides given by the square-root of this
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quantity can form the basis of an alternative cubed-sphere mapping. A second step is then to
adjust the positions tangentially to the sides of each concentric square to ensure all mapped
areas become true. The first step could be done with the help of the Gauss-Bonnet theorem by
inspecting the angle at the corner of the image on the sphere of each concentric map-square.
Alternatively, as we demonstrate below, the map Jacobian (3.4) can be integrated in y, and
then x, to obtain the same result together with additional information which we will need.
Owing to the eight-fold symmetry of the square face under consideration, we need only focus
on the representative octant, x ≥ y ≥ 0.

Let I(x, y) be the quantity defined by the integral,

I(x, y) =

∫ y

0

Z3(x, y′)dy′,

=
1

(1 + x2)

∫ ŷ

0

(1 + y′2)−3/2 dy′, (3.5)

where
ŷ =

y

(1 + x2)1/2
. (3.6)

Thus,

I(x, y) =
y

(1 + x2)(1 + x2 + y2)1/2
. (3.7)

Integrating J(x) = I(x, x) with respect to x will give the area within the 45◦ triangular wedge
out to this x. At x = 1 this will give us 1/48 of the area of the sphere. Since we wish the square
root of the area integral to be proportional to a new coordinate for the map, then for this new
map also to extend to unity at the edge of the cube, we define the new coordinate p in the
following way:

πp2(x)

12
=

∫ x

0

J(x′) dx′,

=

∫ x

0

x′

(1 + x′2)(1 + 2x′2)1/2
dx′

=
1

2
arcsin

(

x2

1 + x2

)

. (3.8)

Thus,

p(x) =

[

6

π
arcsin

(

x2

1 + x2

)]1/2

. (3.9)

For a second new coordinate, q, to form, with p, a pair with a constant Jacobian with
respect to the sphere, we need:

T =
q(x, y)

p(x)
=

I(x, y)

J(x)
,

=
y

x

(

1 + 2x2

1 + x2 + y2

)1/2

. (3.10)
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Figure 9. A scatter-plot showing the location of points at equal spacing along the gnomonic cubic surface Hilbert
curve projected first to the sphere, then via an equal-area mapping, to a disk. The two patches of the more
prominent special symbols occupy the same range of the Hilbert curve parameter but, because they are located

at the corner and near the center of the cube’s square face, they project to unequal geographical areas.

Corresponding transformations apply in the other sectors of each square panel.
The new mapping itself is continuous everywhere but its derivatives are now discontinuous

across the 45◦ diagonals of each square face in addition to being discontinuous (as in the original
gnomonic mapping) across cube edges. However, the map distortions remain relatively small
and the mapping has the advantage of being easily invertible. The image on the gnomonic square
of the equal-area map point, (p, q) when p ≥ q > 0 is obtained by first finding x inverting:

S = sin

(

πp2

6

)

=
x2

1 + x2
(3.11)

that is,

x =

(

S

1 − S

)1/2

. (3.12)

We then obtain:

y = Tx

(

1 + x2

1 + 2x2 − T 2x2

)1/2

. (3.13)

Fig. 7b shows the result of generating random points uniformly scattered over the (p, q) map
panels, transforming to the sphere (via the gnomonic map) and thence back to the equal-area
disk projection. Here again, we are able to recover a perfectly uniform random distribution.
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Figure 10. The same as in Fig. 9 except that an intermediate tranformation replacing the gnomonic cube with
a cubic mapping that has the equal area mapping property. The two patches of special symbols, whose ranges
of the Hilbert curve parameter are equal, now project also to equal geographical areas – obeying the desired

isometric property.

One application of the Hilbert curve is to facilitate the construction of super-obs. The
isometric property is especially valuable in this context as it means that, when the observations
belonging to a segment of the Hilbert curve of a given parameter length are grouped into a single
superob, the geograhical area of the region covered by the parameter segment is immediately
known. Fig. 9 shows a pattern formed by a very large number of ‘obs’ placed at a perfectly
uniform spacing along the Hilbert curve that uses the mapping of Fig. 7a, except without the
random rotation of map orientation. Two small segments of equal length in the parameter
space are selected for consideration for consolidation as ‘super-obs’, one near the center of one
face of the mapping cube, and one near a corner. Here again, we see the systematic modulation
of the density of the original scatter, but in this case, we also see that the two ‘superobs’ have
areas that are obviously very different. This undesirable situation is corrected when we switch
to the isometric Hilbert curve, with results shown in Fig. 10, that provide super-obs belonging
to identical geographical areas.

The shapes of the two super-ob patches shown in Fig. 10 are not exactly the shapes they
have on the original spherical surface owing to the slight distortion they incur as a consequence
of the mapping to the disk. While we would not expect the footprint of a super-ob to be circular,
we would at least hope that some suitable measure of its aspect ratio did not depart too far
from unity. The ratio of the square-roots of the principal components of the centered second
moments of the patch would provide one crude measure. In the case of super-ob footprints
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TABLE 3. Like Table 1 but now showing the pattern
by which the coarsely resolved path of a segment
of the Hilbert curve through a generic cubic re-
gion may be refined. In this case, the entry and exit
points at each refinement stage are as close as the
resolution will allow to (0, 0, 0) and (0, 0, 1.), which
also bracket one unambiguous edge of the original

cube.

(.0 .0 .0)
(.00 .00 .00)

(.01 .00 .00)

(.1 .0 .0)
(.10 .00 .00)

(.10 .01 .00)

(.1 .1 .0)
(.10 .10 .00)

(.10 .11 .00)

(.0 .1 .0)
(.01 .11 .00)

(.01 .11 .01)

(.0 .1 .1)
(.01 .11 .10)

(.01 .11 .11)

(.1 .1 .1)
(.10 .11 .11)

(.10 .10 .11)

(.1 .0 .1)
(.10 .01 .11)

(.10 .00 .11)

(.0 .0 .1)
(.01 .00 .11)

(.00 .00 .11)

obtained by taking a continuous segment of the Hilbert curve in a plane square domain, we
can see from the central portion of Fig. 3c that this aspect ratio estimate could attain a
maximum value of about four (where four consecutive filled sub-squares lie in a straight line),
which remains acceptable for practical purposes. We would like to be assured that this ratio
will never be unduly amplified by the compounding effect of the distortion of the equal-area
mapping between the cube and the sphere. Fig. 11 shows an array of small circles on the
surface of the sphere mapped back to the interior of one octant of one face of the cube through
the equal-area mapping we have described. The maximum distortion occurs near the outer
edge, p = 1, but is clearly not very large, even here.

4. Incorporating dimensions of height and time

There is no intrinsic restriction to the dimensionality of the Hilbert curve. We can add the
third dimension (height) and refine a circuitous tour of a cube. The tour is now too complicated
(even at coarse resolution) to show clearly by graphical means, and the power and versatility
of the binary tabulations become evident. The tour through a generic cube moves through
its eight main sub-cubes as indicated in Table 3, where the entry-exit edge (for the unit-sided
cube) in the orientation of this example has coordinates, [(0, 0, 0), (0, 0, 1)]. By analogy to the
two-dimension case of Table 1, the eight successive pairs of points listed to two binary places of
precision in the right column of the table indicate not only the sub-cubes visited (information
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TABLE 4. Like Table 3 but now showing the pattern
by which the coarsely resolved path of a segment
of the Hilbert curve through a prism with L-shaped
cross-section cubic region may be refined. As in Ta-
ble 3, the entry and exit points at each refinement
stage are as close as the resolution will allow to
(0, 0, 0) and (1., 0, 0). The L-shape can be closed up
into a triangle, thus making the shape dealt with
here apply to a triangular prism whose entry and
exit points are at the ends of an edge belonging to

a triangular face.

(.0 .0 .0)
(.00 .00 .00)

(.00 .00 .01)

(.0 .0 .1)
(.00 .00 .10)

(.01 .00 .10)

(.1 .0 .1)
(.10 .00 .10)

(.10 .01 .10)

(.1 .1 .0)
(.10 .10 .10)

(.11 .10 .10)

(.1 .1 .0)
(.11 .10 .01)

(.11 .10 .00)

(.1 .0 .0)
(.11 .01 .00)

(.11 .00 .00)

 0 0.5 1.0
p

0

0.5

1.0

q

Figure 11. A mapping to one octant of one face of the equal-area cube of an array of identical small circles on
the sphere, showing that even the worst distortion incurred by this mapping is of moderate magnitude.

requiring only the first digit of the expansion of each component, as is given in the left column),
but, as in the two-dimensional example of the square, the right column data infer the respective
edges of each of these eight sub-cubes to which the entry and exit points of the associated
segments adhere. The sequence of 3-bit binaries given in the left column are identical to the
so-called “3-bit Gray code” sequence (Gray 1953, Gilbert 1958) originally invented to stabilize
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TABLE 5. Like Table 4 but now showing the pattern
by which the coarsely resolved path of a segment
of the Hilbert curve through a prism with L-shaped
cross-section when the entry and exit points at each
refinement stage are as close as the resolution will

allow to (0, 0, 0) and (0, 0, 1.).

(.0 .0 .0)
(.00 .00 .00)

(.01 .00 .00)

(.1 .0 .0)
(.10 .00 .00)

(.10 .01 .00)

(.1 .1 .0)
(.10 .10 .00)

(.10 .10 .01)

(.1 .1 .1)
(.10 .10 .11)

(.10 .10 .11)

(.1 .0 .1)
(.10 .01 .11)

(.10 .00 .11)

(.0 .0 .1)
(.01 .00 .11)

(.00 .00 .11)

angular measurements given by optical shaft encoders in mechanical engineering applications
(since only one bit changes at a time).

In refining the cubic Hilbert curve we encounter an ambiguity concerning the way a transit
associated with a given edge of a sub-cube is interpreted as a tour through that cube’s own eight
sub-cubes. However, the two possibilities are mirror-images of each other, so the ambiguity can
be resolved by simply always choosing this eight-cube tour to be the one chirally identical (i.e.,
via a proper rotation) to the tour defined in Table 3.
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TABLE 6. Like Table 1 but now showing the pattern by which the
coarsely resolved path of a segment of the Hilbert curve through
a generic hypercubic region may be refined. In this case, the entry
and exit points at each refinement stage are as close as the res-
olution will allow to (0, 0, 0) and (0, 0, 1.), which also bracket one

unambiguous edge of the original cube.

(.0 .0 .0 .0)
(.00 .00 .00 .00)

(.01 .00 .00 .00)

(.1 .0 .0 .0)
(.10 .00 .00 .00)

(.10 .01 .00 .00)

(.1 .1 .0 .0)
(.10 .10 .00 .00)

(.10 .11 .00 .00)

(.0 .1 .0 .0)
(.01 .11 .00 .00)

(.01 .11 .01 .00)

(.0 .1 .1 .0)
(.01 .11 .10 .00)

(.01 .11 .11 .00)

(.1 .1 .1 .0)
(.10 .11 .11 .00)

(.10 .10 .11 .00)

(.1 .0 .1 .0)
(.10 .01 .11 .00)

(.10 .00 .11 .00)

(.0 .0 .1 .0)
(.01 .00 .11 .00)

(.01 .00 .11 .01)

(.0 .0 .1 .1)
(.01 .00 .11 .10)

(.01 .00 .11 .11)

(.1 .0 .1 .1)
(.10 .00 .11 .11)

(.10 .01 .11 .11)

(.1 .1 .1 .1)
(.10 .10 .11 .11)

(.10 .11 .11 .11)

(.0 .1 .1 .1)
(.01 .11 .11 .11)

(.01 .11 .10 .11)

(.0 .1 .0 .1)
(.01 .11 .01 .11)

(.01 .11 .00 .11)

(.1 .1 .0 .1)
(.10 .11 .00 .11)

(.10 .10 .00 .11)

(.1 .0 .0 .1)
(.10 .01 .00 .11)

(.10 .00 .00 .11)

(.0 .0 .0 .1)
(.01 .00 .00 .11)

(.01 .00 .00 .11)

In the case of a tour through a ‘thick’ spherical shell, using the preferred spherical-cube
isometric mapping described in the previous section, then, if upon each of the 24 fundamental
sub-squares of this spherical mapping are stacked at least one pair of cubes of this footprint
size, we will need to consider a Hilbert tour through triangular-section prisms that unfold, in a
manner analogous to Fig. 4, into L-section prisms now composed of six cubes (two wide, and
two high). If the depth of the domain only amounts to this double stack, we need only consider
tours through the prism that enter and exit at the same trianglar face and, in this case, unlike
the two-dimensional situation, we can now enter and exit at the ends of a common edge. This
allows the transfer between one octant and the next in the three-dimensional tour analogous
to that shown in Fig. 6 to occur always at the equator, allowing all octants to be treated
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identically. In the style of Table 3 (and its predecessors) the appropriate tour through the L,
or its reverse, is as tabulated in Table 4. However, if the domain through which the Hilbert
curve is even deeper than this, we shall require more than the depth of one of these six-cube
basic prisms to be stacked up and, at some of the transits, we shall need entry and exit points
of such a prism to be at different heights. Table 5 treats this case, with the edge defined by
the entry and exit points now being vertical, or perpendicular to the triangular (or L-shaped)
base. Careful inspection of the binary digits in this case reveals that this tour exhibits mirror
symmetry in the horizontal midplane (something that is not possible to achieve in the case of
the tour of Table 4, when entry and exit occur at the same altitude).

The preceding discussion does not address the question of how one should decide whether
the domain counts as ‘thick’ in the vertical. In other words, we are in need of an effective metric

by which we can gauge and compare the relative displacements in the horizontal and vertical
directions in a way that is meaningful in the context of the applications. In applications
to data assimilation, which we have implicitly assumed here, the effective metric in the two
directions might come from the horizontal and vertical scales of the covariances of background
error. These in turn will usually tend to relate closely to the ratio of scales given by classical
quasi-geostrophic theory. Locally, horizontal to vertical scale ratios tend to be not far from
the ratio of the Brunt-Väisälä frequency, N , to the effective rotational frequency, Coriolis, f ,
or Earth-rotational, Ω. By integrating a characteristic representative value for this ratio up
through the atmosphere, we can decide whether the domain considered belongs to the ‘thick’
or ‘thin’ category, and plan the space-filling tour accordingly. As an example, let us suppose
that the ratio of scales in the lowest 10 km, where the Brunt-Väisälä frequency tends to be
relatively low, is 100:1, while in the next 20 km of altitude let this ratio be 200:1. Then,
by this crude measure, the horizontal distance equivalent to the entire 30 km depth we have
considered is D = 10 × 100 + 20 × 200 = 5000km, which corresponds to half of one side of the
spherical octant. Thus, by this reckoning, we would not need to invoke the ‘thick’ atmosphere
assumption for an assimilation domain that extends only up to 30 km.

A similar consideration needs to be applied if the domain from which data are gathered and
compared is three-dimensional in the sense of horizontal plus time, or fully four-dimensional,
with horizontal, vertical and temporal dimensions all being substantially present. In the latter
case, not only must we determine the relative vertical ‘thickness’ (in the appropriate metric
comparison to the Earth’s quarter-circumference) but also the magnitude of the ‘duration’ of
the period under consideration, transformed to Earth units. In this case the crucial quantity
relating the effective equivalence between horizontal distances and time durations has the units
of a speed. If we take this speed to be a moderately large, but not atypical advection speed, say
50 km/hour, then the time window of any typical assimilation, say six hours, translates into
a horizontal distance (in this case, 300 km) very much smaller than the quarter-circumference
(10000 km) we might use as the criterion determining whether a domain that is ‘thick’ in the
time dimension. Thus, the temporal dimension of any four-dimensional Hilbert curve we might
wish to use over a global domain would not become activated until several generations of hor-
izontal and vertical refinement of the largest ‘cubes’ have already occurred in the symbolic
expansion of the Hilbert curve parameter. In other words, a ‘mixed-radix’ expansion is appro-
priate, with base-8 used for the first few digits (corresponding to horizontal and vertical degrees
of freedom only) followed by the full base-16 continuation at the later digits (corresponding to
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the resolution of excursions also in the time dimension at small distance scales). Thus, it is
necessary to be able to set rules for the construction of the Hilbert curve within hyper-cubes,
but not necessarily within the generalizations of the prisms (‘hyper-prisms’?) we needed to
consider for the largest global scales in three dimensions. To complete this section, we therefore
provide a tabulation of the pattern of refinement of a generic tour through a hyper-cube in
Table 6. As before, we recognize the Gray code binary sequence working down the left column
of this table.

5. Remarks

The two equal-area mappings from appropriate sets of adjoining square to the sphere can
be trivially adapted to a mapping from half of these tiles to a hemisphere, and hence to a plane
disk, again, with minimal distortion. But, by shrinking the disk and transforming back to the
sphere with the inverse of this last mapping step, we also get a way of mapping a set of square
tiles to any circular spherical cap in an equal-area fashion, and can thus cover such a region
with a Hilbert curve isometrically.

Although the techniques described here have focused mainly on the case of two-dimensional
maps, we have shown that the procedure for constructing a three-dimensional Hilbert curve
through a finite depth of the atmosphere is very similar in principle. A metric is required to
specify the horizontal equivalent distance for each vertical infinitesimal increment. If, by this
measure, the atmosphere is a shallow one, then several generations of horizontal refinement will
precede the first vertical refinement, at which point the refined transits thread cubes instead of
squares with each refinement requiring the creation of eight new segments instead of four. If
the atmosphere is very deep, it may be required to stack one or several ‘cubes’ on the footprints
made by the spherical decomposition into squares at the coarsest level, and proceed from the
outset to refine each cube in all three of its edge directions. A further generalization allows
the Hilbert curve to be extended, in addition to the space dimensions, into the time domain.
Here again it becomes necessary to decide on the formal equivalence of a unit of time with
the units of horizontal and vertical space but, as we have indicated, the construction of the
space-time-filling curve presents no fundamental difficulties. Observations that are localized in
space and time can then be serially ordered by the parameter of the Hilbert curve that threads
them together, and any subsequent super-obbing, data thinning or data subsets partitioned for
cross-validation become significantly easier in the new, effectively one-dimensional rendering of
the data.
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