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Abstract

Background error covariances in the Gridpoint Statistical Interpolation (GSI) of NCEP’s oper-
ational three-dimensional data assimilation schemes are formed by the repeated applications of
recursive numerical filters along carefully selected families of parallel lines of the discretization
grids used to represent the analysis state. Owing to the need for the analysis grid to be free
of coordinate singularities in order that the outputs of the recursive filters remain smooth, the
global version of the GSI presently employs a system of three overlapping grids. One grid patch
is a cylindrical coordinate projection that covers most of the globe but excludes the poles; then
a pair of stereographic projection Cartesian grid patches cover the omitted polar regions, but
with a generous overlap across the edges of the cylindrical grid patch. In this way the global GSI
can form portions of the analysis increments pertaining to each of the singularity-free patches
with the final composition blended to remove any sharp discontinuity between them. However,
for the very largest scales of covariances encountered in the highest levels of the atmosphere the
width of the blending zone shared by each pair of overlapping patches is not sufficient to avoid
an inevitable distortion of the shape of the synthesized covariance from the shape intended.

This note describes a new grid configuration, designed to supplement the existing three-
patch configuration, that allows very large scale covariances to be synthesized by the recur-
sive filtering technique without unintended distortion. The basic idea is to map the Earth’s
atmosphere, regarded as a spherical shell of finite thickness, to the interior of a set of three-
dimensional cubic grids in a nested configuration that allows the resolution to be increased
(usually by progressive factors of two) towards the common center of the cubes. The sizes of
the successive nests, and the radial transformation carrying the atmospheric shell to the cubes,
are both under the user’s control so that different vertical-to-horizontal aspect ratios of covari-
ances at different altitudes can all be represented by approximately isotropic covariance shapes
within the cubic grids. Although the cubic grids are free of singularities, they do possess interior
boundaries which must be treated by smooth blending of only the interior contributions con-
structed on each of these nests, and by blending the totality with the covariance contributions
synthesized on the original three-patch grid configuration.

We present the theory for the construction of the nested cubic grids, together with some
preliminary results obtained by adopting this approach in an experimental extension of the
global GSI.

1. Introduction

The global synthesis of background error covariances in NCEP’s GSI is presently done by
performing filtering operations on three overlapping domains and merging the results. The
domains are:

(i) a southern polar stereographic domain with Cartesian grid coordinates;
(ii) a central domain with cylindrical grid coordinates;
(iii) a northern polar stereographic domain similar to its southern counterpart.



An alternative division of the global domain, which also avoids the polar singularities, is
the “Yin-Yang” configuration (Kageyama and Sato 2004, Peng et al. 2004):

(i) a south-pole-straddling rotated lat-long grid whose “equator” occupies Earth’s +90 ◦

and -90 ◦ meridians;
(ii) a north-pole-straddling rotated lat-long grid whose “equator” occupies Earth’s 0 ◦ and

180 ◦ meridians.
The purpose of dividing the region in these ways is to ensure that the numerical operations

of recursive filters do not encounter coordinate singularities or regions of strong coordinate
curvature (for which the filters are not well suited). The Yin-Yang grid configuration would be
one way of attaining a modest improvement in computational economy.

Recursive filters generate quasi-Gaussian covariance shapes while real covariances exhibit
greater variety. Therefore it is desirable to combine additively several Gaussian contributions
of different spatial sizes and appropriate amplitudes to produce the desired covariance. (In
practice, it is better to produce the square-root, C, of the covariance, B, by this superposition
and form B = CCT to ensure that the property of ‘self-adjointness’, necessary for the success
of many descent algorithms, is preserved exactly.) It is wasteful to apply coarse-scale recursive
(or any other) filters on a fine grid. It is better that coarse-scale filtering be performed on a grid
just fine enough to resolve, and to interpolate from, the scales output by the filter. The simpler
operation of interpolating to a finer grid, normally in successive stages of binary refinement,
costs less than filtering and is a small overhead. When many scales of filtering are combined,
the overall cost only slightly exceeds the cost of filtering one or two separate scales at the finest
grid of the hierarchy. Nevertheless, the coarser versions of the above-mentioned overlapping
grids need correspondingly larger overlaps and, if covariances with contributions of planetary
scales are needed, it is no longer possible to ignore the hitherto distant coordinate singularities
of these grids. This is particularly likely to pose a problem for stratosphere/mesosphere data
assimilation, where the predominant horizontal scales are already very large and not well served
by the existing overlapping grid configuration. In the next section we propose a remedy based
on a very different kind of global gridding which exploits the full three-dimensional nature of
the relevant geometry but abandons the usual convention by which one ‘vertical’ coordinate
approximately adheres to horizontal spherical surfaces.

2. cubic gridding

Instead of separating the quasi-horizontal levels by one ‘vertical’ coordinate and expect-
ing two other ‘horizontal’ coordinates to cover the spherical surface, we transform the three-
dimensional spherical shell occupied by the atmosphere to the interior of an abstract cube
which can then be gridded in Cartesian fashion to avoid any coordinate singularity whatsoever.
This somewhat radical solution, while woefully inadequate as a strategy for modeling, is per-
fectly satisfactory as a means for supplying a grid on which anisotropic filtering can proceed
unmolested by singularities (which pose a greater threat than does the lack of stratification).
Obviously, embedding the atmosphere directly and without metrical distortion is impractical
since the atmosphere’s effective thickness is tiny (a few tens of kilometers) compared to Earth’s
radius (a few thousand kilometers). On the other hand, if we radially transform the thin atmo-
spheric shell to a very much thicker one, comparable to the Earth’s radius, we make fuller use of
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the cubic grid. However, if transforming to a very thick image shell, the lower atmosphere will
be resolved relatively poorly (in the horizontal direction) compared to the upper atmosphere. It
would be preferable to confer on the upper portion of the atmosphere the lower resolution in the
horizontal directions, which suggests that ‘inverting’ the radial ordering in the transformation
would be a better arrangement. Another way of exerting control over the resolution is to refine
the inner portion of the cubic grid where the resolution is otherwise deficient and, if necessary,
to repeat such refinements in ‘telescoping’ fashion to create a hierarchic series of successively
refined grids nested, each one within its predecessor, like Russian matryoshka dolls. Trimming
the corners, we might then have a cubic grid configuration analogous to the two-dimensional
square grid depiction given in Fig. 1. Each grid can support a filtering operation with a charac-
teristic scale suitable to that grid and, provided an amplitude-modulating function causes the
amplitude of each grid’s filter to drop smoothly to zero at or before the grid’s boundary, the
contributions of all the nested grids can be added up when interpolated back to the principal
overlapping analysis grids used to cover the globe.

Figure 1. Nested Cartesian grids, with corners trimmed, providing enhanced resolution near the center.

One very natural radial transformation for a telescoping grid is by the logarithm function.
If each nested grid has half the total size but twice the resolution of its predecessor in the
hierarchy, as is the case shown in Fig. 1, the logarithmic transformation makes this succession
exactly periodic in transformed radius across the extent of the ‘generations’ of these grids. This
periodicity can be seen over the four generations of the grids shown in the schematic view of
Fig. 2 where the atmospheric shell’s thickness is obviously enormously exaggerated. However,
the lower part of the ‘atmosphere’ clearly shows the degraded resolution resulting from the
premature termination of the nesting sequence. When we turn the transformation inside-out,
as is done in Fig. 3 by placing a minus sign before the logarithm function, we see that the
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reduction in resolution, corresponding to the innermost region of the original nested squares,
now occurs at the ‘high-atmosphere’ portion of the cartoon-atmosphere, which is probably more
in line with the vertical profile of horizontal resolution that we would intend in practice.

Figure 2. A direct logarithmic radial transformation of the nested Cartesian grids of Fig. 1, to the finite-
thickness spherical shell of the global atmosphere, including an exaggeration of the vertical thickness in order
to see how the transformed grid resolution varies with height. The region of degraded resolution caused by
terminating the grid nesting hierarchy too soon, occurs near the bottom of the ‘atmosphere’. Additional nests

would clearly be needed to maintain the higher resolution down to the bottom.

Figure 3. An inverted (negative) logarithmic radial transformation of the nested Cartesian grids of Fig. 1, to
the same ‘atmosphere’ as shown in Fig. 2. The region of degraded resolution is now near the top, which is
probably more acceptable, since the resolution at the highest levels of the atmosphere need not be as fine as at

lower levels.
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Figure 4. The same inverted (negative) logarithmic radial transformation of the nested Cartesian grids as shown
in Fig. 3, but now displayed for one quadrant in a more conventional horizontal-vertical projection.

Figure 5. A non-logarithmic radial transformation of the nested Cartesian grids of Fig. 1, showing the profile
of the vertical resolution can be controlled to some extent by the choice of the radial transformation function.

A more conventional horizontal-vertical plot of the same inverted mapping of Fig. 3 is shown
for a single quadrant in Fig. 4. While the high altitude degradation of horizontal resolution
seen in Fig. 4 may be acceptable, it may be desirable to maintain, or even enhance, the vertical
resolution at altitudes of strong stratification. This can be done by departing from the strictly
logarithmic transformation to some appropriate modification of it, as shown in this case in Fig.
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5. But more generally, it is desirable to exert some degree of control on both the vertical and

horizontal resolution profiles with height, for which we need another control degree of freedom.

Figure 6. Nested Cartesian grids, of unequal spans (widths in their own grid-spacing units)

Figure 7. A non-logarithmic radial transformation of the nested Cartesian grids of Fig. 6, showing a vertically
nonuniform resolution in both the vertical and horizontal directions.

An extra control, though crude, is available in the choice of the size of each nest in the
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original telescoping grid configuration. Each nested Cartesian grid can be given its own half-
span of grid intervals, a number independent of the size of the next smaller or next larger grid
except for the lenient constraint that the finer grid does not extend beyond the next coarser
one in the sequence. Fig. 6 shows such an unequal progression of the Cartesian grids and Fig.
7 shows the image of this new nesting corresponding to the same domain as shown in Fig. 5.
But we need to take a systematic approach before we can reliably choose the half-spans and
design an appropriate radial transformation to achieve horizontal and vertical resolutions that
meet the requirements without exceeding them to an unnecessary degree.

The following section provides the systematic framework for the design of the nesting struc-
ture and radial transformation. Section 3 refines the design of the cubic grid nesting to ensure
an economic gridding is constructed when both the horizontal and vertical scales of the covari-
ances become nontrivial functions of altitude. Section 4 provides a discussion of alternatives to
the cubic gridding that might be advantageous at very high resolutions. Preliminary tests of
the proposed nested cubic gridding method are described, and the results presented, in Section
5 and, finally, a discussion section summarizes the ideas and experiments presented in this note.

3. Designing the nested cubic grid structure and radial transformation

The aim of this section is to set out a systematic procedure by which the desired horizontal
and vertical resolution at each altitude is assured by an economical choice of the combination of
the smooth radial transformation and the numbers of half-spans of each of the grid nests. Since
the grid refinement occurs in discrete jumps by a factor of two each time a radial trajectory
enters a new nest, the desired resolution must be exceeded by this factor in places, so the control
we seek is of a rather crude kind.

For reasons articulated in the previous section we only consider the ‘inverting’ class of
radial transformations (resembling Fig. 3 rather than Fig. 2) and the generations, G, of the
successive grid nests are assumed to commence with the coarsest, G = 1, with each refinement
incrementing G by one. The half-span of each grid is denoted NG and the spacing is scaled
arbitrarily but conveniently to:

∆RG = 2−G, (3.1)

so that the half-width of this grid is,

RG = NG∆RG = NG2−G. (3.2)

The angular resolution, ∆φ, at radius R from the center of Cartesian grid G is:

∆φ =
∆RG

R
, (3.3)

which is unchanged on transforming to the Earth’s atmosphere where, at height z, we assume the
required horizontal resolution (in Earth radians) to be sφ(z). Hence, we require that ∆φ ≥ sφ

for the finest grid extending to the horizontal (spherical) surface at altitude z when mapped by
the radial transformation. In practice, this means that the critical resolution for grid G occurs
(except for the very last G) right at the smallest radial distance, RG+1, of the next grid in the
nesting (at which point the resolution jumps). In Fig. 8 the graphs of log2(∆φ) for each of
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the grids of Fig. 6 is plotted against H = − log2(R). If the corresponding logarithm of sφ, the
intended angular resolution, mapped to the H variable follows the dashed graph, then we see,
first that the grid configuration is not adequately achieving the target resolution at between
about H = −3 and H(2) ≈−3.3, where only grid G = 1 extends. Second, we see that, at other
places, the given gridding is quite inefficient, being significantly finer than the criterion requires.
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Figure 8. Graphs of the log
2

of the angular resolutions attained by the nested grids at different radial distances,
also plotted logarithmically as H = − log

2
(R), in the case of the nested configuration shown in Fig. 6. A graph

(dashed) of the log
2

of a hypothetical profile of intended resolution is also plotted. The intended resolution is
not met by the configuration just outside the extent of the second nest, but is over-generously exceeded in other

places.
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Figure 9. Graphs of the log
2

of the angular resolutions attained by the nested grids (forming the saw-tooth
series) that collectively more efficiently achieve the intended resolution, given by the dashed curve, equivalent to

the curve shown in Fig. 8.

To maximize economy when the intended resolution maps to a smooth curve in H, it is
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usually appropriate to choose the equality of ∆φ and sφ (at least approximately) at the critical
altitudes corresponding to the tops of the saw-tooth graph shown in Fig. 8. That is:

sφ(zG+1) = 2/NG+1, (3.4)

(so long as this NG+1 does not exceed 2NG or fall short of NG+2/2, of course). Since the slanting
portions of the saw-tooth graph are segments of a family of fixed and equally-spaced parallel
lines, this task would be very easy if the graph of log2(sφ) remained fixed and was known. But
we are initially given sφ as a function of z, not H, and the functional relationship connecting
z and h is yet to be determined. The solution to this obstacle is simply to require that the
desired resolution in both the horizontal (‘angular’) direction, which is sφ, and in the vertical
direction, which we likewise call sz, maps isotropically to the Cartesian domain of nested cubes.
This criterion, is equivalent to

| dz

dH
| = sz

sφ
loge(2), (3.5)

which can be integrated directly:

R ∝ exp

(

±
∫

sφ dz

sz

)

. (3.6)

If we assume this radial transformation has already been done for the curve of intended reso-
lution shown in Fig. 8, then a change in the configuration of nested cubes (Fig.9) attains this
resolution with an economy of total grid points fewer by a factor of about ten. The constant
of proportionality in (3.6) is first chosen to allow the finest (G = 4) grid’s resolution graph to
just attain tangency with the graph of intended resolution at the largest H corresponding to
the highest altitudes. This grid is extended until it over-resolves by at least a factor of two,
whereupon the next coarsest grid assumes responsibility, and so on, down to the Earth’s surface.

4. Alternative gridding

Given approximately isotropic structures of a given scale, a triangular grid in two dimen-
sions is slightly more efficient at resolving them than a square grid. Correspondingly, in three
dimensions, a close-packing grid, such as that known to crystallographers as the ‘face-centered
cubic’ (fcc) lattice is more efficient than the simple cubic lattice (for example, see Ziman 1979).
The set of resolved wave-vectors of a given lattice can be taken to be those that lie within
the Voronoi cell of the reciprocal lattice that contains the origin, a region of wave-vector space
known in solid-state physics as the first ‘Brillouin zone’. (For any scatter of points in space,
each Voronoi cell is the region of space closer to a given point of the scatter than to any other.)
In the case of the fcc lattice, the reciprocal lattice is of the ‘body-centered cubic’ (bcc) kind
and the Brillouin zone is consequently in the form of a truncated octahedron made up of eight
regular hexagon and six squares (see illustration in Fig. 10).

The reciprocal of a cubic lattice is another cubic lattice with a Brillouin zone in the form
of a cube; the fcc lattice, formed by interleaving four cubic lattices so that each cube’s face
has another lattice’s point at its center, leads to the cuboctahedral Brillouin zone having the
corners of the former (cube) Brillouin zone at the centers of the eight hexagonal faces. For an
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expenditure of a factor of four invested in increasing the number of lattice points, the effective
resolution, measured by the radius of the largest inscribed sphere that the Brillouin zone can
support, increases in the linear sense by a factor of

√
3 or, in volume sense, by a factor of

33/2 ≈ 5.2 implying a theoretical efficiency advantage over the cubic lattice of about 20%.
It is clearly awkward to have, as the numerical grid on which filtering is carried out, the

four interleaved lattices of the fcc arrangement in comparison with the single cubic lattice.
(There is an oblique basis of generators from which all the points of the fcc lattice have integral
coordinates, but then an inconveniently large array of values would be needed to contain the
cubic domain of interest, defeating the purpose of the more exotic lattice.) But a more serious
difficulty is extracting by interpolation the filtered information from such an fcc lattice without
seriously degrading (by inadvertent numerical damping or aliasing) the higher wavenumber
components that this lattice is supposed to resolve. On balance, it looks as if the potential
gains of such an exotic computational lattice do not presently justify the associated costs and
inconvenience, although the computational economy may tilt the argument in favor of the exotic
computational lattice at very high resolution.

Figure 10. A view of a truncated octahedron.

5. Test implementation of the cubic grids onto the GSI

(a) Design of the nested cubic grids

As a first trial, a set of nested cubic grids was designed to be able to cover the stratosphere
and mesosphere, where the horizontal correlation scale lengths of the stream function (SF) and
unbalanced velocity potential (VP) are very long. The following very rough assumptions were
used for this definition:

(i) The background error statistics for the T62-GSI, which were estimated by the so-called
“NMC method” (Parrish and Derber, 1992), were used to provide baseline parameters in this
test.

(ii) “Very long correlation length” was defined as 1,000km.
(iii) The minimum requirement for the angular resolution in the cubic grid space (horizontal

resolution in the original lat/lon grid space) was defined as half of the minimum horizontal
correlation scale length in the error statistics at the same level.
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(iv) The minimum requirement for the radial resolution in the cubic grid space (vertical
resolution in the original lat/lon grid space) is defined as the same length as the minimum
vertical correlation length in the error statistics at the same level.

The reason for the assumptions (iii) and (iv) is that the generated covariance is a smoothing
field and the features small compared to these correlation scale lengths tend to be smoothed
out. Since the horizontal derivatives, which emphasize smaller scales of the SF and VP, are
used to derive the physical values (i.e., wind components), the horizontal resolution criterion
is twice as demanding as the vertical resolution criterion. However, it is not yet clear to what
extent the resolution may be safely reduced, the stated definitions being somewhat arbitrary,
so these requirements are not always enforced strictly.

Fig. 11 shows the maximum correlation scale length in the background error statistics for
the SF, VP, unbalanced temperature and specific humidity, all plotted against sigma levels. The
very long correlation length (1,000km) is found at −3.3 < log2(σ) < −2.3 and log2(σ) < −8.0
for the VP and at log2(σ) < −4.0 for the SF. On the other hand, the scale lengths for the
temperature and humidity are much shorter than the ones for the SF and VP. Thus the nested
cubic grids are designed only for the SF and VP at log2(σ) < −2.0. Since the SF and VP are
strongly coupled, the same cubic grid configurations are used for both variables.

Fig. 12 shows the minimum horizontal correlation lengths for the SF and VP. The scale
lengths at log2(σ) = −2.0 are around 500km and increase to 700km by log2(σ) = −3.0. The
scales show only smaller changes around −9.0 < log2(σ) < −4.0, and much longer scale lengths
at the top two model levels.

Fig. 13 shows the minimum vertical correlation lengths. The scale length for the VP
shows local minima around −4.0 < log2(σ) < −3.0. Except for these levels, the length is almost
constant at −5.0 < log2(σ) < −2.0 and gradually decreases at log2(σ) < −5.0. The length for
the SF is longer than the one for the VP.

Based on this information, the following set of vertical level conversion equations was defined
for three nested cubic grids with an edge length of 68.











R = 40σ0.35 : Cube1 (−5.28 (26mb)< log2(σ) < −1.15 (456mb), R = 8—34)
R = 80σ0.35 : Cube2 (log2(σ) < −3.63 (81.8mb), R = 8—34)
R = 160σ0.35 : Cube3 (log2(σ) < −6.53 (11.0mb), R = 12—34)

(5.1)

where R is radius in each cube (i.e. distance from the center of the cube) and σ is the sigma
level in the lat/lon grid space.

Fig. 14 shows a schematic view of these conversion equations. At the model top, Cube3 is
mainly used. The horizontal resolution of Cube3 at the model top is about 500km, which is
about half of the horizontal correlation length of the VP (∼1,000km, Fig. 12). The horizontal
resolution is increased rapidly for log2(σ)≤− 6.53. Since log2(σ) > −6.53 is out of the domain
of Cube3, it is the Cube2 resolution (∼350km) that is applied; the same transition was repeated
around log2(σ) > −3.63 from Cube2 to Cube1.

Fig. 15 shows radial resolution changes in the nested cubes against sigma levels. The
Cube3 resolution is applied at log2(σ)≤− 6.53, Cube2 at −6.53 < log2(σ)≤− 3.63, and Cube1
at −3.63 < log2(σ)≤− 1.15. Though the vertical resolution is insufficient between −3.5 <
log2(σ)≤− 3.0 (1.3 in the Cube1 but 1.0 in the lat/lon grid, Fig. 13), this deficit is ignored
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in this test. For a smooth transition of the covariances at each cube boundary, the weighting
functions shown in Fig. 16 are applied for each cubic grid space and in the original three patch
space to synthesize the covariances which are estimated in each grid independently. Therefore,
the effective resolution near the boundary is much lower than the one mentioned above, because
it is composited with the lower resolution cubes.
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(b) Map projection validation

The interpolation between the lat/lon grid and the nested cubic grids are performed by
using so-called “diamond interpolation” method (Purser, 2007). A temperature field projection
test was performed for validation of this interpolation before constructing the covariances. In
this test, a temperature field in the lat/lon grid space is projected into the nested cubic grids
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and the projected temperature fields in the cubic grids are projected back into the lat/lon grid
space.

In Fig. 17 the upper panels show the temperature field cross section at 180 ◦E above
log2(σ) = −1.0(a) before, and (b) after projection, while panel (c) shows the difference. The
lower panels show the projected temperature in the cubic grids. The left hand sides of these
panels corresponds to 180 ◦E. The map projection works fine and the interpolation error was
not large except at the top level (log2(σ) = −10.48 (0.7mb)). The relatively larger interpolation
error was found around log2(σ) = −4.0 (63mb), log2(σ) = −6.5 (11mb) and at higher levels.
Both these levels are close to cubic grid boundaries, which explains why the error was relatively
large. Fig. 18 shows the horizontal cross section of the interpolation error.

The contour lines show the temperature field before projection. At log2(σ) = −4.02 (62.4mb)
and −6.24 (13.4mb), the interpolation error was concentrated over the Tropics where many
small scale features are prominent. At the second model top level, panel (c) shows the larger
projection errors, and the original temperature field shows the small scale waves. At the model
top level, panel (d) shows much larger projection errors. At the top level, the map projection
is performed not by interpolation, but by extrapolation, and the vertical temperature gradient
is large between the second top level and the top level. These two factors explain the large
error. Evidently, the interpolation at the top (and bottom) of the model domain needs to be
improved in the future.
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Figure 17. (a) Vertical cross section of the temperature field before projection at 180 ◦E, above log
2
(σ) = −1.0,

(b) Same as (a) but after projection, (c) The difference. (d, e, f) Temperature field cross sections in the nested
cubic grids ((d) Cube1 / (e) Cube2 / (f) Cube3). The square in (d) shows Cube2 domain and the one in (e)
shows Cube3 domain. The dashed line in (d) shows the domain plotted in (a,b,c). The left hand side of the

panel (d, e, f) corresponds to 180 ◦E and the other side corresponds to 0 ◦E.
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Figure 18. Temperature difference before and after projection at (a) log
2
(σ) = −4.02 (62.4mb, Lv45(the 45th

model level)), (b) log
2
(σ) = −6.24 (13.4mb, Lv55), (c) log

2
(σ) = −9.48 (1.4mb, second model top level (Lv63))

and (d) log
2
(σ) = −10.48 (0.7mb, model top level(Lv64)). Contour line shows the temperature fields before

projection, and the interval is 5K.

(c) Aspect tensor definition

The covariance used in the present standard GSI has horizontally isotropic shape, and its
correlation scale length depends on the variable, latitude and height. Constant sigma levels
in the lat/lon grid space are projected to constant radius spheres embedded in the cubic grid,
and the horizontally isotropic covariance is projected into a covariance that is isotropic in
subtended central angle at a constant radius. Since the covariance shape in the cubic grid is
not three-dimensionally isotropic, the anisotropic recursive filter is needed for the covariance
construction.

The anisotropic recursive filter involves an extension of the basic recursive filter, that enable
it to stretch or compress the covariance in arbitrarily defined directions by selecting sets of
possibly non-Cartesian grid lines dictated by the “hexad method” (Purser et al. 2003) along
which numerical smoothing is then applied. The directions of local dilatation or compression
and the associated correlation scale lengths are defined by the symmetric second-rank “aspect
tensor” (approximately a normalized tensor of the local second-moments).
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The inverse of the aspect tensor for an isotropic covariance is defined as follows:

Aiso
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, (5.2)

where Aiso is the aspect tensor and Liso is the correlation scale length.
By stretching or compressing the isotropic covariance along the radial direction, the co-

variance will follow the constant radius sphere. The inverse of the aspect tensor for such a
covariance at the position (i, j, k) is defined as follows:
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where A is the aspect tensor, Lrd is the correlation scale length for the radial direction (vertical
correlation scale length in the original lat/lon grid space), P is a radial vector and (i, j, k) shows
the position relative to the center of the sphere. The Liso in this equation works as a correlation
scale length for the directions following the constant radius sphere, and it corresponds to the
horizontal correlation scale length in the original lat/lon grid space. Note that all the variables
in Eq.(5.3)–(5.4) are functions of the position (i, j, k). When Liso is smaller than Lrd, the
covariance is stretched along the radial direction and when Liso is larger than Lrd, the covariance
is compressed along the radial direction.
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Figure 19. Idealized 2D covariance test results. Dimensions of the domains are 41 by 41, and the bottom left
corner is (1,1). The grid lines are drawn with 10 grid interval. Contour intervals are 0.2.

To confirm this formulation, three idealized tests are performed. Test domain is 2D grid
space (41x41) and the circle (that is a projection of the constant radius 3D sphere to the 2D
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field) center is defined at the bottom left corner (1,1). Five signals are set at the positions
of (11,11), (31,11), (11,31), (31,31) and (21,21). Test A defines the parameter Liso = Lrd = 2,
Test B uses Liso = 2, Lrd = 1, and Test C uses Liso = 2, Lrd = 4. The anisotropic recursive filter
is applied with these parameters. Fig. 19 shows the filtering results. Test A shows isotropic
covariance patterns at all five points, but the amplitudes and the patterns are not identical
because of imperfections in the present method of normalization used for the anisotropic filter.
This problem is expected to be solved in the near future when normalization based upon
the asymptotic “Parametrix Expansion” method will be implemented (Purser 2008a,b). As
expected, Test B shows that the covariance patterns are compressed along the directions toward
the left bottom corner by the factor of half, and Test C shows that the covariance patterns are
stretched along the directions by the factor of two. These results show that the covariance
shapes in the cubic grid can be controlled arbitrarily by this formulation.

In the GSI, the Liso and Lrd are defined by the input background error statistics with the
following unit conversion.

Liso = C1 Lh R/Rearth, (5.5)

Lrd = C1 Lv dR/dlev, (5.6)

where Lh is a horizontal correlation scale length in the background error statistics, R is the
radius in the cubic grids at the position (i, j, k), Rearth is the radius of the Earth, Lv is a
vertical correlation scale length in the error statistics, dR/dlev is a derivative of the R against
original model levels at the position (i, j, k). C1 is a tuning parameter and the value is set to
the

√
2 in this test. Both Lh and Lv are converted to the Liso and Lrd after the map projection

from the lat/lon grid space to the cubic grids, and the anisotropic recursive filter is initialized
with the aspect tensor.

(d) Covariance construction test in the GSI with the cubic grids

The covariance construction steps in the GSI with the cubic grids are:
(i) set signals in the lat/lon grid space;
(ii) execute the adjoint of the “grid-merge-projection” process;
(iii) apply the anisotropic recursive filter and its adjoint in the cubic grids;
(iv) execute the “grid-merge-projection” process.
The grid-merge-projection process is a map projection from the cubic grids to the lat/lon

grid, followed by simple weighting average with the grid data in the original three patch system.
In this test, the covariance shapes for point-I (0 ◦E, 60 ◦S) and point-II (180 ◦E, 30 ◦N)

at log2(σ) = −6.24 (13.4mb) and log2(σ) = −2.23 (216mb) are compared. Fig 20 shows the
covariance construction test result at log2(σ) = −6.24 by the orthogonal projection with the
projection center at the signal points. The upper panels show the response to the point-I and the
lower panels show the one to the point-II. In this test, the variances are not used. The filtering
result is normalized to one. The left column shows the standard GSI (isotropic mode) result,
the center column shows the result in anisotropic mode, but without actual anisotropy, and
the right panels show the result of the anisotropic mode with the cubic grids. The anisotropic
mode uses the three-patch system as standard GSI, but the anisotropic recursive filter is applied
instead of the isotropic recursive filter.

18



Figure 20. Covariance construction test result at log
2
(σ) = −6.24 (13.4mb) with the contour interval of 0.1.

The initial signals are put at (180 ◦E, 30 ◦N) (upper panels) and at (0 ◦E, 60 ◦S) (lower panels). The left column
shows the standard GSI (isotropic mode) result, the center column shows the anisotropic mode GSI result, and

the right column shows the anisotropic mode GSI with cubic grid results.

Figure 21. Same as Fig. 20 but at log
2
(σ) = −2.23 (216mb).

The covariance shapes at point-I are not so different among the three tests. On the other
hand, the covariance shapes at point-II show the larger differences. While the covariance
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constructed in the GSI with the cubic grids shows pretty isotropic shape, the covariances in the
other tests are distorted near the 60 ◦S parallel where they suffer from a spurious triangular
shape. Since the horizontal correlation scale length in the GSI depends on the latitude, the
estimated covariance shape will not have an exactly isotropic shape. However, the distortion
is quite large and is located at the boundary of the three-patch system (60 ◦S/60 ◦N). Thus
this distortion clearly comes artificially from the covariance composition and the cubic grid
application can solve this issue. Fig. 21 shows the same plots as Fig. 20 but at log2(σ) =
−2.23 (216mb). Since the horizontal correlation scale length are much shorter than the one at
log2(σ) = −6.24 (13.4mb), the differences among the three tests are much smaller.
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Figure 22. The vertical cross section of the Covariance construction test result. The upper panels show the
cross section at 0 ◦E (for Point-II) and the lower panels show the ones at 180 ◦E (for Point-I).

Fig. 22 shows the vertical cross section of this test result. Compared to the horizontal cross
section, the difference among the tests is much larger. One of the causes is the decoupling
of the horizontal/vertical covariance construction in the standard GSI. Although the standard
GSI decouples the horizontal covariance construction and the vertical covariance construction,
the anisotropic mode does not decouple them. With this decoupling, the standard GSI can use
a different configuration of the filtering for the horizontal and vertical directions (a composition
of empirical functions being used in the vertical). On the other hand, the anisotropic mode
cannot use such a special treatment and can use only one configuration for both directions. In
this test, the numbers of the Gaussians in the anisotropic mode and the cubic grids are set to
three and this configuration is the same as the one for horizontal filtering in the standard GSI,
so the horizontal cross section shows much better agreements. But the basic pattern, which
means the larger vertical extent of the covariance at 0 ◦E and the thin structure at 180 ◦E,
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looks reasonable.
As a result of this test, while there are some characteristic differences from the covariance

constructed in the standard GSI, the covariance constructed in the cubic grid using the GSI
statistics and projected into the lat/lon grid space is quite reasonable and it does not suffer
from the horizontal patch boundary problems.

(e) Data assimilation test

Some data assimilation tests were performed and the innovation fields estimated by the
isotropic mode GSI with the cubic grids (isocb-test) are compared to the ones estimated by the
standard GSI (iso-test).
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Figure 23. Innovation fields in the single observation data assimilation test at log
2
(σ) = −6.24 (13.4mb). The

upper panels show the result in the standard GSI, and the lower panels show the one in the isotropic GSI with
cubic grids. The left panels show the U-wind innovation fields with the contour interval of 0.01 m/s and the

right panels show the V-wind innovation with the contour interval of 0.002 m/s.

Fig. 23 shows innovation fields in the single observation data assimilation test. The type
of the assimilated data is U-wind (zonal wind) and the data is put at (180 ◦E,60 ◦S, log2(σ) =
−6.64 (10mb)). The innovation value and the observation error are set to 0.1 m/s. Looking at
the result, the U-wind innovation intensity for isocb-test is comparable to that for iso-test, but
the extent is different. While the innovation pattern in the iso-test shows a narrow shape on the
constant latitude (60 ◦S) band, the one in the isocb-test shows a much wider shape. As shown in
Fig. 20, the stream function covariance in the iso-test is distorted around 60 ◦S, and it makes
the gradient perpendicular to the patch boundary larger. As a result, the wind innovation
field (derivative of the stream function) becomes narrower. On the other hand, the V-wind
(meridional wind) innovation field in the isocb-test shows slight bumps in the contour lines.
These bumps should be removed by the future employment of the “blended hexads algorithm”
described in some detail in Purser (2005).
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Figure 24. U-wind innovation fields in the full observation data assimilation test at log
2
(σ) = −6.24 (13.4mb).

The upper panels show the global data in the Cartesian mapping and the bottom panels show the same one in
the orthogonal projection with the center at the South Pole. Left panels show the result from standard GSI and
the others are the ones from the isotropic GSI with the cubic grids. The contour interval is 1m/s and dashed

contour lines show the negative values.

Fig. 24 shows the U-wind innovation fields at log2(σ) = −6.24 (13.4mb) in the full obser-
vation data assimilation test. Roughly speaking, the innovation fields show good agreement
in both tests but, as mentioned in the context of the single observation test of Fig. 23, the
innovation pattern around 60 ◦S is narrower in the iso-test than that in the aniso-test.

While the result of the isocb-test is reasonable over the mid-latitudes and polar regions, it
shows noisy patterns over the Tropics at some levels. Fig. 25 shows the case. This problem
is found in the range of −4.84 (35.4mb)< log2(σ) < −3.07 (121mb). As mentioned in section
5(a), the resolution deficit is ignored in this test, so the problem might just be a result of the
deficient resolution.
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Figure 25. U-wind innovation fields in the full observation data assimilation test at log
2
(σ) = −3.25 (107mb).

Contour interval is 1m/s and dashed contour lines show the negative values.

To check this point, a different configuration of the cubic grids is tested. The following two
cubes are used for this sensitivity test:
{

R = 80σ0.35 :Cube1x (−7.10 (7.4mb)< log2(σ) < −1.92 (268mb), R = 12 − 51)
R = 160σ0.35 :Cube2x (log2(σ) < −4.84 (35.4mb), R = 12 − 51)

(5.7)

The result is shown in Fig. 26. The noisy pattern could not be found in this result, but the
computational cost for the cubic grids is twice that of the setting introduced above. Further
sensitivity tests are required to find the optimum settings.
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Figure 26. Same as Fig. 25 but uses the cubic grids configuration described in Eq. (5.3) for isocb-test.

(f) Cycled test in the T62-GSI

Finally, a cycled data assimilation test is performed with a resolution of T62. The cycle
period is from 10/21/07 to 11/11/07 and the assimilation is performed every six hours. Fig.
27 shows the zonal-mean (left) U-wind and (right) temperature in the analyzed field, averaged
over the whole test period. The contour lines show the iso-test result and the color scales show
the difference between the iso-test result and the isocb-test result. As expected, the U-wind is
reduced around the South Polar regions, but the difference is small. However, the difference
over the Tropics is relatively large, but might come from the noise problem mentioned in the last
section. A temperature difference is found above log2(σ) = −7.0 (7.9mb), where the isocb-test
shows a higher temperature than the iso-test. Fig. 28 is the same as Fig. 27, but for the RMSE
fields at the 120 hour forecast time calculated with each ‘error’ computed by reference to its
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‘own’ analysis, as the cycling experiment allows. The figure shows that the slight positive impact
(blue color, which means smaller RMSE in the isocb-test) dominates in the U-wind forecast,
but the impact on the temperature field is pretty small. While the RMSE of temperature shows
very small positive impact at −4.0 (63mb)< log2(σ) < −7.0 (7.9mb), it shows negative impact
over log2(σ) = −8.0 (4.0mb). As mentioned in section 5(b), the interpolation accuracy is worse
at the top level, which might explain the negative impact.
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Figure 27. Contour lines show the averaged zonal-mean U-wind (left, the unit is m/s) and temperature (right,
the unit is K) in the analyzed fields of the iso-test over the whole test period, and color scales shows the difference

from the one in the isocb-test.
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Figure 28. Same as Fig. 27 but for the RMSE field in the 120 hour forecast from the own analyses.

(g) Summary of the test implementation of the cubic grid on the GSI

In this section, a configuration of the cubic grids was designed and implemented within the
GSI. Mostly, it produced reasonable increment patterns although noisy patterns were found at
some levels. The noise can be avoided by using higher resolution cubic grids, although that
makes the computational cost larger. Finally, a cycled assimilation test was performed, which
showed a positive impact on the U-wind field forecast, but negative impact near the model top
in the temperature forecast. Overall, the results look very promising, but further investigation
and more careful design of the grid configuration is needed. Although it has not yet been
mentioned in this work, flow-dependent covariances can be applied easily in this cubic grid
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system since it already uses the anisotropic recursive filter regardless of the degree of intended
horizontal anisotropy in the spherical coordinate domain. The planetary scale flow-dependent
covariances can be tested in this system, though greater care must be taken in the design of
the grid configuration to ensure that the grid resolution provided is everywhere adequate.

6. Discussion

The global GSI uses a three-patch system of overlapping grids. If the correlation scales
are of modest extent, the synthesized background error covariance shows an adequate degree of
continuity. However, when the correlation scale length is very long, it suffers from the horizontal
boundary problem, which distorts the innovation patterns around the boundary and makes the
horizontal gradients steeper. Since the horizontal gradient of the stream function is used to
construct the wind increments, these wind components also suffer badly from this distortion.

On the other hand, the cubic grid system does not have a horizontal boundary and thus does
not incur horizontal boundary problems. Although it has vertical boundaries of the nested cubic
grids, the impact tends to be smaller than the horizontal boundaries because the construction
of the cubic nesting grids and the associated choice of weighting functions ensures that even
relatively coarse-scale contributions to the covariance are blended smoothly from one nest to
the next at a sufficiently gradual pace as the boundary is approached. Also, owing to the more
vertical orientation of the nested grid boundaries, the taking of horizontal derivatives of the
control variables has much less of an aggravating effect in this geometry. However, the cubic grid
system incurs errors produced by interpolations needed to accommodate its map projection.
The noisy patterns shown in Fig. 25 suggest the desirability of a more careful cubic grid design
and improved interpolation than we have applied in these preliminary experiments.

Since the current cubic grid configuration is “added on” to the existing standard (isotropic)
or anisotropic GSI, it is an encumbrance that can only increase the computational cost. In the
cycled data assimilation test, while the average computation time for the iso-test was 9.1 min,
the time for the isocb-test was 12.2min ( an increase of 34% ). A mitigation of the computational
cost might result from improvements such as:

(i) skipping the redundant filtering in the three patch system at altitudes sufficiently im-
mersed in the nested cubic configuration;

(ii) employing the new, more economical normalization method for the anisotropic recursive
filter.

There is also a need for some sensitivity tests at the operational resolution (T382) GSI since
the horizontal resolution of our experiments (T62) is very coarse compared with present opera-
tions. Given the additional degrees of control available in designing the nests, the proportionate
computational burden of the supplementary cubic grids configuration at a resolution more com-
mensurate with the T382 standard might be found more favorable than the percentage quoted
above.

Although this note does not discuss in detail the effects of employing nontrivially anisotropic
covariances, such a formulation could apply either an appropriate variant of the Riishøjgaard
(1998) type of flow-dependent covariance, or the ensemble-based covariance proposed in Sato
et al. (2009). By transforming the flow-dependent aspect tensor to the Cartesian coordinates
of the nested cubic grids, it should not be hard to generalize the procedure we have described

25



here to produce fully adaptive and flow-dependent covariances; future tests should certainly
include this more flexible system.
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