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Abstract 

 
A methodology for specifying ensemble-based background error covariances within the recursive-

filter (RF) formalism of the NCEP Grid-point Statistical Interpolation (GSI) is proposed and tested using a 
low-resolution version of the North-American Regional Data Assimilation System. Perturbation fields from 
six-hour forecasts from the 80-member NCEP Global Ensemble Forecast System are used to represent the 
background errors. The RF-generated covariances are found to agree fairly well with the exact covariances 
computed directly from the ensemble perturbation fields in the vicinity of the selected test points. In addition, 
they are necessarily free of the spurious correlations at long ranges that characterize the covariance-matrix of 
the low-dimension space of the sample ensemble perturbations. The anisotropies are found to be rather weak 
when the 80-member ensemble is used without any further treatment to prescribe the local aspect tensor 
required by the recursive filter. However, a remarkable enhancement of the anisotropy is obtained when the 
ensemble size is artificially increased through a special type of local averaging. Results from a case study 
reveal an improvement of the 500 hPa geopotential height skill scores when the convariances with enhanced 
anisotropy are applied. 
 
1. Introduction 

 
An important component of a variational data assimilation is the assumed background error covariance 

matrix B as it determines the manner in which the information from the observation increments is spread to the 
nearby grid points and model variables that may not be a direct part of the observation operator (Daley 1991). 

B is a very large, positive semi-definite matrix, which contains in excess of independent elements in most 
assimilations used to initialize modern-day atmospheric models. The impracticability of storing such a large 
matrix is usually overcome by recognizing that it suffices to the assimilation system to access a “recipe” that 
delivers the vector product x=Bf given any vector of forcings f. However, the lack of computationally feasible 
methods to implement adaptive and realistic flow-dependent covariances has for a long time restricted the 
assimilation to using simplifying assumptions of homogeneity and isotropy for the background errors. The 
approach typically decomposes B into a set of univariate covariance matrices of carefully selected analysis 
variables for which these assumptions are more easily justified. Error correlations across variables are then 
partially accounted for by imposing additional balance constraints on the analysis increments for the separate 
analysis variables. Furthermore, it is common to assume Gaussian-shaped profiles for the covariances of 
background errors, a choice which is at times solely motivated by their attractive analytical and numerical 
properties. 
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In recent years, several efforts have been documented that seek to relax the isotropic assumption for the 
background errors. Riishøjgaard (1998) proposes a methodology for mapping the covariances to a selected 
background field (see also Liu et al 2007). The approach augments the original Gaussian isotropic covariance 
function with a new multiplying Gaussian factor expressed in terms of the spatial gradients of the background 
field and a “function correlation length” that controls the strength of the anisotropy. Desroziers (1977) suggests 
that the assumption of an isotropic covariance in the geostrophic momentum space of the semi-geostrophic 
theory (Hoskins and Bretherton 1972, and Hoskins 1975) translates into the desired anisotropic covariance in 
real-space. His examples display covariances in real-space that stretch along frontal-boundaries and contract 
across the same boundaries. Another approach is to use the background error estimated by an Ensemble 
Kalman Filter (EnKF). Hamill and Snyder (2000) test a hybrid system of the EnKF and  three-dimensional 
variational (3Dvar) assimilation, and Buehner (2005) uses the EnKF-derived background error in a 3Dvar 
assimilation. The use of spatial recursive filters to simulate the convolution of forcings by the background 
error covariances, as is done at the National Centers for Environmental Prediction (NCEP), offers yet another 
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elegant and computationally efficient means by which to synthesize flow-dependent covariances. In the 
simplest case, where the covariance is modeled using a single quasi-Guassian component, the most basic 
parameters of the adaptive covariances are the amplitude (i.e., the variance) and the components of the aspect 
tensor at each grid point. The versatility of the method is illustrated by De Pondeca et al. (2006), who 
implement variants of the original Riishøjgaard and Desroziers models. These authors also expand the 
Desroziers model to include an isentropic vertical coordinate (Hoskins and Draghici 1977), and propose a 
novel covariance construction based on the concept of kinematic deformation at finite time lag. In fact, the 
Desroziers and kinematic method can, in a broader sense, be regarded as variants of the Riishøjgaard method 
for different choices of anisotropy-forcing variables. 

While the methods illustrated by De Pondeca et al. (2006) are able to provide stretching parameters for 
obtaining useful anisotropic covariances, none of them adequately addresses the issue of inferring the 
covariance amplitudes from the background field, or the separate problem of modulating their prescriptions of 
anisotropy and amplitude to take into full account the varying influence upon background error quality of the 
previous cycles of measurements. It would seem that, using the background field itself, there is simply not 
enough information from which to deduce the background error variance, or the subtle details about the way 
the distribution of previous measurements would have influenced the anisotropy of the covariances of the 
errors of this background. The dispersion of the members of the ensemble of up-to-date forecasts could redress 
these omissions by supplying vital information about how uncertain the background errors are, and how 
correlated they are likely to be at different orientations. This work expands that of De Pondeca et al. (2006) to 
explore the use of the NCEP Global Forecast Ensemble to specify the background error covariances in a 
regional data assimilation. 

The text is organized as follows:  Section 2 highlights features of the NCEP data assimilation system that 
are most relevant to this work, and presents the ensemble-based covariance formulation. Section 3 describes 
the low-resolution regional data assimilation system used to test the ensemble-based covariances, and section 4 
presents the results. The summary and discussion are found in section 5. 
 
 
2. The Assimilation System and the Ensemble-Based Background error Model 
 
(a) Notes on the Grid-point Statistical Interpolation 

 
NCEP uses the Grid-point Statistical Interpolation (GSI) for both regional and global data assimilations. 

The GSI is a 3Dvar system formulated in the model grid space (Wu et al. 2002), whereby the action of the 
background error covariances is simulated with the help of spatial recursive filters. The use of recursive filters 
in the GSI parallels the multiple iteration of a diffusion operator to produce Gaussian covariances (Derber and 
Rosati 1989, and Weaver and Courtier 2001). However, it takes less iterations to produce the desired Gaussian 
kernels with the recursive filters than are required by the explicit use of a diffusion operator.  The operational 
GSI uses univariate, horizontally isotropic background error covariances which are generated by applying the 
recursive filters along each grid coordinate direction. The 3Dvar is incremental and uses the following set of 
perturbations as its analysis variables: stream function, unbalanced parts of (i) velocity potential, (ii) 
temperature, and (iii) surface pressure, and pseudo-relative humidity, skin temperature, cloud water, and 
ozone. The balance relationship is based on a regression approximation to geostrophy.  

When combined with the line-filtering “hexad” algorithm, a special class of recursive filters now available 
to the GSI is capable of simulating anisotropic covariances of any given shape as defined by the spatially 
smooth local aspect-tensor of spatial dispersion (Purser et al, 2003a,b, Purser 2005, and Purser et al. 2007). 
The grid-space formulation of the analysis system in conjunction with the use of these filters provides a large 
flexibility for the background error specifications. It enables the user to consider the atmospheric condition in 
the physical space and directly account for the flow-dependency in the covariance construction without any 
need for auxiliary coordinate transformations.  
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(b) Formulation of the Ensemble-based Covariance Model 

 
The recursive filters of the GSI assume Gaussian models of auto-covariance. They use as input parameters 

the background error variance and the local aspect tensor at each grid point. The inverse of the latter takes the 
following form for the quasi-isotropic model: 

 
 2221 ,,   vhhiso LLLdiagA   ,                                                                                (1) 

 
where Lh and Lv, are the horizontal and vertical correlation lengths, respectively.  

 
Suppose P is a field of perturbation of a quantity we intend to assimilate and let an ensemble of N 

members supplying realizations of short forecasts of P be available. Let overbars denote the ensemble 
expectation operator. Assume the mean has already been removed from the ensemble whose members are 
otherwise independent (and therefore collectively possess N-1 degrees of freedom at every grid point). 
Attempts to use the general ensemble covariance,  
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directly to assimilate new data are always compromised by the appearance of spurious features at long-range 
that come from inadequate sample sizes. Indirect approaches, where the spurious covariances at long-range are 
artificially suppressed, introduce artifacts of their own, especially at larger scales of increments. However, the 
sample variance of the quantity at each grid point x: 
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is much better defined, being a single value per grid point and much less subject to the debilitating effects of 
sampling errors (even though they still come into play in this estimate). Similarly, a sample estimate of the 
covariance, in situ, of the gradient of P(x), as given by: 
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provides only a handful of values per grid point and is therefore unlikely to suffer from the more serious 
manifestations of sampling problems. Nevertheless, it is recommended that even these estimates be used in 
conjunction with other information to maximize their overall utilization. For example, based upon experience 
from the “climatology” of forecast errors, which can supply estimates,   xP 2

0  and     TxPxP 00   , we  

can use these to “dilute” the ensemble sample estimates in order to make the latter more robust, and write: 
 

      22
0

2 1 PWxPWxPnew             ,                                                                      (5) 

 
and 

 

                TTT
newnew xPxPWxPxPWxPxP  001  ,               (6) 
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where W < 1 denotes the proportionate weight assigned to the ensemble. Now we are in a position to estimate 
the local aspect tensor, A, for the quasi-Gaussian covariance model for P with a significant input from the 
ensemble. The simplest way is to define, at each grid point:  
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A simple and trivial variant of this formulation empirically adds the ensemble contribution to the already 

existing isotropic inverse aspect tensor, to obtain:  
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where   and  are calibrating parameters determined by trial and error. 

 
These techniques may not be the final answer. For example, they must necessarily be modified in the cases 

of more sophisticated covariance models synthesized from multiple quasi-Gaussian components. However, 
they do obtain from the ensemble precisely the quantities needed by the existing recursive filtering codes to 
enable stretched adaptive covariances to be used with a reasonable assurance of realistic amplitudes and 
shapes.  

 
The results reported in this work are based on equation (8), with 6/5  and 1 .  
 
 
 
3. The low-resolution data assimilation testbed 

 
The NCEP operational regional data assimilation system, which comprises the GSI and the North 

American Mesoscale (NAM) model run at 12-km resolution, is commonly known as NDAS.  For this study, 
we used a lower-resolution, 48-km version of the NDAS, hereby abbreviated as LR-NDAS. Its model domain 
and topography are shown in Fig. 1. The number of grid points in the east-west and north-south direction are 
303 and 267, respectively, which are about 1/4 of those used by  the operational NDAS (1211x1067) before 
the 2008 change to use an extended domain. The vertical resolution and the number of vertical levels (60) are 
the same as in the operational NDAS. The first guess and the lateral boundary conditions for the GSI are taken 
from the operational NCEP Global Forecast System (GFS). Just as with its operational counterpart, the LR-
NDAS is designed to perform 12-hour assimilation cycles followed by up to 84-hour free forecasts. The 12-
hour cycle is broken into four pieces: a 3Dvar analysis with a subsequent 3-hour forecast which provides the 
first guess for the next analysis. 

 
In order to evaluate the performance of the LR-NDAS, we conducted a 12-hour data assimilation cycle 

from 12 UTC 19 June 2007, and compared the analysis fields and analysis increments from the last data 
assimilation with the corresponding results using the operational NDAS. The observations used were the same 
for the LR-NDAS and the operational NDAS.  For both systems,  Fig. 2 displays the analyzed temperature and 
temperature increments at the model level 40 (~500 hPa). We witness a good agreement between the results 
from both systems especially in their large scale features. Qualitatively similar results were also obtained for 
other model levels and variables. These findings are very encouraging, especially on account of the fact that 
we performed the evaluation at the end of the four-piecewise 12-hour assimilation cycle. The results show that 
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the LR-NDAS, which uses much less computational resources than required by the operational NDAS, can 
provide us with useful data assimilation and forecast results for time efficient research. 
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Fig. 1: Model domain and topography in meters for LR-NDAS (left panel) and operational NDAS (right panel). To 
emphasize the orography, the color is shaded by a 45 degree lighting angle. As expected, LR-NDAS displays a smoother 
topography than NDAS. 
 
 
 
 

  

 
 

Fig. 2: Analyzed temperature in K (contour lines) and temperature increments also in K (color scales) at model level 40 
(~500 hPa) in the last analysis of the 12-hour data assimilation cycle. Left panel for LR-NDAS and right panel for 

operational NDAS. The valid time is 00 UTC 20 June 2007. 
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4. Results 
(a) The ensemble-covariance shapes 

 
We used six-hour forecasts from the NCEP Global Ensemble Forecast System (Wei et al. 2008) with 

the mean removed to build the background error covariances. These fields were interpolated to the A-grid of 
the GSI and converted to the form of the analysis variables. In particular, a two-dimensional fast-Fourier 
transformation was applied in order to derive stream function and velocity potential from the original U and V-
wind components of the ensemble perturbation fields. The fields on the A-grid were smoothed using a five-
point smoother prior to their use to estimate the elements of the aspect tensor.  
 Using an 80-member ensemble, Figs. 3 and 4 compare the RF-based estimates of the stream function 
auto-correlations obtained via eq. (8) with the auto-correlations computed directly from the ensemble using eq. 
(2). The results are shown for 20 selected points on the analysis grid. Since the GSI estimation uses only the 
gradient of the ensemble perturbation fields, it does not come as a surprise that the shapes of the ensuing auto-
correlations do not always match those from the exact sample auto-correlations very well. But roughly 
speaking, the shapes display reasonable similarities. For example, the covariance for point b in Fig. 3 shows a 
triangular shape with a narrow upper half and a fat bottom half. The 0.8 contour line of the corresponding 
exact sample ensemble perturbation auto-correlation in panel B of Fig. 4 displays similar characteristics. 
Figures 3 and 4 also show that both computations lead to a good agreement in the relative spatial reach of their 
covariances. On an additional positive note, it is also important to stress the absence of spurious long-range 
correlations in the GSI estimations.  Spurious correlations are, however, clearly seen in Fig. 4 at large 
distances from the anchor points as a result of sampling errors.  Finally, we note that both figures show rather 
weak anisotropies. We address this issue at a later stage.  
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a

b

c

 
Fig. 3: Color scales (and black contours at 0.1 contour interval) show the GSI estimated auto-correlation for stream 
function computed via eq. (8)  for 20 selected points at model level 5 (~1010 hPa). The selected points are denoted by a 
green star symbol. Blue contour lines show the stream function in the input guess field as a reference. Actual values are of 
no consequence. The valid time is 18 UTC 26 December 2007. 

 
 

 
 

Fig. 4: As in Fig. 3, but computed directly from the ensemble perturbation fields using eq. (2). Each panel shows the auto-
correlation field against the anchor points indicated by a “green star.” The order of the panels corresponds to that of the 
signal points in Fig. 3. For example, the estimated covariance “a” in Fig. 3 is to be compared to that of the panel A in Fig. 
4, covariance b to panel B, and so on. Red color indicates positive correlation and blue color negative correlation. Solid 
lines display the 0.8 and 0.95 auto-correlation levels. 
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(b) Comparison of the 80 member with the 20 member Global Ensemble (GENS) 
 
Although the NCEP Global Ensemble Forecast System uses an 80-member ensemble (GENS80) during its 
data assimilation cycling, only a 20-member ensemble (GENS20) is available for the full duration of the free 
forecast. If we are to use the output from this system to build ensemble-based covariances in the real-time 
NDAS, it thus becomes important to assess how the GSI estimated covariances change when using the reduced 
20-member ensemble.  We start by comparing the ensemble forecast spreads from GENS20 with those from 
GENS80. For surface pressure, Fig. 5 shows the six-hour spread, and Fig. 6 displays similar results for 
temperature at model level 40 (~ 500 hPa). For both fields, we find a very good overall agreement between 
GENS20 and GENS80, although the fields are slightly smoother for GENS80.  
 
 Secondly, we show in figures 7a and 7b the auto-correlations computed directly from the ensemble 
perturbations using eq. (2) for nine selected anchor points, indicated by a “green star” on each panel. As 
expected, GENS20 shows more spurious correlations at long distances from the anchor points than we see for 
GENS80. However, it is important to note that the extent and shape of the region of strong correlation in the 
vicinity of the anchor point is fairly similar for GENS20 and GENS80. As a result, the corresponding GSI 
estimated covariances, which are displayed in Fig. 8, show similar shapes. The conclusion is fairly similar for 
temperature (see Figs. 9a, 9b, 10a  and 10b).  

The above comparisons show that the GSI can estimate the ensemble covariances reasonably well 
even with a 20 member ensemble, although it would certainly be preferable to use a larger ensemble. 

 

 
Fig. 5:  Six-hour ensemble forecast spread for surface pressure over the LR-NDAS domain in hPa. The valid time is 18 

UTC 26 December 2007. Panel A for the 20 member GENS and B for the 80 member GENS. 
 

 
Fig. 6:  Same as in Fig. 5, except for temperature in K at model level 40, which corresponds to approximately 500 hPa. 
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Fig. 7a: For GENS20, the ensemble forecast perturbation auto-correlations for the nine points indicated by the “green 
star” points computed using eq. (2). Solid contours represent the 0.8 and 0.95 levels. 

 
 

 
 

Fig. 7b: Same as in Fig. 7a, but for GENS80. 

 10



 
 

Fig. 8a: For GENS20, the GSI estimated auto-correlation for surface pressure for the nine points of Fig. 7 computed via 
eq. (8). 
 

 

 
 

Fig. 8b: Same as in Fig. 8a, but for GENS80. 
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Fig. 9a: Same as in Fig. 7a but for temperature at model level 40 (~500 hPa) 
 
 

 
 

Fig. 9b: Same as in Fig. 7b but for temperature at model level 40 (~500 hPa) 
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Fig. 10a: Same as in Fig. 8a but for temperature at model level 40 (~500 hPa) 

 

 
Fig. 10b: Same as in Fig. 8b but for temperature at model level 40 (~500 hPa) 

 
 

 13



(c) Enhancing the anisotropy by artificially increasing the sample size.  
 
 Although eq. (8) leads to correlation shapes that compare fairly well with those from the exact 
ensemble perturbation correlation, we found the anisotropy to be weak. Therefore, we tried to enhance the 
anisotropy by introducing an additional gradient-like term in the covariance model formulation. This was done 
by composing a “new,” augmented ensemble at each grid point with the help of the information from the 
surrounding points. The original idea is described in Berre et al (2007). That is, we assume that the 
horizontally surrounding 8 grid point data in Fig. 11 are members of the center grid “0” ensemble. With this 
treatment, we can increase the ensemble size by a factor of 9. We show next how the new ensemble 
perturbation components are represented by the original ensemble perturbations. 

 
1 2 3
4 0 5
6 7 8  

Fig. 11: Target grid (0) and surrounding 8 grids (1~8) 
 

Suppose  is the mean of the original full ensemble fields for grid j.  Then, the new ensemble mean for grid 
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The original ensemble perturbation of member m at grid j ( ) is represented as follows, using the full grid 

value ( ) and the ensemble mean ( ): 
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where  N is the size of the ensemble. Using eq. (10), the new ensemble perturbation of member m at grid 0, 
originated from  grid j ( ) should then be written as follows: 
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jmP0

~  is 9N as already stated, and it is also important to note that  
jmP0

~  contains the 

gradient-like term  0

~
MM   which serves to enhance the anisotropy.  

 
j

The results of our first test using equation (11) display very steep anisotropy as shown in Fig. 12. This appears 
to originate from the large grid interval used in the LR-NDAS in conjunction with the fact that distances are 
specified in grid units when computing field gradients for the aspect tensor.  We note the strong “background 
following-character” of the covariances, which is characteristic of the Riishøjgaard method. This suggests that  
the mean-field gradient-like term in (11) is the dominant term. We therefore introduce a rescaling coefficient 

 81rgC  to reduce the impact of this gradient-like term: 
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
jNmjrgjmjNmjm MMCPP   .                             (12) 
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We note that the above factor 8 is a “guess” that reflects the LR-NDAS horizontal resolution ratio of 4 
compared to the operational NDAS, and an additional ratio of 2 that accounts for the fact that the anisotropic 
filter is in fact applied on a lower resolution space compared to that of the analysis grid. 
 
The results with the new formulation (12) are also shown in Fig. 12. Although what the desirable amount of 
anisotropy should be remains an open question, the new equation (12) seems to yield acceptable results. At 
least they suggest that could be successfully used to calibrate the covariance model to achieve optimal 

forecast results under a chosen verifying metric. 
rgC

 

 
 

Fig. 12: The GSI estimated auto-correlation for 20 selected points (color scales and black contour lines with the interval 
of 0.1). Panel A for the GSI default isotropic model, B for covariance model of eq. (11), and C for covariance model of 
eq. (12) perturbation. Blue contour lines show the stream function for the first guess field as a reference. Actual values are 
of no consequence. 

 
 
(d) Data assimilation and forecast results 
  

We conducted a set of four experiments comprising a single data assimilation followed by a free 72-
hour forecast. The initial time was 18 UTC 26 December 2007. The configuration of the data assimilation for 
each test was as follows: The benchmark experiment g2iso used the default isotropic recursive filter of the 
GSI; experiment g2aiso0 the anisotropic recursive filter, but set to simulate isotropic covariances; experiment 
g2ens80-1 used the 80-member ensemble-based covariances; and experiment g2chk0 the “surrounding grid 
augmented” 80-member ensemble-based covariances. In g2ens80-1 and g2chk0, the anisotropy was only 
applied to the stream function and velocity potential. Fig. 13 shows the wind speed analysis and analysis 
increments at model level 50 (~240 hPa)  for all four configurations. We see that g2aiso0 leads to forecast 
results that agree reasonably well with those obtained with the default isotropic model (g2iso). This  is an 
important aspect, since  the assimilations in these two experiments use different implementations of the 
recursive filters. In particular, the isotropic filter of the default GSI applies the horizontal covariances 
separately from the vertical covariances, while the anisotropic filter does not perform  such a separation. 
Hence, before any truly anisotropic experiments are performed, it would be desirable to calibrate the 
anisotropic filter to simulate the isotropic case in a manner that is comparable to the results from the 
benchmark experiment. Fig. 13 also shows that the impact of the ensemble-based covariance model in the 
g2ens80-1 experiment is very limited. The results from g2ens80-1 differ very little from those of g2aiso. The 
g2chk0 experiment, in its turn, leads to a strong anisotropy, with analysis increments stretched along the jet 
axis. Qualitatively similar results are obtained at other model levels. 
 
We evaluated the performance of our experiments by computing the 500 hPa geopotential height skill scores 
(SS) (see Wilks 1995): 

 15



 

)(

)(
1)(

tMSE

tMSE
tSS

control

   .                                                                      (13) 

 
)(tMSEcontrol  represents the mean-squared errors for the control forecast, taken to be that of the g2iso 
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computed at 12-hour intervals with respect to the operational 12-km forecast, taken to represent the “truth.” In 
equation (13), “ t ” denotes the forecast time. Positive (negative) values of the SS indicate improved 
(degraded) forecasts with respect to the control, which is characterized by . The upper bound for 
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Fig. 14 shows that the direct use of the 80-member ensemble as is done in g2ens80-1 slightly degrades 
the forecast. However, the figure also shows a much improved forecast when the ensemble size is artificially 
increased by using information from surrounding grid points (experiment g2chk0). This is the experiment that 
displayed the strongest anisotropy in the analysis increments. 
 
 For the benchmark experiment, Fig. 15 displays the 500 hPa geopotential height forecast field at 24-
hour intervals on the AWIPS grid 212, which is a 40-km resolution Lambert Conformal grid covering the 
conterminous USA. For reference, it also displays the corresponding fields from the operational NAM 
analysis, which we take to represent the “truth.” As expected, the deviation of the benchmark forecast from the 
“truth” increases with the forecast time.  In order to better highlight the differences between the various 
experiments with the anisotropic filter, we computed difference fields with respect to the benchmark 
experiment rather than the “truth.”  The resulting difference fields are also displayed in Fig. 15. We see that, 
while the evolution of the difference fields is very similar for experiments g2aiso0 and gens80-1, it is 
remarkably different for g2chk0. Further work is needed to understand the dynamic of this case, but it would 
appear that the decrease of the mean-squared errors in g2chk0 comes from the smaller errors over the Hudson 
Bay at the initial forecast time. We must note, however, that similar initial error reductions were not found at 
the lower model levels (not shown). 
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Fig. 13: The wind speed analysis in m/s (shaded contours) and analysis increments (contour lines at 2m/s interval) at 
model level 50 (~240 hPa)  using (A) the default isotropic filter (g2iso), (B) the anisotropic filter simulating the isotropic 
mode (g2aiso0), (C) the 80-member ensemble based anisotropy (g2ens80-1), and (D) the “surrounding-grid points 
augmented” 80-member ensemble based anisotropy (g2chk0). The analysis time is 18 UTC 26 December 2007. 
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Fig. 14: The 500 hPa skill-scores for experiments g2aiso0, g2ens80-1, and g2chk0, using g2iso as the control forecast 
(see also Fig. 13). 
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Fig. 15:  The 500 hPa geopotential height analysis patterns from the operational NAM (first panels from left), and from 
the control experiment g2iso (second panels from left) at 12 hour interval. The color shades in the third, fourth, and fifth 
panels from left display the 500hPa geopotential height difference fields for experiments g2aiso0, g2ens80-1, and g2chk0, 
respectively. The differences were computed with respect to the control experiment g2iso (black contour lines in the 
panels).  Results are shown on AWIPS grid 212. Units are meters on all panels. 
 
5. Summary and discussion 
           
              In this study, we have used an 80-member NCEP global ensemble to synthesize flow-dependent 
covariances in the GSI using recursive filters. A simple and plausible means for specifying the required 
ensemble-derived  local aspect tensors has been presented. The experiments have been conducted using a 
lower-resolution version of the NCEP regional data assimilation system. The recursive filter generated 
covariances have been found to compare well with the exact covariances computed from the ensemble 
perturbation fields in the vicinity of selected anchor points. It is reiterated that, unlike in the exact ensemble 
covariances,  the recursive filter generated covariances do not suffer from spurious correlations at long ranges. 
Furthermore, the use of a reduced 20-member ensemble was found to yield GSI covariances that differed little 
from those obtained with the original 80-member ensemble. The simplest, direct use of the ensemble as 
proposed in this study was found to result in rather weak anisotropies, which may be explained by the 
canceling effects of the averaging implied by the procedure. A remarkable improvement of the strength of the 
anisotropy was shown to be attainable by introducing a mean-field gradient-type term in the covariance 
construction, which in turn followed from the use of the surrounding grid points to artificially augment the size 
of the ensemble at the targeted grid point. A test case has been presented to evaluate the performance of the 
ensemble-based covariances. The best improvement to the 500hPa geopotential height forecast were found to 
come from the experiment with the strongest anisotropy following the artificial introduction of the mean-field 
gradient type term.   
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The results presented in this study have shown the potential for improving the NCEP forecast systems by using 
ensemble-derived background error covariances in the GSI. However, work is still needed. For example: 
 

1. It is not clear what the relative contribution of the isotropic and anisotropic portions to the aspect 
tensor should be. The answer might be seasonally dependent, and long term experiments might be 
required to draw solid conclusions. 

2. Cycling experiments covering a period of more than two weeks were found to lead to forecast skill 
scores that differed very little from those of the control experiment that used the default isotropic 
recursive filter (results not shown). These results may be pointing to the need for improving our 
specification of the ensemble-derived aspect tensors. On the other hand, they could also be pointing to 
the need to improve the balance constraint of the GSI, especially when anisotropic covariances are in 
use. 

3. In the assimilation-forecast experiments reported in this work, the anisotropic covariances were only 
applied to stream function and velocity potential. Our final goal, however, is to be able to also apply 
adaptive covariances to temperature, moisture, and surface pressure. Preliminary experiments with 
additional anisotropic covariances applied to these variables showed little impact on the forecast.  
However, we believe that, together with improved balance relationships,  a proper calibration of the 
covariance parameters will in the future lead to improved forecast results. 

4. Similarly, the amplitudes of the covariance models used in the assimilation-forecast experiments 
reported in this work were based on the original variances from the default GSI isotropic filter. It is 
important to explore ways of  incorporating the variance information from the ensemble to specify the 
filter amplitudes. Work along these lines is already in progress.   

5. The impact of using a regional rather than a global ensemble merits investigations. Our current choice 
of the global ensemble has been dictated by the fact that the current NCEP regional ensemble uses 
several different models  that display different characteristics among themselves. The best way to use 
such an ensemble in the context of building the covariances for data assimilation should be the subject 
of a separate study. 

6. Testing experiments with the full-resolution NDAS are also desirable to ensure that our LR-NDAS is 
not “washing away” important small scale features that should be incorporated in the flow-dependent 
covariance construction. 
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