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Abstract

This note is the second part of a study which develops the geometrical ideas that underly the
‘parametrix expansion’ asymptotic method for estimating the shape of the impulse response
function of the diffusion equation in a smoothly curved non-Euclidean space. This part of
the study develops the algebraic tools required to treat the general n-dimensional case in Rie-
mannian geometry. Notations are developed both to facilitate the hand calculations for the
low-order expansion terms, and to enable the bulk of the algebraic manipulations to be auto-
mated, should it become desirable to carry out the asymptotic expansion to a higher order.
The general procedure is illustrated by exhibiting, in moderate detail, the algebraic operations
required to obtain the first two coefficients for the amplitude adjustment quotient in the n-
dimensional case, and for the important special cases of two and three dimensions where the
curvature terms upon which the formulas depend take on simpler forms.

1. Introduction

Part I of this study (Purser 2008) considered the problem of estimating the amplitude of
the ‘heat kernel’ (describing the result of diffusion applied for a given finite time to an initial
impuse) in the special cases of highly symmetric intrinsically curved geometries. This topic
is of considerable importance in modern data assimilation because the covariances we employ
in three-dimensional variational assimilation (‘3DVar’) often use such heat-kernels, or quasi-
Gaussians, as their basic building blocks; if the amplitude is mis-specified, the variance of the
error in the background field is automatically wrong. NCEP uses recursive filters (e.q., Wu
at al. 2002). For ocean data assimilation, explicit simulations of the diffusion process have
been proposed (Derber and Rosati 1989; Weaver and Courtier 2001). When the recursive filter
parameters, or the diffusivities, are permitted to vary smoothly in space, a method is needed
to regulate the resulting rather unpredictable amplitudes. The examples of Part I served to
introduce and exemplify the easiest applications of the ‘parametrix expansion method’, an
asymptotic method of approximation for the ratio of the curved-space and Euclidean space
kernel amplitude. At each stage of the parametrix expansion, the approximation to this ratio
is constructed as some polynomial in the appropriate curvature tensor together with its first
few covariant derivatives. In order to generalize the results we obtained to Riemannian ge-
ometries unconstrained by artificial conditions of symmetry we need, first, to develop some of
the algebraic machinery of Riemannian geometry, and then to extend the parametrix method
introduced in Part I to this more general situation.

Accordingly, in this Part II we introduce the notation and some of the relevant geometri-
cal techniques in section 2 before developing the general parametrix expansion method for n
dimensional Riemannian geometry in section 3. As in Part I, we adapt the simplest form of
the parametrix expansion, which exhibits serious divergence even at first or second order when
the diagnostics on which it depends become excessive, so that the adapted expansions, while
still consistent with the formal asymptotic expansion, are inhibited from diverging strongly.
The best of these practical ‘robust’ formulations in two dimensions were determined through



the careful trials documented in Part I, and have been generalized here to the more compli-
cated three-dimensional (3D) parametrix expansions. We describe these generalizations, and
test them in idealized synthetic Riemannian geometries in section 4. We also speculate on how
a practical 4D algorithm would look. We conclude with a review of the progress made and
some promising avenues for future extensions and refinements of the methods proposed. Four
appendices are provided to contain the more specialized technical material relating to the main
text.

2. Tensors, Riemann metrics, curvature, and the shape of space

This section reviews tensor analysis and Riemannian geometry. While some of this material
may be found in various standard texts of differential geometry, such as Kreyszig (1991), Synge
and Schild (1949), Lovelock and Rund (1989), Burke (1985), or within texts devoted to the
theory of General Relativity, such as Misner et al. (1970), Hawking and Ellis (1973), we give
emphasis to the special parts of this subject that will become relevant in the applications to
the parametrix expansion method described in section 3. Conventions of sign and notation
vary from one author to another, so we establish our own notational conventions here. We
develop and extend the concept of intrinsic curvature to include ‘shape tensors’ that generalize
the celebrated ‘Riemann’ (or, sometimes, ‘Riemann-Christoffel’) fourth-rank curvature to the
tensors of still higher rank that describe the local, but higher degree, variations of a space’s
intrinsic geometry. In this way we establish the geometrical tools that we shall employ to
analyze the asymptotic behavior of uniform diffusive processes in smoothly curved spaces.

(a) The metric and the rules of tensor transformation

A coordinate system, x ≡ {xi}, for a point in n dimensions of a Riemannian space has a
metric function associated with any pair of such points obtained implicitly by minimizing the
integral of the infinitesimal distance element, ds, over all possible connecting paths, where:

ds2 = gijdxidxj . (2.1)

Here we adopt the usual summation convention, tacitly assuming a summation from 1 to n for
any repeated dummy indices that appear in the same term (where they must appear once in
the upper ‘contravariant’ index position and once in the lower ‘covariant’ position, as both i
and j do in (2.1) above). The ‘metric’ is the symmetric tensor field whose covariant (or ‘type
[0,2]’) representation comprises the quantities gij at each point. The corresponding symmetric
contravariant (or ‘type-[2,0]’) metric tensor, gij , is the inverse of gij . The mixed (or ‘type-
[1,1]’) metric tensor field, gk

i , is therefore at every point indistinguishable from the Kronecker
‘δ’ symbol or, in matrix form, the identity operator, with components:

gk
i = δk

i =





1 : i = k,

0 : i 6= k.
(2.2)

The local volume element is
dτ =

√
g dx1 . . . dxn, (2.3)
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where g is the determinant of the covariant metric:

g = |g••|. (2.4)

Vectors and tensors are directional quantities existing within the space and possessing geo-
metrical relationships with the local orientations of the space that exist independently of any
particular choice of the coordinates. For example, the gradient vector field V of a given scalar
field, φ, is the same physical quantity associated with the same local direction at a particular
point, regardless of the coordinates used as a convenience to define the numerical magnitudes
of the components involved, and the resulting consistent behavior of such a vector field must be
reflected in the manner in which one representation of the vectors is transformed into another.
The use of covariant and contravariant vector and tensor representations simply facilitates
their consistent transformations among alternative coordinates by employing the most conve-
nient convention – one that ties the local basis vectors to the local derivatives of the associated
coordinate frames. For example, the field of the vector corresponding to V , the gradient of φ,
is written for a coordinate system, {xi}, in terms of its covariant components as simply the
partials:

Vi =
∂φ

∂xi
. (2.5)

Thus, the transformation of this representation to the equivalent covariant representation cor-
responding to another coordinate system, {x̂α}, is nothing more than the usual ‘chain-rule’:

V̂α = âi
αVi, (2.6)

where the Jacobian matrix â denotes the partials of the xi with respect to the x̂α:

âi
α =

∂xi

∂x̂α
. (2.7)

Any other vector representation that consistently transforms as (2.6) is referred to as a ‘covariant
vector’. The inverse of the Jacobian matrix of the transformation is the Jacobian of the reverse
coordinate transformation:

aα
i =

∂x̂α

∂xi
, (2.8)

and it is this operator that transforms the coordinate differentials from the frame {xi} to the
frame {xα}:

dx̂α = aα
idxi. (2.9)

Eq. (2.9) supplies the prototypical transformation idiom of the ‘contravariant vectors’. In
order that the infinitesimal line element length ds, and other scalars obtained by contractions
of tensors with vectors, remain invariant with respect to changes in coordinates, we deduce
that the covariant, mixed and contravariant tensors of second rank (such as the metric tensors)
must transform according to the rules:

T̂αβ = âi
αâj

βTij , (2.10a)

T̂α
β = aα

iâ
j
βT i

j , (2.10b)

T̂αβ = aα
ia

β
jT

ij. (2.10c)
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(b) Christoffel symbols and covariant derivatives

The shortest distance definition implicitly defines the shortest path, or ‘geodesic’, along
which ds is integrated to give the finite distance between a pair of points. The equation for
such a geodesic, given some initial direction and rate of change, dxi/ds, is:

d2xi

ds2
= −Γi

jk

dxj

ds

dxk

ds
, (2.11)

where Γi
jk denotes the Christoffel symbol of the second kind (type-[1,2]). This entity, and its

lowered index counterpart, the Christoffel index of the first kind, Γi jk (type-[0,3]), are defined
in terms of the first partial derivatives of the metric:

Γi
jk = gilΓl jk, (2.12)

where,

Γl jk =
1

2

(
∂glk

∂xj
+

∂glj

∂xk
− ∂gjk

∂xl

)
. (2.13)

In expressions where spatial partial derivatives are understood to be with respect to just a
single fixed set of coordinates then the ‘comma’ notation conveniently abbreviates expressions
and places all their subscripts in a single typographic line. Thus, the expression (2.13) appears
in this notation,

Γl ik =
1

2
(glk,j + glj,k − gjk,l) . (2.14)

With these definitions, one may verify that the solution of the geodesic equation of (2.11) leads
to a uniform parameterization of it in the sense that:

d

ds

(
gij

dxi

ds

dxj

ds

)
= 0. (2.15)

From definition (2.12), an important contraction of the Christoffel symbol is:

Γi
ij =

1

2g
g,j =

1

2
(ln g),j . (2.16)

From the transformation rules of the metric, it is found that the above-defined entities, Γ,
are not tensors, but attributes of the local curvature of the particular coordinates being used.
They provide an especially natural definition of a ‘connection’, which enables the construction
of sets of spatial derivatives of fields of vectors (and hence of tensors) that are themselves
properly tensorial in their rules of transformation. (The partials of a vector or tensor field by
themselves do not possess this property in general.)

We shall employ the notation, Vi|j , for the covariant derivative of a covariant vector Vi with
respect to xj . The covariant derivative of a contravariant vector, V i, is then:

V i
|j = V i

,j + Γi
jkV

k, (2.17)

and its contraction provides the standard divergence of vector V which, from (2.16), becomes:

V i
|i = V i

,i +
1

2g
g,iV

i ≡ 1√
g

(√
gV i

)
,i

. (2.18)
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Covariant differentiation also applies to tensors, for example:

T ij
|k = T ij

,k + Γi
lkT

lj + Γj
lkT

il, (2.19a)

T i
j|k = T i

j,k + Γi
lkT

l
j − Γl

jkT
i
l, (2.19b)

Tij|k = Tij,k − Γl
ikTlj − Γl

jkTil. (2.19c)

The corresponding covariant derivatives of tensors of higher ranks follow the obvious generaliza-
tion (see Lovelock and Rund 1989). The metric tensor is notable in that its covariant derivative
vanishes. In a Riemann space, the representations of vectors and tensors are freely convertible
between their various combinations of contravariant and covariant forms simply by applying
the appropriate contractions with metric tensors:

V i = gijVj . (2.20)

For repeated covariant differentiation of a generic quantity, ( ), we shall write

( )|ij ≡
[
( )|i

]
|j

, (2.21)

and note that, in general, covariant differentiation does not commute:

( )|ij 6= ( )|ji, (2.22)

an exception being the case where the quantity ( ) in (2.22) is a scalar (the resulting tensor is
known as the ‘Hessian’).

(c) Riemann curvature as a measure of noncommutation of covariant derivatives

The noncommutation of the covariant derivative is a symptom of the intrinsic curvature of
the space. In the case of a covariant vector, Vj, a direct calculation shows that,

(Vj|k)|l − (Vj|l)|k = Ri
jklVi, (2.23)

where the new type [1,3] tensorial object,

Ri
jkl = Γi

jl,k − Γi
jk,l + Γm

jlΓ
i
mk − Γm

jkΓ
i
ml, (2.24)

is the Riemann curvature tensor. Implicit in this definition is the result that, given an infinites-
imal quadrilateral circuit generated by the ordered displacements, dak and dbl, the change in
vector, initially V , upon being parallel-transported around the circuit, x, x + da, x + da +
db, x + db, x, is:

∆V i = −Ri
jkl V j dak dbl. (2.25)

This interpretation is discussed in Synge and Schild (1949). Further insight into the meaning of
the curvature tensor, associated tensors and their generalizations, is gained by the introduction
of the normal geodesic coordinates.
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Figure 1. Schematic depiction of the train of ‘Huygens wavelets’ separating two successive ‘wavefronts’ of
constant distance from the origin in normal geodesic coordinates. In the limit of infinitesimal separation of the
two wavefronts, the wavelets exhibit elliptical shapes characteristic of the local representation of the metric tensor
which, in order to maintain the points of tangency, A and A′, in line with the center, O, must have this radial

vector as an eigenvector and with unit eigenvalue.

(d) Normal coordinates and ‘shape’ tensors of rank four

In the neighborhood around a point of interest, O, we construct a new coordinate system
{x̂α} having O as its origin and locally possessing, as far as is possible, the familiar properties
of a Cartesian coordinate set. The matrices formed by the metric tensors at O are the identity
matrix and the geodesics through O are mapped to ‘straight lines’ in the sense that the coordi-
nates x̂α preserve the same mutual ratio along the extent of any such geodesic. Also, the square
of the distance from O is just the sum of squares of these coordinates. Points a fixed distance,
s, from O therefore comprise the surface of a ‘hypersphere’ in the Cartesian interpretation of
these normal coordinates.

The ‘Huygens wavelet’ construction of Fig. 1 schematically illustrates conditions on the
infinitesimal spherical wavelets which must hold if they are to separate, with tangential contact,
a pair of concentric spherical wave fronts. The straightness of the mapped radial geodesic
OAA′ in normal coordinates implies that the radial vector at each point is an eigenvector, with
unit eigenvalue, of the local mapped metric, ĝij . If this were not so, the points of tangency
of the elliptically-mapped wavelets in the Cartesian map-space would lie on different radials
for the outer wavefront than for the inner. If we introduce both doubly superscripted and
doubly subscripted versions of the Kronecker symbol, with the stipulation that the index-
raising/lowering actions of the metric tensors do not apply to them:

δij

δij





=





1 : i = j

0 : i 6= j
, (2.26)

then we can state the eigenvector property with strict adherence to tensorial index notation:

δijgjkx
k = gijδjkx

k = xi. (2.27)
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The normal coordinate vector is therefore an eigenvector of both the covariant and contravariant
metric tensor everywhere, and with a unit eigenvalue.

We can expand the representation of gij as a Taylor series:

gij(x) = δij + Jij kx
k + Jij klx

kxl + Jij klmxkxlxm . . . , (2.28)

where all the successive J are tensors and have coefficients assumed to be symmetric, both
under transposition of the leading pair of indices, i and j, and also under permutation among
any of the remaining indices. They will be referred to ‘Jacobi shape tensors’. We emphasize
that the definition of each tensor from (2.28) associates it only with the particular origin O

chosen. While it is clearly possible to extend each J to a ‘tensor field’ by associating each new
evaluation of it with its own locally-defined prescription corresponding to the new version of
(2.28) that has as its origin this new evaluation point, we shall restrict our study to the case
of a single fixed normal coordinate frame and will never assume tensors J to have any spatial
extension; in particular, we shall not be obliged to differentiate these J .

Since the eigen-condition (2.27) holds for all neighboring x, each row and each column of the
contribution to g•• from any given J term must be reducible to a superposition of polynomials
times vectors which are both linear in x, and orthogonal to it. At each location x, such vectors,
U , can always be expressed as a superposition of the form:

Ui = Upq

(
δp
i δ

q
j − δp

j δq
i

)
xj . (2.29)

No loss of generality is incurred by assuming Upq in (2.29) to be antisymmetric, Upq = −Uqp,
which implies that the rank of the implied linear space of U is n(n − 1)/2 for a physical space
of dimension n.

We find that no nonvanishing term, Jij kx
k, can be formed with both row i and column j

contributions to the metric being of the necessary form (2.29), so this term drops out. The
general quadratic term may be expressed as a superposition of basic terms of the kind:

Mpq rs
ij =

(
δp
i δq

k − δp
kδ

q
i

) (
δr
j δ

s
l − δr

l δ
s
j

)
xkxl, (2.30)

that is,

Jik jlx
jxl =

1

4
QpqrsM

pq rs
ik

=
1

4
(Qij kl − Qji kl − Qij lk + Qji lk)x

jxl, (2.31)

provided we respect the symmetry of the metric tensor by requiring:

Qij kl = Qkl ij. (2.32)

Again, we lose no generality by also requiring the antisymmetries:

Qij kl = −Qji kl = −Qij lk, (2.33)

so that,
Jik jlx

jxl ≡ Qij klx
jxl. (2.34)
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Like J , Q is a tensor defined only locally and will never be differentiated. On the basis of
these symmetries alone, we seem to have as many distinct components as there are independent
elements in a symmetric matrix of order n(n − 1)/2. However, the matrices of quadratic poly-
nomials, M , possess a further symmetry among each subset of such matrices sharing the same
four upper indices (p, q, r, s) whenever these indices are all distinct (which can only happen in
four or more dimensions). We see this by first symmetrizing these matrices:

M
pq rs
ik = Mpq rs

ik + M rs pq
ik , (2.35)

and abbreviating the components of x associated with the representative index subset by w ≡
xp, x ≡ xq, y ≡ xr and z ≡ xs. Matrices M with these upper indices in any permutation have
nonvanishing components only in rows i and columns k that also correspond to this same 4-
dimensional subspace. Displaying only these active rows and columns and cyclically permuting
the trailing three upper indices we find:

M
pq rs

=




0, 0, xz, −xy

0, 0, −wz, wy

xz, −wz, 0, 0

−xy, wy, 0, 0




, (2.36a)

M
pr sq

=




0, −yz, 0, xy

−yz, 0, wz, 0

0, wz, 0, −wx

xy, 0, −wx, 0




, (2.36b)

M
ps qr

=




0, yz, −xz, 0

yz, 0, 0, −wy

−xz, 0, 0, wx

0, −wy, wx, 0




, (2.36c)

whose sum vanishes:
M

pq rs
+ M

pr sq
+ M

ps qr
= O. (2.37)

This cancellation still occurs when the four upper indices are not distinct, but these cases are
already dealt with by the other symmetry conditions. The number of independent instances
of the new symmetry (sometimes referred to as Bianchi’s algebraic identity) is equal to the
number of ways of choosing four indices from the available n; the number of degrees of free-
dom of independent variations of the metric up to second degree in the expansion is therefore
correspondingly reduced to:

F (n) =

(
n(n − 1)/2 + 1

2

)
−
(

n

4

)
= n2(n2 − 1)/12. (2.38)
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So as not to incur ambiguity in the coefficients, Qij kl, in these cases where the indices are
distinct, we can impose the rule that they obey the same cyclic symmetry:

Qij kl + Qik lj + Qil jk = 0, (2.39)

and then the representation, by Qij kl, of the quadratic variation of the metric g•• is rendered
unique.

By the manner of its construction, Qij kl, possesses the attributes of a fourth-rank tensor
when the normal coordinates x are transformed by orthogonal rotations (which leave all the
defining properties of the normal coordinates invariant). This Q is the first of the series of
what we can generically refer to as the ‘Riemann shape tensors’. The reason for this choice
of terminology is, as we show below, that the rank-four instance of Q turns out to be nothing
more than a multiple of the Riemann curvature; likewise, a multiple of the rank-four instance
of J , is known as the Jacobi curvature tensor (Misner et al. 1970), which justifies our naming
the J family the ‘Jacobi shape tensors’.

It is instructive to see what numerical values emerge for Q in the case of a space in 2D with
constant Gaussian curvature, κ. For κ > 0 this represents an ordinary sphere of radius 1/

√
κ.

Let φ denote the colatitude and θ the longitude. Taking O to be the ‘pole’, we write the two
normal coordinates x ≡ x̂1, y ≡ x̂2,

x = κ− 1

2 φ cos θ, (2.40a)

y = κ− 1

2 φ sin θ. (2.40b)

Expressing the metric definition,

ds2 = κ−1dφ2 + κ−1(sin φ)2dθ2, (2.41)

and defining the radial distance,

r = (x2 + y2)
1

2 , (2.42)

so that

dφ =
κ

1

2

r
(x dx + y dy), (2.43a)

dθ =
1

r2
(−y dx + x dy), (2.43b)

we find that:

ds2 = (dx2 + dy2) − 1

r2



1 −

[
sin(κ

1

2 r)

κ
1

2 r

]2



(
y2dx2 − 2xy dx dy + x2dy2

)
. (2.44)

We can use the expansion,

(
sin φ

φ
)2 =

1

2φ2
(1 − cos 2φ)

= 1 − 1

3
φ2 +

2

45
φ4 + O(φ6), (2.45)
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to express the metric, g••:

g•• = I −
(

κ

3
− 2κ2r2

45

)
M + higher order terms, (2.46)

where M is the essentially unique nontrivial example in 2D of a matrix of the construction
(2.30), such as is given by indices, (p, q, r, s) = (1, 2, 1, 2). Explicitly,

M =




y2, −xy

−xy, x2


 . (2.47)

Hence, in this example, Q12 12 = −κ/3, and a rescaling to make this curvature component match
the Gaussian curvature is obtained by simply multiplying the components of Q by −3:

Q̂ij kl = −3Qij kl. (2.48)

Note that the classical hyperbolic geometry is obtained by formally taking κ < 0, whereupon,

[sin(κ
1

2 r)]2 = [i sinh((−κ)
1

2 r)]2 = −[sinh(|κ| 12 r)]2. (2.49)

Returning to the general case, although the Christoffel symbols vanish in the normal coor-
dinates at O, their derivatives, expressible as second derivatives of the metric, do not. From
the special condition at O which allows the simplification:

Rij kl = Γi jl,k − Γi jk,l (2.50)

and
Γi jl,k = Jil jk + Jij kl − Jjl ik, (2.51)

we obtain:

Rij kl = Jil jk − Jjl ik − Jik jl + Jjk il,

=
1

2
(Qij lk + Qik lj − Qji lk − Qjk li − Qij kl − Qil kj + Qji kl + Qjl ki)

= −3Qij kl ≡ Q̂ij kl. (2.52)

In other words, the same rescaling that allows the relevant components of Q to match the
Gaussian curvature of two-dimensional sections brings this tensor into exact numerical corre-
spondence with the Riemann tensor. This exercise confirms that the fourth-rank Jacobi shape
tensor, J , retains all the information contained in its Riemann counterpart, Qij kl, and that the
latter is indeed a fixed multiple of the Riemann curvature tensor.

In order to determine how many degrees of freedom can be exercised at a higher degree of
the expansion of the metric in powers of the normal coordinate components, it helps to consider
the pattern formed by the ‘lexicographic’ ordering of the components of Ri′j′ k′l′ that are each
strictly independent of any entries that have preceded them in the lexicon. Fig. 2 depicts the
bottom corner of the generic pattern for an arbitrary number of spatial dimensions, n, in the
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form of a matrix indexed by ‘rows’ and ‘columns’ formed by the leading and trailing pairs

of indices respectively. Owing to the (anti-)symmetries: Ri′j′ k′l′ = −Rj′i′ k′l′ and Ri′j′ k′l =
−Ri′j′ l′k′ , these ‘rows’ and ‘columns’ can be restricted in the lexicon to just the n(n + 1)/2
index pairs with i′ < j′ (rows), and likewise, k′ < l′ (columns). The lexicographic ordering of the
serially-independent tensor elements is obtained by ‘reading’ rows from left to right and from the
top row downward, where, for n dimensions, the top row lies just below the nth heavy horizontal
line from the bottom. By virtue of the paired-index matrix symmetry, Ri′j′ k′l′ = Rk′l′ i′j′ , the
entries of the lexicon are confined to the upper triangular portion (including the main diagonal)
of this matrix. But the Bianchi algebraic symmetry, Ri′j′ k′l′ + Ri′k′ l′j′ + Ri′l′ j′k′ = 0 allows
putative entries Ri′j′ k′l′ in this portion of the matrix for which j ′ > l′ (and only these otherwise
qualifying candidates) to be excused on the basis of their being equivalent to the sum of two
terms occurring earlier in the lexicon, namely:

Ri′j′ k′l′ = −Ri′k′ l′j′ + Ri′l′ k′j′.

This excluding condition carves out the regular pattern of isolated forbidden regions we see
shaded in Fig. 2.

k = 1,
l =

k = 2,
l =

k = 3,
l =

k = 4,
l =

k = 5,
l =

001012012301234

i =  1,    j = 0

i =  2,    j =
0

1

i =  3,    j =

0

1

2

i =  4,    j =

0

1

2

3

i =  5,    j =

0

1

2

3

4

j =

0 1 2 3 4

 1

 2

 3

 3

 5

 6

 4

 7

 9

10

 5

 9

12

14

15

 j-SORTED
ROW SUMS:

Figure 2. Lexicographic matrix arrangement showing the pattern of serially independent entries of the index
sequences of the generic Riemann curvature tensor. In n dimensions, the indices of the tensor, Ri′j′ k′l′ , are
here expressed in the form of the complementary indices: {i, j, k, l} = {n − i′, n − j′, n − k′, n − l′}. The white
spaces are assigned only to those elements of the tensor which, in a lexicographic ordering, are independent of
entries that appear earlier in the lexicon. The row-sums of white squares listed to the right of the matrix, and
later reproduced as the quantities ‘T (i, j)’ of Table 1, are used to infer the number of independent components
of the higher-rank generalizations of shape tensors that quantify the higher degree departures from flatness of

the Riemannian space, as discussed in the text.
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TABLE 1. Table of row sums,
T (i, j).

i j = 0 1 2 3 4 5

1 1

2 2 3

3 3 5 6

4 4 7 9 10

5 5 9 12 14 15

6 6 11 15 18 20 21

TABLE 2. Table of cumulative
row sums, U(i, j).

i j = 0 1 2 3 4 5

1 1

2 3 3

3 6 8 6

4 10 15 15 10

5 15 24 27 24 15

6 21 35 42 42 35 21

(e) Degrees of freedom and symmetries for shape tensors of rank > 4

Also shown in Fig. 2 are the row-counts of the lexicographic entries, sorted by j, which we
shall be using presently. Denoting this tally, T (i, j), it is easily verified that:

T (i, j) =
(2i − j)(j + 1)

2
. (2.53)

We next consider the third-degree polynomial terms for the metric tensor. Again, in order
that this contribution to the metric has x as a null vector everywhere, it must be expressible:

Jik jlmxjxlxm =
1

4
Qpq rs t(δ

p
i δq

j − δp
j δ

q
i ) (δr

kδ
s
l − δr

l δ
s
k) xjxlxt (2.54)

and the symmetries involving the first four indices of this fifth-rank tensor Q can be required,
without loss of generality, to be exactly those inherited from its fourth-rank counterpart (or
equivalently, those of the Riemann tensor). However, we cannot assume that the number of
independent degrees of freedom at this order is just n × F (n), because the factor,

(δr
kδ

s
l − δr

l δ
s
k) xlxt = (δr

kx
s − δs

kx
r) xt (2.55)

has a linear dependency under cyclic permutation of the indices, r, s and t. As was the case with
the Bianchi algebraic identity, this new symmetry can be imposed on the coefficients Qpq rs t in
order to keep them unambiguous:

Qpq rs t + Qpq st r + Qpq tr s = 0. (2.56)

12



The implication of this symmetry for the derivatives of the Riemann tensor is what is known
as the ‘Bianchi derivative identity’:

Rij kl|m + Rij lm|k + Rij mk|l = 0. (2.57)

This identity reduces the number of independent elements of the tensors Q of fifth rank and
higher from what a naive extrapolation might have led us to expect.

We can extend the lexicographic convention for the ordering of tensors Q of rank higher than
four in the natural way, but it is convenient temporarily to adopt an alternative convention,
just to facilitate the counting of independent components (obviously the choice of lexicographic
ordering convention cannot change the number of independent degrees of freedom in the tensors
represented). Suppose we construct the alternative extended lexicon for the serially-independent
components of the tensor, Q of rank 4 + M according to the rule that the trailing M indices
(beyond the fourth) are ordered first (as if they were placed at the front) while the first four
indices, i, j, k, l, are ordered as if, as a group, they were placed in the trailing position. There
are exactly

(j+M−1
M

)
lexicographically-ordered strings of the M trailing indices that do not

exceed second index, j ≤ n. (Note that if the last one of these M indices were to exceed j,
and hence i, then the Bianchi cyclic symmetry associated with these three indices would imply
that this tensor component could be replaced by a linear combination of the two others which
both have lexicographic precedence, and so the original component could not itself then qualify
for the (4 + M)-digit lexicon of serially-independent Q components.) We have seen from Fig.
2 that the number of entries in the Riemann tensor lexicon whose first index is i and whose
second index is j > i is T (n − i, n − j). The number of entries in the Riemann tensor lexicon
whose second index equals j is therefore U(n − 1, n − j), where:

U(i, j) =
i∑

i′=j+1

T (i′, j),

= (j + 1)(i − j)(i + 1)/2, 0 ≤ j < i. (2.58)

Some of these U(i, j) are listed in Table 2. We are therefore able to deduce the size, F (n, M),
of the (4 + M)-digit lexicon, that is, the number of independent degrees of freedom in the
‘shape tensor’ of rank 4 + M for a space of dimension n. We use the lemma (readily proved by
induction):

∑

j

(
j

a

)(
c − j

b

)
=

(
c + 1

a + b + 1

)
, a, b ≥ 0, c ≥ a + b, (2.59)

to simplify the summation for F (n, M):

F (n, M) =
n∑

j=2

(
j + M − 1

M

)
U(n − 1, n − j)

=
∑

j

(
j + M − 1

M

)
n(j − 1)(n + 1 − j)

2

=
n(M + 1)

2

∑

j

(
j

M + 1

)(
n + M − j

1

)
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=
n(M + 1)

2

(
n + M + 1

M + 3

)
. (2.60)

In the special case, M = 0, we confirm that the formula correctly reproduces the numbers F (n)
of (2.38), as required. A list of some of the values of F (n, M) is given in Table 3.

TABLE 3. The number F (n, M) of
independent degrees of freedom
of the shape tensor of rank 4 + M
of generic Riemannian space of
dimension n.

n M = 0 1 2 3 4

2 1 2 3 4 5

3 6 15 27 42 60

4 20 60 126 224 360

5 50 175 420 840 1500

TABLE 4. Q-tensor component depen-
dencies lexicographic reduction rules.

Index Substitution rule for

inequality Q̃12 ... ≡ Qi1i2 ...

i1 = i2 0

i3 = i4 0

i1 > i2 −Q̃21 34 ...

i3 > i4 −Q̃12 43 ...

i1 > i3 +Q̃32 14 ... − Q̃31 24 ...

i2 > i4 +Q̃14 32 ... − Q̃13 42 ...

IF M > 0:

i3 > i5 +Q̃12 54 3... − Q̃12 53 4...

ip > ip+1, p > 4 +Q̃...,p+1,p,...

(index transposition)

Returning to the usual lexicographic ordering convention for the components of Q tensors,
a component can be said to be ‘reducible’ with respect to the lexicographic convention if it can
generally be expressed as a linear combination of other components that enjoy lexicographic
precedence. A reducible component can be recognized if it satisfies one of the inequalities
listed in Table 4. Also given there is the substitution rule that gives the magnitude of the
reducible component in terms of other components that occur earlier than it in the lexicon.
The substituted components can themselves be reducible in this sense, so the rules given by this
table must be iterated until no further substitutions occur in order to express each component
in irreducible terms.

(f) Notational development and some relationships connecting Q and J tensors

The corresponding Jacobi shape tensors, J , of rank α = M + 4 can also be ordered lexico-
graphically and, although we shall not use such a lexicon, it is useful to clarify the symmetries

14



of J that the lexicographic reduction rules for these quantities would need to respect. First,
when dealing with a generic number of tensor-style indices, i1, . . . iα, we shall find it convenient
to use the shorthand notation:

Ji1i2 ...iα ≡ J̃12 ...α, (2.61)

and likewise for other indexed tensor-like symbols. For the generic index iβ, we shall refer to
the number or function, β, as its ‘index label’. Associating the indices with numerical labels
certainly makes it easier to automate the lexicographic comparisons, but it also simplifies some
of the combinatoric expressions we use as shortcuts to hand calculations. Note that when we
encounter the Kronecker symbol written ‘δ̃12’ it is not invariably zero (as it obviously would be
without the tilde); instead, we should consistently interpret this symbol to mean:

δ̃12 =





1 : i1 = i2,

0 : i1 6= i2.
(2.62)

When, as later, we have occasion to employ multiple instances of these superscripted Kronecker
symbols in a term, it becomes convenient to adopt abbreviations of the kind exemplified by:

δ̃aa′ bb′ cc′ ≡ δ̃aa′

δ̃bb′ δ̃cc′ .

A more substantial economy results from the exploitation of combinatoric principles based
on the symmetries of the tensorial quantities we deal with. When given an index list together
with a pattern of partitioning of this set into ordered subsets of given sizes, it is convenient to
adopt a shorthand ‘combinatorial index’ notation for the sum of the instances of an indexed
quantity when all possible combinations of the given set of indices distributed amongst the
partitions are exercised (but index order inside each subset is not distinguished). The subsets
of a given size, β, will be denoted by this β inside parentheses in the index position. Thus, for
example, Ã1(2)(1) is understood to expand to the sum of three (= 2 + 1) terms. To be written
this way, A must already be a quantity known to exhibit symmetry with respect to transposition
of its middle pair of indices. At times, it is necessary to make explicit the ‘parent set’. Here,
the parent set, which we can denote ‘(3)’, comprises the three hidden index labels involved in
the combination. Suppose, for example, the hidden indices involved are, i4, i7 and i8. Then,
when the necessity to make this parent set known arises, we shall define it with the notation,

(3) ≡ {4, 7, 8}.

The explicit expansion of what, in combinatoric notation, is condensed into a single term, is
then:

Ã1(2)(1) ≡ Ã1478 + Ã1487 + Ã1784,

≡ Ai1 i4 i7 i8 + Ai1 i4 i8 i7 + Ai1 i7 i8 i4 .

Note that index label, ‘1’, being not included in parentheses, remains fixed through all the
different combinations. The combinatorial index notation can equally be applied to terms with
conventional (alphabetic) tensor subscripts and superscripts, instead of index labels we used in
this example.
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An isolated single pair of parentheses in the index list of a term, i.e., the parent set, clearly
translates to only a single instance of that term, however large the number in parentheses (size of
the parent set); at the opposite extreme, if a term’s index list contains α distinct occurrences of
‘(1)’ (but no other parenthetic indices) then this combinatorial term actually signifies α! separate
explicit-index terms. More generally, for a parent set, (α), the number of explicit-index terms
into which a sequence of combinatorial-index terms expands, when the latter consists of the
partitioning sequence, βi, with α =

∑P
i=1 βi, is the multinomial: α!/(β1! . . . βP !). Consistency

with these rules requires that the occurrence of a ‘(0)’ means that no explicit index exists at
this position, but the term itself remains; however, a ‘(−1)’ combinatorial index will invariably
be interpretted as implying that the term itself is annihiliated. When the context makes the
interpretation of a quantity’s indices unambiguous as index labels, rather than actual indices,
we may sometimes omit the ‘tilde’ in the interests of typographic clarity.

The symmetry of any J tensor of rank α + 2 under transposition of its first pair of indices
could be signified in this notation by:

2!J̃(2) 3...α+2 = J̃(1)(1) 3...α+2,

Alternatively, its symmetry with respect to permutation of its remaining α indices could be
signified by:

α!J̃12 (α) = J̃12 (1)1...(1)α
.

Denote
xi3i4...iα+2 ≡ x̃34...α+2,

and, since the terms in the Taylor expansion of g̃12 at degree α sum to:

J̃12 34...α+2x̃
34...α+2 = Q̃13 24 ...α+2x̃

34...α+2, (2.63)

the result of differentiating α times to recover these coefficients is the relationship, written now
with conventional tensor indices, i and j:

α!Jij (α) = Qi(1)1 j(1)2 ...(1)α

= (α − 2)!Qi(1) j(1) (α−2), α ≥ 2, (2.64)

(since Q is symmetric with respect to permutation of its trailing α − 2 indices). From this
result we are able to obtain:

Lemma 1:

J(1)i (α) = Ji(1) (α) = 0. α ≥ 2. (2.65)

2

Proof:

We exploit the antisymmetry of Q with respect to transposition of its leading pair of indices:

J(1)i (α) ∝ Q(1)(1) i(1) (α−2)

= 0, α ≥ 2. (2.66)

2
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A
A

B

B

C

C

Figure 3. Among the index permutations of a shape tensor, J , any component may be identified by the speci-
fication of just the leading pair of index labels and therefore mapped to off-diagonal components of a symmetric
matrix. Equation (2.65) may be interpretted as saying that the nondiagonal row- and column-sums of the matrix

vanish. Let one of these J components be selected, say J̃12 ..., which maps to the matrix elements marked ‘A’ in
the figure. Denote by ‘B’ the index-permuted elements of J̃ possessing either the index label, ‘1’ or ‘2’, which
maps to the two portions of the matrix as marked. The remaining index-permuted elements, containing neither
index label ‘1’ nor ‘2’ map to the region of the matrix marked ‘C’. The ‘B’ elements clearly sum to twice the

negative-sum of the A element and to twice the negative sum of the ‘C’ elements.

An interpretation of this symmetry and its consequences is given in Fig. 3.
Let the numerical indices of J̃ be ordered to reflect the lexicographic ranking of the pool

of indices used to indicate the components of J , but let the actual indices of a particular
component of J be denoted respectively, j1, . . . , jα. For the particular component to belong
to the J -lexicon it is clearly necessary that j1 ≤ j2, since every J tensor is symmetrical with
respect to these first two indices. Likewise, from symmetry with respect to the remaining α − 2
indices, we have a series of inequalities, j3 ≤ j4, . . . ≤ jα−1 ≤ jα. But (2.65) implies that the
indices of a lexicographically irreducible component also satisfies the inequality, j2 < jα, since
it is otherwise expressible as a linear superposition of components with the same j1 but smaller
j2. Finally, by a consideration of what (2.65) implies for the components whose leading and
trailing pair of indices are the four indices that rank last lexicographically amongst the indices
present, it is straightforward to prove that an irreducible component must also satisfy j1 < jα−1.
We will not attempt to provide a table, analogous to Table 4, for the J -lexicon reduction rules
as these are rather more complicated and will not be applied in this study. However, from the
criteria of lexicographic irreducibility we have obtained we can immediately assert the following
lemma:

Lemma 2:

The number of components of the J tensor of rank α that are irreducible according to the
above criteria is equal to the number of independent components of the corresponding Q shape
tensor. The lexicographic rules we have discovered for J are therefore sufficient.

2

The proof of this lemma is given in Appendix A.
In addition to the generic formula (2.64) enabling J to be expressed in terms of Q, we

clearly need an inverse of this formula to facilitate evaluation of the Q tensor of rank α from
the derivatives, at the origin, of the covariant metric. The requisite formula is given by:
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Theorem 1:

Q̃12 34 ...α =
α − 3

α − 1
(J̃13 24...α − J̃23 14...α − J̃14 23...α + J̃24 13...α). (2.67)

2

A proof of this important identity is given in Appendix A. It is partly from this result that
we can deduce that the successive covariant derivatives of the Riemann tensor take the form:

R̃12 34|5...α = −(α − 4)!

(
α − 1

2

)
Q̃12 34 5...α + N , (2.68)

where N denotes the additional nonlinear terms in R and its covariant derivatives up to degree
α − 6 when α ≥ 6. This observation that the Taylor expansion coefficients of the metric tensor
in normal coordinates are each a polynomial in the Riemann tensor and its covariant derivatives
was apparently first made by the celebrated geometer and pioneering group-theorist, E. Cartan
(e.g., see Berger et al. 1971).

As we shall often use the tensors obtained when shape tensors, Q, are contracted with
respect to their first and third indices, it is convenient to establish a notation for them. We
shall also use the further contractions obtained when, in addition, the second and fourth indices
of Q are contracted. Therefore, we define:

Q24 5...α = δ̃aa′

Q̃a2 a′4 5...α, (2.69a)

Q5...α = δ̃aa′ bb′Q̃ab a′b′ 5...α = δ̃bb′Qbb′ 5...α, (2.69b)

where it is understood that the quantity Q reduces to a scalar in the case where α = 4. Note

that Q is symmetric with respect to its leading pair of indices. (Note also that Q and Q exhibit
the first examples where typographic clarity prompts us to relax the ‘tilde’ convention.) We
directly obtain from (2.64):

α!δaa′

J̃aa′ (α) = (α − 2)!Q(1)(1) (α−2)

= 2(α − 2)!Q(2) (α−2), α ≥ 2. (2.70)

Less obvious is the following identity, whose range of α-validity extends down to α = 2 since
we interpret a combinatoric subscript index, ‘(−1)’ in a factor to imply the annihilation of the
term to which it belongs:

Lemma 3:

α!δaa′

J̃a1 a′(α−1) = (α − 2)!
[
2Q(2) 1(α−3) − (α − 1)Q1(1) (α−2)

]
, α ≥ 2 (2.71)

2

The proof, once again, is provided in Appendix A and, from this result, as a direct corollary,
we also obtain:

α!δaa′

J̃a(1) a′(α−1) = −2(α − 2)!Q(2) (α−2), α ≥ 2, (2.72)
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which we shall put to use in Appendix B to derive quantities employed by the parametrix
expansion of section 3.

(g) The Ricci tensor

Analogous to the contracted form, Q, of the Q tensor, an important contraction of the full
Riemann tensor leads to the symmetric ‘Ricci tensor’:

Rij = Rk
i kj ≡ R k

i jk, (2.73)

whose n(n + 1)/2 nontrivially distinct components are sufficient to define all the curvature in
n ≤ 3 dimensions. Different sign conventions are employed by different authors, but we shall
follow that of Lovelock and Rund (1989) which associates a positive Ricci scalar (contraction of
the Ricci tensor) with a positive Gaussian curvature in the two-dimensional case. [Synge and
Schild (1949) and Kreyszig (1991) adopt the opposite sign convention for the Ricci quantities.]

The Ricci tensor may be related directly to the derivatives of the metric tensor and Christof-
fel symbol:

Rij =
1

2

(
(ln g),kΓk

ij − (ln g),ij

)
+ Γk

ij,k − Γk
ilΓ

l
jk. (2.74)

The further contraction leads to the ‘Ricci scalar’:

R = Ri
i ≡ gijRij. (2.75)

The Ricci tensor inherits the Bianchi derivative identity in the form:

Ri
j|i =

1

2
R|j . (2.76)

In n = 2 dimensions,
R = 2κ (2.77)

where κ is the Gaussian curvature. In 2D, κ or R suffice to recover all the Riemann and Ricci
curvature components:

Rij kl = (gikgjl − gilgjk)R/2, (2.78a)

Rij = gijR/2 (2.78b)

In n = 3 dimensions, the Ricci tensor suffices to recover the Riemann tensor according to:

Rij kl = gikRjl + gjlRik − gilRjk − gjkRil − (gikgjl − gilgjk)R/2. (2.79)

In the special cases of n-dimensional hyperbolic and elliptic geometries with constant and
isotropic curvature, one can quantify this curvature as the Gaussian curvature κ on any two-
dimensional geodesic ‘section’. In these special cases,

Rij kl = (gikgjl − gilgjk)κ, (2.80)

so that the Ricci tensor and scalar become:

Rij = (n − 1)κgij , (2.81)
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and
R = n(n − 1)κ. (2.82)

3. The heat kernel in a Riemannian manifold

The solution to the diffusion equation from an initial unit impulse, is known by mathe-
maticians as the ‘heat kernel’. The mathematical behavior of the heat kernel in Riemannian
geometry has stimulated a enormous amount of research amongst geometers and topologists
owing to the insights it provides, both locally and globally, about the geometrical characteristics
of the manifold on which the diffusion occurs (McKean 1970; Grigor’yan and Noguchi 1998;
Rosenberg 1997). Recent applications have also been found in statistical information theory
(Laffetry and Lebanon 2005) and, in a sense, our own interest in the behavior of heat kernels
in a curved space also relates to the manipulation and characterization of information, though
the Riemannian manifold in our context is a smooth deformation of the actual physical space in
which we are attempting to assimilate meteorological data. Nevertheless, the same asymptotic
methods recur in all these applications and of central importance is the so-called ‘parametrix
expansion’ which we have already discussed in special geometries in Part I. Here we extend
the study of this asymptotic approximation method to more general Riemannian geometries of
three or more dimensions.

An approximate solution, P0, in the normal coordinates is given by pretending these to
be Cartesian coordinates of a Euclidean geometry, so that the familar Gaussian formula is
obtained:

P0(t; x) =
1

(4πt)n/2
exp

(
−r2

4t

)
, (3.1)

where
r2 = δijx

ixj, (3.2)

is the square of the radial distance. It is easy to verify the following partial derivatives of
this solution, where the independent variables now include time t in addition to the spatial
coordinates:

∂P0

∂t
=

(
r2

4t2
− n

2t

)
P0, (3.3a)

∂P0

∂xi
= −δijx

j

2t
P0, (3.3b)

∂2P0

∂xi∂xj
=

(
δikδjlx

kxl

4t2
− δij

2t

)
P0. (3.3c)

From the trace of the last of these equations we obtain:

δij ∂2P0

∂xi∂xj
=

(
δijx

ixj

4t2
− n

2t

)
P0, (3.4)
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and thereby verify that P0 does indeed obey the Euclidean form of the diffusion equation:

∂P0

∂t
= δij ∂2P0

∂xi∂xj
. (3.5)

The time-dependent solution we are more interested in, expressed as P (t; x), the product
of the known P0(t, x) and a smooth modulating function T (t, x):

P (t; x) = P0(t; x)T (t; x), (3.6)

is the one initialized by a unit impulse at the normal coordinate origin and that obeys the
diffusion equation discussed in Part I:

∂P

∂t
=

1√
g

∂

∂xi

√
ggij ∂P

∂xj

= W i ∂P

∂xi
+ gij ∂2P

∂xi∂xj
, (3.7)

where,

W i = gij
(

1

2

∂gkl

∂xj
− ∂gjk

∂xl

)
gkl = −Γi

klg
kl. (3.8)

The idea is that, for small t, the solutions P and P0 are very alike and the modulating function,
T , is close to unity. As t increases, the T remains smooth so that it can be approximated by
a power series expansion in both time and space. We write the vector of nonnegative integer
exponents of the spatial coordinates in such an expansion as p, so that the generic form of the
power expansion of T becomes:

T (t; x) = 1 +
∑

s,p≥0

T̂s;ptsxp, (3.9)

with the obvious meaning attached to the vector exponents on the right. Naturally,

T̂0;0 = 0, (3.10)

but the nontrivial coefficients in this expansion must be inferred by first expanding the deriva-
tives in the diffusion equation (3.7) as applied to the product P0T .

We proceed by multiplying the expanded terms of (3.7) by t/P0, having made the substitu-
tions (3.3a)–(3.3c):

0 =
t

P0

(
∂P

∂t
− W i ∂P

∂xi
− gij ∂2P

∂xi∂xj

)

=

[
r2

4t
− n

2
− gijδikδjl

xkxl

4t
+

δijδij

2

]
(1 + T )

+t

[
∂T

∂t
+ gijxkδjk

∂T

∂xi
− δij ∂2T

∂xi∂xj

]

+
1

2

[
(gij − δij)δij + W iδikx

k
]
(1 + T )

−t

[
W i ∂T

∂xi
+ (gij − δij)

∂2T

∂xi∂xj

]
. (3.11)
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We exploit the eigen condition (2.27) to show that the expression within the first square brackets
on the right vanishes, and to simplify terms in the second and third square brackets. Also, we
organize the remaining expression into: the part, T , linear in T and not involving the metric
terms; the part, G, linear in the metric terms but not involving T ; the remaining ‘bilinear’ terms,
Q, (linear separately in T and the metric terms). It is convenient to abbreviate successive partial
derivatives with respect to time, t, by ‘T1’, ‘T2’, etc., but spatial partial derivatives with respect
to xp by ‘T,p’, etc, as we did in section 2 and the appendices. Thus, for example, according to
this notation,

∂4T
∂t2∂xp∂xq

≡ T2,pq,

and, in generic expressions, T ≡ T0. Also, we define xi = gijx
j = δijx

j so that xi,p = δip. As in
Part I, we obtain

T + G + Q = 0 (3.12)

but now with

T = tT1 + xiT,i − tδijT,ij, (3.13a)

G =
1

2

[
−n + δijg

ij + xiW
i
]
, (3.13b)

Q = GT − t
[
W iT,i + (gij − δij)T,ij

]
. (3.13c)

We group the derivatives by their successive ‘slab-degrees’, h, meaning the sum of the spatial
degrees plus twice the temporal degree (see Part I). We proceed by writing each of the general
derivative of a given slab-degree, followed by the evaluation at the space-time origin, henceforth
denoted by O, of these derivatives. Thus, at h = 0 we have the trivial:

T |0 = G|0 = Q|0 = 0. (3.14)

At h = 1:

T,p = tT1,p + T,p + xiT,ip − tδijT,ijp, (3.15a)

G,p =
1

2

[
δijg

ij
,p + δipW

i + xiW
i
,p

]
, (3.15b)

Q,p = G,pT + GT,p

−t
[
W i

,pT,i + W iT,ip + gij
,pT,ij + (gij − δij)T,ijp

]
. (3.15c)

These terms also evaluate to zero at O:

T,p|0 = G,p|0 = Q,p|0 = 0. (3.16)

At h = 2:

T,pq = tT1,pq + 2T,pq + xiT,ipq − tδijT,ijpq,

G,pq =
1

2

[
δijg

ij
,pq + δipW

i
,q + δiqW

i
,p + xiW

i
,pq

]
,

Q,pq = G,pqT + G,pT,q + G,qT,p + GT,pq

−t
[
W i

,pqT,i + W i
,pT,iq + W i

,qT,ip + W iT,ipq

+gij
,pqT,ij + gij

,pT,ijq + gij
,qT,ijp + (gij − δij)T,ijpq

]
,
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we begin to see the generic patterns that occur in the combinations of the terms. The combina-
torial index notation alleviates a considerable algebraic burden as we progress to higher orders
of derivatives and allows these equations to be rewritten equivalently:

T,(2) = tT1,(2) + 2T,(2) + xiT,i(2) − tδijT,ij(2), (3.17a)

G,(2) =
1

2

[
δijg

ij
,(2) + δi(1)W

i
,(1) + xiW

i
,(2)

]
, (3.17b)

Q,(2) = G,(2)T + G,(1)T,(1) + GT,(2)

−t
[
W i

,(2)T,i + W i
,(1)T,i(1) + W iT,i(2)

+gij
,(2)T,ij + gij

,(1)T,ij(1) + (gij − δij)T,ij(2)

]
. (3.17c)

Also at h = 2 we have:

T1 = tT2 + T1 + xiT1,i − tδijT1,ij − δijT,ij , (3.18a)

G1 = 0, (3.18b)

Q1 = GT1 − t
[
W iT1,i + (gij − δij)T1,ij

]

−
[
W iT,i + (gij − δij)T,ij

]
. (3.18c)

At O, only a few terms survive:

T,(2)|0 = 2T,(2) (3.19a)

G,(2)|0 =
1

2

[
δijg

ij
,(2) + δi(1)W

i
,(1)

]
, (3.19b)

Q,(2)|0 = 0 (3.19c)

T1|0 = T1 − δijT,ij, (3.20a)

G1|0 = 0, (3.20b)

Q1|0 = 0. (3.20c)

Exploiting these results and the condition requiring the vanishing of (T + G + Q) ,(2) and (T1 +
G1 + Q1) at O, we are able to deduce:

Theorem 2:

T1 =
1

6
R. (3.21)

2

A proof of this theorem is given in Appendix C. This generalizes to n dimensions the first-
order result we found in Part I for the surfaces (n = 2) of constant curvature.

We shall use τ as the subscript denoting the number of derivatives of a term with respect
to t and use α and β to denote the number of generic spatial derivatives in the context of
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the combinatorial index notation. Then, in general, the parametrix expansion is built up by
ensuring that, for each combination of temporal (τ) and spatial (α) differencing,

Tτ,(α) + Gτ,(α) + Qτ,(α) = 0, (3.22)

at O. The set of equations for τ = 0 but arbitrary spatial degree, α, are:

T,(α) = tT1,(α) + αT,(α) + xiT,i(α) − tδijT,ij(α), (3.23a)

G,(α) =
1

2

(
δijg

ij
,(α) + δi(1)W

i
,(α−1) + xiW

i
,(α)

)
, (3.23b)

Q,(α) =
α∑

β=0

G,(α−β)T,(β)

−t




α∑

β=0

(
W i

,(α−β)T,i(β) + gij
,(α−β)T,ij(β)

)
− δijT,ij(α)


 . (3.23c)

The generic equations when τ > 0 are:

Tτ,(α) = tTτ+1,(α) + (α + τ)Tτ,(α) + xiTτ,i(α) − tδijTτ,ij(α) − τδijTτ−1,ij(α), (3.24a)

Gτ,(α) = 0, (3.24b)

Qτ,(α) =
α∑

β=0

G,(α−β)Tτ,(β)

−t




α∑

β=0

(
W i

,(α−β)Tτ,i(β) + gij
,(α−β)Tτ,ij(β)

)
− δijTτ,ij(α)




−τ




α∑

β=0

(
W i

,(α−β)Tτ−1,i(β) + gij
,(α−β)Tτ−1,ij(β)

)
− δijTτ−1,ij(α)


 . (3.24c)

At O, where t = 0, xi = 0, W i = 0, gij = δij , gij
,(1) = 0, T = 0, T,(1) = 0, the surviving terms

are just:

T,(α)|0 = αT,(α), (3.25a)

G,(α)|0 =
1

2

(
δijg

ij
,(α) + δi(1)W

i
,(α−1)

)
, (3.25b)

Q,(α)|0 =
α−2∑

β=2

G,(α−β)T,(β), (3.25c)

and, for τ > 0:

Tτ,(α)|0 = (α + τ)Tτ,(α) − τδijTτ−1,ij(α), (3.26a)

Gτ,(α)|0 = 0, (3.26b)

Qτ,(α)|0 =
α−2∑

β=0

G,(α−β)Tτ,(β)
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−τ




α−1∑

β=0

W i
,(α−β)Tτ−1,i(β) +

α−2∑

β=0

gij
,(α−β)Tτ−1,ij(β)


 . (3.26c)

The order of evaluations at a generic slab index, h, are as follows. First, we use (3.25b)
to construct a formula for G,(h) at O expressed in terms of various Q shape tensors up to
rank h + 2. Then, since Q,(h) is expressible [from (3.25c)] in terms of quantities known from
evaluations at earlier values of the slab index, we can determine:

T,(h) = −1

h

(
G,(h) + Q,(h)

) ∣∣∣
0

(3.27)

from the requirement that the right-hand sides in the first set, (3.25a)–(3.25c), of equations
at this h sum to zero. From the corresponding requirement pertaining to the subsequent sets,
(3.26a)–(3.26c), we then evaluate each Qτ,(h−2τ) for τ ≤ h/2, followed by,

Tτ,(h−2τ) =
1

h − τ

(
τδijTτ−1,ij(h−2τ) −Qτ,(h−2τ)

)
, τ ≤ h/2. (3.28)

For even h, the last quantity evaluated, Th/2, is a new coefficient in the amplitude expansion.
As we have seen, it is always possible to express each Q-type shape tensor in terms of the
Riemann tensor and its covariant derivatives; therefore the amplitude expansion coefficient can
be likewise expressed.

At h = 2τ + α = 3, the relevant equations evaluated at O give the two sets:

T,(3)|0 = 3T,(3), (3.29a)

G,(3)|0 =
1

2

[
δijg

ij
,(3) + δi(1)W

i
,(2)

]
, (3.29b)

Q,(3)|0 = 0, (3.29c)

and,

T1,(1)|0 = 2T1,(1) − δijT,ij(1), (3.30a)

G1,(1)|0 = 0, (3.30b)

Q1,(1)|0 = 0, (3.30c)

from which it is possible to obtain explicit formulas for G,(3), T,(3) and T1,(1). These terms
would be required (in the expressions for Qτ,(α) at h > 4, but are not immediately pertinent to
evaluating the next coefficient, T2, of relevance to the filter normalization problem; for this, we
must press on to consider the next slab, h = 4, where we find that, at O:

T,(4)|0 = 4T,(4), (3.31a)

G,(4)|0 =
1

2

[
δijg

ij
,(4) + δi(1)W

i
,(3)

]
, (3.31b)

Q,(4)|0 = G,(2)T,(2); (3.31c)
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T1,(2)|0 = 3T1,(2) − δijT,ij(2), (3.32a)

G1,(2)|0 = 0, (3.32b)

Q1,(2)|0 = G,(2)T1 −
[
W i

,(1)T,i(1) + gij
,(2)T,ij

]
; (3.32c)

T2|0 = 2T2 − 2δijT1,ij , (3.33a)

G2|0 = 0, (3.33b)

Q2|0 = 0. (3.33c)

From the vanishing of these h = 4 derivatives of (T + G + Q) evaluated at O, together with
relevant intermediate terms that were calculated in the course of proving theorem 2, we can
show the following.

Theorem 3:

T2 =
1

180

(
12∇2R + 5R2 − 2RijR

ij + 2RijklR
ijkl
)

. (3.34)

2

As shown in Berger et al. (1971) this formula, being expressed in Riemann and Ricci tensors,
is valid in any number n ≥ 2 of dimensions. Our proof, exploiting the combinatorial shorthand
developed in section 2 and Appendix B in order to make the calculations (just!) manageable,
is set out in Appendix C in sufficient detail to show how the corresponding calculations could
be extended, by automatic symbol manipulation, to even higher degrees of the parametrix
expansion if required. This formula specializes, when n ≤ 3, to one involving only the Ricci
tensor and scalar:

T2 =
1

60

(
2RijR

ij + R2 + 4∇2R
)

. (3.35)

In n = 2 dimensions, where:

T2 =
1

30
(R2 + 2∇2R)

=
2

15
(κ2 + ∇2κ), (3.36)

the second order parametrix expansion for the amplitude at the standard time, t = 1/2, becomes:

T (
1

2
, 0) ≈ 1 +

T1

2
+

T2

8

= 1 +
κ

6
+

1

60
(κ2 + ∇2κ), (3.37)

in perfect agreement with the form we deduced in Part I using the less general geometrical
methods.

We can also make the substitutions (2.80), (2.81) and (2.82) for the isotropic curvature case
to obtain, for the special case of 3D uniform curvature:

T2 = κ2, (3.38)
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which is also consistent with the second-order term in the expansion obtained for this case in
Part I.

4. Robust implementations and experimental validation

(a) Robust implementations

In Part I we showed how some of the problems with the tendency for the asymptotic ap-
proximations to diverge for large excursions of the diagnostics on which they depend can be
controlled, without compromising the formal validity of the approximation, by substituting for
each diagnostic a ‘saturation function’ of it. The tested forms of the saturation function of
a diagnostic, x, say, behaves like x itself to first and second order for small values of x, but
smoothly diverge from x so that their absolute magnitude never exceeds some finite limit pro-
portional to a specified ‘saturation parameter’, s. The simple and effective form suggested for
the saturation function was:

SAT1(s, x) =
x

[1 + (x/s)2]1/2
, (4.1)

which asymptotes to the constant limits, ±s, as x →±∞. Each contributing diagnostic in the
asymptotic estimate is associated with its own characteristic saturation parameter in general.
We also showed in Part I that a further safeguard against the possibility of the computed
amplification factor becoming negative, or involving a division by zero, or becoming excessively
large and positive, was to employ a form for the divisor of the amplitude correction that
involved a function that behaved like the exponential function for small arguments, retained
the positivity of the exponential function for all arguments, but neither grew nor decayed as
rapidly as the true exponential. This ‘pseudo-exponential function’ was defined:

ẽxp(x) = x +
√

1 + x2. (4.2)

From the large number of amplitude-approximating formulations tested in Part I, the best
first-order scheme, which we denoted, E1, and the two second-order schemes that tied for ‘best’,
which we denoted, E2 and H2, can be adapted, with the incorporation of the saturation function
SAT1 and the pseudo-exponential function, ẽxp, to the corresponding 3D approximations. Since
in this Part II we shall always use the preferred saturation function, SAT1, for every term that
contributes to the argument of the pseudo-exponential function, it is convenient to denote the
value of the saturation function of x by the ‘effective x’, x̃:

x̃ = SAT1(s, x) (4.3)

and we shall always make clear which saturation parameter, s, is being invoked. Thus, for
schemes, E1 and E2, we shall take the effective Ricci scalar, R̃ to be the evaluation of the
saturation function of R with parameter, sR. For the term involving the contraction of the

Ricci tensor with itself, we take the saturation parameter of ˜RijRij to be just (sR)2. The

effective Laplacian of the Ricci scalar, ∇̃2R, is likewise obtained from SAT1 applied to the true
Laplacian and with a saturation parameter we denote by sL. With these notations assumed, the
modifications to the amplitude, b0, obtained from the direct application of the usual Gaussian
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amplitude formula after the Riemannian-space diffusion has been completed are now given for
schemes E1 and E2 respectively by:

e1 = b0/ẽxp
[
R̃/12

]
, (4.4a)

e2 = b0/ẽxp
[
R̃/12 − R̃2/720 + ˜RijRij/240 + ∇̃2R/120

]
, (4.4b)

It would be possible for each of the four saturation function terms of E2 individually to
possess distinct tuned parameters, of course, but preliminary experiments in which this was done
showed very little relative advantage compared to this formulation where only two independent
parameters are used.

The experimental configuration of Part I that we denoted H2 was a variant on E2 that
applied the saturation function separately to the two eigenvalues of the Hessian of the scalar
curvature before summing them to form the effective Laplacian of the last term. We shall
do the same here except that, in this 3D case, there are now more opportunities to take
advantage of the separation by eigen-decomposition of the various tensorial components so
that the saturation function can be applied to each piece individually. Even the first-order
term which, in 3D, consists only of (pseudo-exponential of) the term linear in the Ricci scalar,
offers an opportunity to dissect this simple term into three eigenvalues of the Ricci tensor,
with the saturation function applied to each one. But this suggests that, in 3D, we should
add a first-order ‘H’-type scheme — H1, which replaces the single term of scheme E1. The
second-order scheme, H2, also contains this first-order term’s eigen-decomposition of the Ricci
tensor but, in the terms quadratic in the Ricci tensor, it is desirable to avoid the appearance
of the term that, in the formula (4.4b) for e2, is of the opposite (negative) sign from the other
positive terms. By separating the quadratic contribution of the Ricci scalar from the quadratic
contribution of the trace-free part of the Ricci tensor, not only is any negative-signed term
avoided, but the term involving the square of the Ricci scalar actually vanishes entirely (as
we could have anticipated from our study of the 3D constant-curvature case in Part I, where
the entire asymptotic expansion was shown to be given exactly by the Taylor series of the
exponential function of just half the sectional curvature, or equivalently, of our first-order term,
R/12).

We denote the eigenvalues of the Ricci tensor by ρ(α), where
∑3

α=1 ρ(α) = R, and the eigen-
values of the corresponding trace-free part of the Ricci tensor by σ(α) = ρ(α) − R/3. The eigen-
values satisfy:

gijRjk(V
(R))k(α) = (V (R))i(α)ρ(α), α = 1, 2, 3, (4.5)

for eigenvectors, (V (R))i, of the Ricci tensor Rij . Similarly, and essentially as we did in Part I,
we can also define the eigenvalues of the Hessian of the scalar curvature. The scalar curvature
we use in the 3D case is just the Ricci scalar. We recall the tensorial definition of the Hessian
operator from Part I:

Hij(R) =

(
∂2R

∂xi∂xj
− Γk

ij

∂R

∂xk

)
. (4.6)

The eigenvalues, η(α) of this Hij are defined to satisfy:

gijHjk(V
(H))k(α) = (V (H))i(α)η(α), α = 1, 2, 3. (4.7)
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As in Part I, we can employ a Cholesky decomposition (Golub and Van Loan 1989) of the
metric to transform both non-standard eigen-problems, (4.5) and (4.7), into the simpler and
more familiar standard eigen-problems involving a single symmetric matrix.

For the ‘H2’ schemes, we use the same saturation parameter, which we again denote sR, for
both the ρ(α) and the σ(α), from which, via the function SAT1, we obtain their effective quan-
tities, ρ̃(α) and σ̃(α). Similarly, we introduce another saturation parameter, sH , and, applying
SAT1 with this parameter to each of the η(α), obtain their effective counterparts, η̃(α). We are
now in a position to define the schemes H1 and H2:

h1 = b0/ẽxp

[
3∑

α=1

ρ̃(α)/12

]
, (4.8a)

h2 = b0/ẽxp

[
3∑

α=1

(
ρ̃(α)/12 + σ̃2

(α)/240 + η̃(α)/120
)]

. (4.8b)

(b) Experimental validation

The schemes we have described were compared for various idealized smooth random syn-
thetic geometries. The geometries were periodic in the three coordinates of the finite differencing
grid used to resolve them, the grid dimensions being 24 × 24 × 24. The metric tensors were
constructed as the exponentials of random symmetric matrices which were themselves generated
by spatially smoothing symmetric ‘white-noise’ matrices. The spatial smoothing used in this
synthesis was given an approximately Gaussian spectral profile and characteristic spatial scale
(or smoothness parameter), S. The amplitude of this variation was here arbitrarily parame-
terized to be proportional to a convenient ‘variance parameter’, ‘V ’. The control experiment,
denoted as in Part I by A0 took the contravariant metric to be the diffusivity and the grid
geometry to be Cartesian, but all the other experiments assumed 3D Riemannian geometry
and a filter representing isotropic diffusion with unit diffusivity within this geometry, diffusion
proceeding for a half-unit of time, as explained in earlier sections. Experiment ‘A0’ denotes
the result of normalizing the amplitude by the 3D Gaussian amplitude formula valid in Eu-
clidean geometry for a homogeneous diffusion with the diffusivity that happens to occur at
each of the chosen sample test points. These sample points, of which there were 32 in all ex-
periments, formed a face-centered cubic sub-lattice of the computational grid – a configuration
chosen to keep the sample points as far away from their nearest neighbors as possible so that
the diffusion of impulsive (delta-function) initial distributions of ‘diffused substance’ would not
strongly interfere with one another when diffused simultaneously. The Riemannian geometry
diffusion experiments were similarly conducted with the trivial default normalization represent-
ing the ‘zero-order’ parametrix expansion denoted (again, as in Part I) by B0. The non-trivial
parametrix expansions of first and second order, denoted by the schemes E1, E2, H1 and H2

have already been described. The results from two series of geometric realizations are gathered
into table 5 in two sets of four vertical columns. These two sets of columns differ only in the
random number ‘seed’ used to produce the series of random numbers, so the geometries created
in the corresponding columns are stochastically equivalent realizations.

The upper section of the table contains the best rms errors in the normalized amplitudes
averaged over the 32 sample points out of all the combinations of the relevant saturation param-
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TABLE 5. Table of rms errors of the normalized amplitudes of diffusion equa-
tion filters in smooth random geometries whose statistical characteristics are
governed by a scale parameter, S and a variance parameter, V . The method A0

refers to the Gauss-formula normalization of the filter assuming variable tensor
diffusivity in Euclidean geometry, B0 the uncorrected amplitude when the filter
is rewritten as an isotropic filter in the Riemannian geometry whose metric
equals the diffusivity assumed for A0 experiments. The first-order correction
methods E1 and H1 use the Riemannian geometry method with the first-order
parametrix expansion stabilized by saturation functions as explained in the text.
The methods E2 and H2 are two variants of the correspondingly stabilized
2nd-order parametrix methods. The numbers given are the rms errors of the
adjusted amplitudes averaged over the 32 sample points of the domain. In the
unstarred experiments the best (i.e., smallest) rms statistic are quoted for a
range of combinations of the relevant saturation parameters, sR for the Ricci
scalar (used by E1 and E2) or the eigenvalues of the Ricci tensor (used by H1 and
H2, sL (used by E2) and sH (used by H2), as the text explains. For the starred
experiments, the saturation parameters are fixed to values which appear to give
reasonably good results overall for the experiments to which they apply. These
very roughly optimized values are as follow: sR = 2 for E1 and E2; sR = 1 for H1

and H2; sL = 6 for E2; sH = 5 for H2. Finally, some statistics of each realization of
the Riemannian geometry are given. These are: the dimensionless measure of the
total valume of the triply periodic domain; the minimum and maximum values of the
Ricci scalar; the minimum and maximum of the Laplacian of the Ricci scalar. The
columns are arranged roughly in ascending order of numerical difficulty with
the largest characteristic scales of curvature variation at the left, subdivided
by the two grades of amplitude of this stochastic curvature.

[S, V ]: [96, 1] [96, 2] [48, 1] [48, 2] [96, 1] [96, 2] [48, 1] [48, 2]

A0 0.1062 0.1634 0.2347 0.3445 0.0807 0.1207 0.3455 0.5515

B0 0.0655 0.0921 0.1005 0.1360 0.0565 0.0823 0.1504 0.2064

E1 0.0200 0.0364 0.0752 0.1128 0.0255 0.0437 0.0907 0.1370

E2 0.0089 0.0222 0.0640 0.1067 0.0094 0.0242 0.0828 0.1335

H1 0.0178 0.0324 0.0703 0.1017 0.0217 0.0377 0.0734 0.1151

H2 0.0080 0.0168 0.0603 0.0874 0.0076 0.0171 0.0668 0.1000

E∗

1 0.0210 0.0427 0.0929 0.1225 0.0298 0.0450 0.0916 0.1376

E∗

2 0.0265 0.0480 0.0670 0.1072 0.0145 0.0349 0.0864 0.1379

H∗

1 0.0178 0.0347 0.0922 0.1132 0.0303 0.0423 0.0790 0.1151

H∗

2 0.0280 0.0484 0.0603 0.0876 0.0221 0.0354 0.0786 0.1203

volume: 260 289 245 268 187 180 216 227

Rmin: -6.0 -11.4 -41.1 -81.5 -5.0 -9.5 -64.5 -139.4

Rmax: 2.5 3.5 11.1 19.3 2.8 4.1 14.4 26.7

∇2Rmin: -25.3 -56.0 -808.7 -3118.1 -34.7 -109.4 -1256.7 -5123.9

∇2Rmax: 65.0 182.3 1651.4 5523.2 65.7 195.2 4027.4 14148.8

eters of each respective scheme (note that, owing to the larger dimensionality of the problem,
we are not able to reproduce the large sample numbers we could achieve in the corresponding
2D experiments of Part I). The second section of the table lists the rms errors obtained instead
for the four parametrix expansion schemes when their saturation parameters were held fixed to
values judged to be close to an overall optimum. For these fixed-parameter schemes we have
labeled E∗

1 and E∗
2 , their parameters were sR = 2 and sL = 6. For the schemes we have labeled

H∗
1 and H∗

2 , the parameters were kept fixed at sR = 1 and sH = 5.
Some idea of the variability of the geometry is imparted by inspection of the third section
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of the table. There one will find the total volume of the periodic domain (in intrinsic dimen-
sionless units supplied by the metric itself), the minimum and maximum values attained by the
Ricci scalar in each realization, and the extremes attained by the Laplacian of this quantity,
again, all in intrinsic or dimensionless units. Large values of the Laplacian found to the right
of each set of four columns are indicative of a ‘choppiness’ of the curvature, whose amplitude is
indicated by the relative magnitudes of the Ricci scalar. In all of the realizations the curvature
is of a considerable magnitude (even with the smaller variance parameter cases, V = 1) and the
relatively abrupt changes of curvature implied by the smaller scale parameter cases, S = 48,
are particularly challenging for any filter normalization technique. For the Euclidean method,
scheme A0, rms errors are usually larger than ten percent and sometimes exceed fifty percent.
Just by formulating the diffusion problem in the Riemannian geometry without further correc-
tion (experiments B0) already reduces these errors substantially. For the smoother geometries
(S = 96) the parametrix method taken to second-order, whether by the E2 or the H2 scheme,
produce further spectacular improvements in the amplitude estimates. As expected, for the
more variable and shorter scale (S = 48) random realizations, the advantages of the higher or-
der schemes are not as great, but they still seem significant and are generally better than their
first-order counterparts, E1 or H1. This confirms that the use of the pseudo-exponential func-
tion formulations with the ‘effective’ arguments that are moderated through their saturation
functions does indeed make even the second-order parametrix methods numerically robust.

To a greater extent than was evident in the equivocal results we obtained in two dimensions,
these 3D results suggest that the H schemes are significantly better than the corresponding E
schemes at both first and second orders. Of course, the results presented use relatively simple
and crudely tuned parametrizations and it is not hard to see how refinements could be made in
several ways. Nevertheless, the rms statistics presented here, if borne out in practice, show that
the robust implementations of the parametrix method can provide a satisfactory solution to the
problem of ‘calibrating’ the synthetic covariances of a spatially adaptive data assimilation in
three dimensions, and indicate that methods analogous to the H schemes might well be equally
beneficial in the case of four dimensions.

(c) Speculations on the form of practical normalization in four dimensions

Based on the indications in 3D that it is beneficial, for robustness, to break down each
term in the parametrix expansion formula into separate eigenvalue contributions prior to the
application of the saturation function, we speculate that this approach continued into the 4D
context will also lead to promising algorithms for normalizing the adaptive quasi-diffusive filters.
In 4D we cannot avoid having to deal with contributions from the fourth-rank curvature tensor.
However, just as we are able to break down the Ricci tensor into a trace-free part, plus the
isotropic part associated with the Ricci scalar, the Riemann tensor itself can likewise be broken
down into parts associated with the Ricci scalar and the trace-free Ricci tensor respectively,
plus the residual totally trace-free ‘Weyl tensor’. Each part may then be associated with a
superposition of its eigen-components.

If we write Sij for the trace-free portion of the Ricci tensor:

Sij = Rij −
1

n
R gij , (4.9)
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whose eigenvalues we have already denoted by ‘σ(α)’, then the part of the Riemann tensor
attributable to Sij is:

Sij kl =
1

n − 2
(Sikgjl + Sjlgik − Silgjk − Sjkgil) , n ≥ 3, (4.10)

while the part attributable to the Ricci scalar is:

Uij kl =
R

n(n − 1)
(gikgjl − gilgjk) , n ≥ 2. (4.11)

The residual part, which is orthogonal to both S and U , is the Weyl tensor:

Wij kl = Rij kl − Sij kl − Uij kl, (4.12)

which has a presence only in dimensions n ≥ 4.
We find that:

RijR
ij = SijS

ij +
1

n
R2, (4.13)

and that

Rij klR
ij kl = Wij klW

ij kl +
4

n − 2
SijS

ij +
2

n(n − 1)
R2. (4.14)

Up to second-order the parametrix expansion is therefore equivalent to:

T (
1

2
, 0) ≈ 1 +

T1

2
+

T2

8

≈ exp

[
R

12
+

1

720

(
− (n − 3)

n(n − 1)
R2 +

(6 − 2)

(n − 2)
SijS

ij + Wij klW
ij kl

)
+

∇2R

120

]
,

(4.15)

which is universally valid for all n ≥ 2, provided we omit the term quadratic in Sij when n = 2
(and remember that Wij kl vanishes at n ≤ 3). In the particular case of four dimensions, where:

T (
1

2
, 0) ≈ exp

(
R/12 − R2/8640 + SijS

ij/720 + Wij klW
ij kl/720 + ∇2R/120

)
, (4.16)

we propose that an appropriate corresponding form of the robust scheme, H2, is:

h2 = b0/ẽxp




4∑

α=1

(
ρ̃(α)/12 + σ̃2

(α)/720 + η̃(α)/120
)
−
(

4∑

α=1

ρ̃(α)

)2

/8640 +
6∑

α=1

ω̃2
(α)/720


 .

(4.17)
The six quantities, ω̃(α), are derived by applying the saturation function, with a new parameter,
sW , to each of the six eigenvalues, ω(α), of the Weyl tensor. In this case, the Weyl tensor is
regarded as a symmetric operator, but in the six-dimensional space of ‘bivectors’ (Penrose and
Rindler 1988), with the eigen-problem defined:

gipgjqWpq klV
kl
(α) = V ij

(α)ω(α). (4.18)
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In this context, the V ij
(α) are six contravariant tensor representations of the Weyl tensor’s anti-

symmetric ‘eigen-bivectors’, which are discussed in greater detail in Appendix D.
The geometry of the eigen-structure of the Weyl tensor has several surprising features which

we analyse and discuss in Appendix D. One peculiarity of the Weyl tensor in four dimensions is
that it can be split into a ‘self-dual’ piece and a complementary ‘anti-self-dual’ piece. While a
single saturation parameter, sW ≈ 1, for this Weyl tensor contribution would presumably suffice
to maintain the robustness of this more general form of the implementation of the amplitude
adjustment, it might transpire that, upon refinement and tuning, the best results would require
different saturation parameter values to be chosen for the self-dual and anti-self-dual portions.
But the investigation of this subtle question lies far beyond the scope of this note.

5. Conclusion

Following on from the more specialized applications of the parametrix expansion treated
in Part I, this Part II provides a survey of the relevant portions of the general n-dimensional
Riemannian geometry before describing the systematic approach by which the parametrix ex-
pansion may be carried out in its full generality. Even at the second order of expansion, which
we have presented here in detail, the algebraic manipulations of the tensorial quantities needed
in the course of taking the necessary intermediate steps become extremely cumbersome. How-
ever, we are rewarded by the one-line result, (3.34), of remarkable simplicity and which, as is
discussed in Berger et al (1971), Gilkey (1984) and Rosenberg (1997), is valid to any number
of spatial dimensions. In principle, the formal techniques we have described here could be
extended to higher orders of the expansion, but it would not be practical to carry out the req-
uisite manipulations without the aid of automated symbolic manipulation software configured
for this problem. Luckily, there is no pressing practical need for such high-order expansions of
the parametrix method in our context of normalizing the quasi-diffusive filters for use in data
assimilation because, as we saw in the results of numerical experiments in Part I, the chief
advantages of the method are gained from the very lowest orders of the asymptotic series. Even
posing the diffusion problem as one of isotropic diffusion in the implied Riemannian geometry
without any degree of asymptotic expansion (just using the Gaussian amplitude formula) yields
a very significant gain in the accuracy of the filter amplitude normalization. Moreover, even at
second order, the series sum often tends not to improve significantly, or even to show signs of
divergence, when the excursions of the aspect tensor field occur too suddenly. However, as in
Part I, we have extended the study of the first- and second-order parametrix methods beyond
their purely formal mathematical aspects and have developed empirical modifications, still fully
consistent with the asymptotic expansions, but which effectively immunize the expansions, to
a considerable degree, against the ill-effects of the large, or abrupt excursions of the curvature
diagnostics which would otherwise cause the application of these approximations to fail.

Preliminary experiments fully justify the approach we have taken and suggest directions
for extending the method to four dimensions should this become desirable. Future experience
with the practical implementation of the these methods will, no doubt, reveal unsuspected
further problems to solve and provide a better feel for the relative advantages of first-order
versus second-order (or higher) approximations in the practical context where reliability and
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robustness are generally of greater importance than improvements in rms measures of amplitude
accuracy.

While the diagnostics upon which the formal asymptotic expansions are based are strictly
local (ultimately, combinations of various in situ values of the higher derivatives of the metric
tensor), there is no reason in principle that a more general set of non-local diagnostics could be
not exploited instead. For example, it costs very little to apply the (un-normalized) anisotropic
smoother; this provides a means of locally averaging the values of the curvature diagnostics
which, in this study and in other formal studies of the parametrix expansion, have been strictly
confined to their immediate in situ evaluations. A modification of the expansion series to ac-
commodate the more general smoothed or averaged diagnostics would obviously be needed, but,
by effectively ‘feeling’ and blending the local variablity of the original curvature dignostics, the
more general method might automatically lead to a more representative and robust normal-
ization requiring less of the kinds of interventions, with empirical ‘saturation functions’ that
we have devoted effort to developing and describing here. Again, this extension of the present
method must be deferred for future consideration.

Acknowledgment
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Appendix A

Proofs of theorems relating J and Q shape tensors

Proof of lemma 2:

Let the actual indices of a particular component of the Q tensor be denoted respectively,
q1, . . . , qα. We recall the complete criteria of lexicographic irreducibility of the component Q
and list them in the following arrangement:

q1 ≤ q3 ≤ q5 ≤ q6 . . . ≤ qα, (A.1a)

q2 ≤ q4, (A.1b)

q1 < q2, (A.1c)

q3 < q4. (A.1d)

Now we list the criteria of irreducibility of the component of the corresponding J :

jα ≥ jα−1 ≥ jα−2 ≥ jα−3 . . . ≥ j3, (A.2a)

j2 ≥ j1, (A.2b)

jα > j2, (A.2c)

jα−1 > j1. (A.2d)
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There is evidently a perfect ‘isomorphism’ between these two networks of inequalities except that
the sense of all the inequalities of the one set is reversed with respect to all the corresponding
inequalities of the other set. (Although, for low rank Q and J , some of the train of inequalities
in the respective first lines becomes redundant in each set, it is always corresponding inequalities
that drop out, leaving the isomorphism intact.) The same pattern of qualifying criteria implies
the same number of lexicographically independent components for the two tensors; therefore
the lexicographic rules for J are complete.

2

Proof of Theorem 1:

The result has been shown to be true in the case α = 4 when we obtained (2.52). For the
case of shape tensors of rank α ≥ 5 let us define

S̃13245...α = (J̃12 345...α − J̃32 145...α − J̃14 325...α + J̃34 125...α). (A.3)

By direct substitution of (A.3) we can easily verify that S̃ satisfies all the symmetries we require
of a Q-type shape tensor of this rank, viz:

S̃1324...α + S̃3124...α = 0, (A.4a)

S̃1324...α + S̃1242...α = 0, (A.4b)

S̃1324...α + S̃3214...α + S̃2134...α = 0, (A.4c)

S̃1324...α + S̃1243...α + S̃1432...α = 0, (A.4d)

S̃13245...α + S̃13452...α + S̃13524...α = 0, (A.4e)

and
(α − 4)!S̃1324(α−4) = S̃1324(1)1 ...(1)α−4

. (A.5)

consider

Z = S̃1(1)2(1)(α−4)

= J̃12(1)(1)(α−4) − J̃(1)21(1)(α−4) − J̃1(1)(1)2(α−4) + J̃(1)(1)12(α−4) . (A.6)

The first of the four terms on right-hand side of (A.6) expands to (α − 2)(α − 3) instances of
J̃12(α−2). Numbering the indices in these terms up to α, then in the expansion of the second
term, the first explicit index is always some β ∈ {3, 4, . . . , α} and, by symmetry, any one of
such values must occur in a proportion, 1/(α − 2) of these terms, or, (α − 3) times. Therefore
from the property (2.65), the sum of the terms into which the second term of (A.6) expands is
(α − 3)J̃12(α−2). By a similar argument, the third term also expands with a sum of an equal
amount. In the fourth term, both the first two indices of its expansion are neither 1 nor 2 and
each such index pairs occurs just twice. By applying the result (2.65) to all possible leading
index pairs, to pairs containing a single ‘1’ or a single ‘2’ and to the pair ‘12’ itself, we find
that the sum of the terms into which the fourth term of (A.6) expands give 2J̃12(α−2). The
schematic diagram of Fig. 3 and its accompanying caption clarify this issue. In summary, we
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find that

Z = [(α − 2)(α − 3) + 2(α − 3) + 2] J̃12 (α−2),

= (α − 1)(α − 2)J̃12 (α−2). (A.7)

But, from (2.64),

Q̃1(1)2(1)(α−4) = (α − 2)(α − 3)J̃12 (α−2),

=
α − 3

α − 1
Z, (A.8)

and since the symmetries of S̃ have been shown to conform to those of Q̃, whose independent
degrees of freedom are, moreover, equal in number to those of J̃ , we confirm that the theorem
is true; that is:

Q̃12 34 ...α =
α − 3

α − 1
(J̃13 24...α − J̃23 14...α − J̃14 23...α + J̃24 13...α). 2.

Proof of lemma 3:

From (2.64), we can express the contracted J̃ :

α!δaa′

J̃a1 a′(α−1) = (α − 2)!δaa′
[
Q̃aa′1(1)(α−2) + Q̃a(1)1a′(α−2) + Q̃a(1)1(1)a′(α−3)

]
. (A.9)

By index-transposition symmetry, the first term on the right vanishes. By the Bianchi symme-
try, the index ‘a′’ in the third term can be brought forward in two substituted terms, and a
further application of index-transposition symmetry then gives us:

α!δaa′

J̃a1 a′(α−1) = (α − 2)!δaa′
[
−Q̃a(1)a′1(α−2) + Q̃a(1)a′(1)1(α−3) − Q̃a(1)a′1(1)(α−3)

]
,

= (α − 2)!
[
Q(1)(1) 1(α−3) − (α − 1)Q1(1) (α−2)

]
, (A.10)

whose first right-hand term may be simplified by virtue of the transposition symmetry with
respect to the leading pair of indices to give the form as given by (2.71). 2

Appendix B

Special notation and combinatorial short-cuts for quantities derived from the metric

The quantities gij , Γi
jk, and W i and their (spatial) partial derivativess in the normal co-

ordinates share a special algebraic property that allows them to be constructed as ‘chains’ or
‘trees’ of factors alternating between contravariant metric, g••, (‘superscript factors’) and par-
tial derivatives of covariant metric, g•• (‘subscript factors’). They are ‘trees’ in the sense that,
reading from left to right, each differentiated subscript factor is linked by a contracted dummy
index (of ‘a-type’) to a superscript factor that immediately precedes it, while each superscript
factor except the first is linked by another contracted dummy index (of ‘b-type’) to one of the
subscript factors that precede it (though not always necessarily the one immediately before this
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contravariant metric; the special case where the linkage is simply consecutive gives what we call
a ‘chain’). Moreover, in each such term, the factors and indices can be arranged such that the
b-type links never cross: the order of the appearance of dummy subscripts belonging to b-type
links is the same as the order of the superscript factors they point to. Every term begins with a
superscript factor but may end with factors of either type. Owing to this special construction,
such a term can be coded in a way in which the internal contracted indices of both a-type and
b-type are implicit.

An illustrative example is the contravariant metric g•• itself, together with its partial deriva-
tives.

gi1i2
,i3

= −gi1a1ga1b2,i3g
b2i2 , (B.1)

gi1i2
,i3i4

= +gi1a1ga1b2,i4g
b2a2ga2b3,i3g

b3i2

−gi1a1ga1b2,i3i4g
b2i2

+gi1a1ga1b2,i3g
b2a2ga2b3,i4g

b3i2 , (B.2)

whose resultant terms are all ‘chains’ in the sense defined above.
We could encode these expressions more concisely using a shorthand notation in which the

two superscripts associated with each g••, if of the contracted ‘a’ or ‘b’ kind, are implicit, but
unwritten. We could also omit the subscript ‘a’ indices without loss of information, provided
we somehow distinguish the case (as above) where this ‘a’ occurs to the left of the comma
from more general cases we shall need to deal with where the ‘a’ index may alternatively follow
the comma. Also, since the ‘b’-type subscripts all occur in proper numerical order, which
also corresponds to the order of occurrence of the later g•• to which they connect by index-
contraction, we would lose no information by placing an anonymous ‘bullet’ subscript in their
place. Finally, since each g•• and differentiated g•• alternate, with the g•• invariably coming
first, we need only mark the start of each such pair, and the terminating g••, if present, with
a special punctuation, leaving in between only the trimmed-down subscript lists. We therefore
adopt an encoding where the contravariant metric by itself, or at the end of a term is written as
a special ‘|’ or ‘/’ punctuation and, as we have done in some expressions already, each un-paired
index, such as i2, is replaced by its own index label, in this case ‘2’, as in the ‘tilde’ notation.
For the trivial example,

gi1i2 ≡ g̃12 ≡ |12. (B.3)

In the partial derivative expression of (B.1) we can simply write

gi1i2
,i3

≡ g̃12
,3 ≡− |• 3|12 (B.4)

and, keeping the interior of each expression free of the unpaired superscripts, encode (B.2) as:

gi1i2
,i3i4

≡ g̃12
,34 ≡

[
|• 4|• 3| − |• 34| + |• 3|• 4|

]12
. (B.5)

The rules for successive partial differentiation are evidently very simple since, in a term, every
superscript factor and every subscript factor is differentiated in its place in the chain to con-
tribute a new term, also a chain, in the result expression. This is just an application of the rule
of Leibniz. The derivative of each superscript factor is defined:

|,p = −|• p|, (B.6)
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while the derivative of the index string representing the subscript factor just entails appending
the new differentiation index to the list of subscripts. In the case of the three terms making up
Γi1

i2i3
≡ Γ̃1

23, two of these terms already conform to what our ‘|’ notation can deal with, but in
the third term,

−1

2
gi1a1gi2i3,a1

,

the index, a1, now couples the superscript factor to the differentiated position of the subscript
factor. However, we can conveniently signify this distinction by replacing the ‘|’ by a ‘/’ marking
the start of the ‘bifactor’. Thus, the complete encoding of the Christoffel symbol becomes:

Γ̃1
23 ≡

[
1

2

(
|2 3 + |3 2 − /23

)]1
. (B.7)

The third term could equally be written with a ‘/32’ since the leading pair of indices to the right
of any ‘/’ are transposable (corresponding to the symmetry of the covariant metric tensor);
but this is clearly not true of the ‘|’-type bifactors. However, for more complex bifactors of
α written indices (which can include bullets), we are permitted to permute the trailing α − 1
indices of a |-type bifactor, and the trailing α − 2 indices of a /-type bifactor (i.e., the ones that
correspond to the spatial derivative indices).

For the quantity W i defined in (3.8) it is convenient to consider its parts separately, that is,

W i =
1

2
Xi − Y i (B.8)

where, although X and Y may be written in different ways in the shorthand notation, we
shall adopt a style in which the second contracted index of the last superscript factor is always
written as the reserved symbol, ‘◦’, with its existence as a matching superscript on the final
‘|’ of each term taken as implicit. In other respects, this ‘◦’ index is treated as just another
numerical index label, allowing us to express X and Y :

X̃1 = /•◦|1, (B.9a)

Ỹ 1 = |• ◦|1. (B.9b)

It will be observed that Y i is the contraction of the negative derivative of the contravariant
metric that we can symbolize:

Ỹ 1 = −|1,◦. (B.10)

We have seen how the application of Leibniz rule for the construction of partial derivatives
of a multifactor term leads to a proliferation of terms in the result. Nevertheless, in view of the
fact that higher derivatives of the W i and gij terms figure so prominently in the parametrix
expansion procedure of section 3, it is worth devoting some effort to establishing a systematic
formulaic description of the generic higher derivatives of the two parts, X i and Y i, of W i,
together with the derivatives of the metric, gij . In order to proceed it is necessary to introduce
a notation for some additional combinatoric functions associated with the theory of partitions.
First, we consider the ways in which a set of α items (which will end up being our indices
of partial differentiation) may be arranged in ordered nonempty subsets. For the qth such
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TABLE 6. Ordered partitions of α up to α = 4.

α q σ1,q,α σ2,q,α σ3,q,α σ4,q,α νq,α µq,α

1 E0 = 1 1 1 1

2 1 2 1 1

E1 = 2 1 1 2 2

3 1 3 1 1

2 2 1 2 3

3 1 2 2 3

E2 = 4 1 1 1 3 6

4 1 4 1 1

2 3 1 2 4

3 2 2 2 6

4 2 1 1 2 12

5 1 3 2 4

6 1 2 1 3 12

7 1 1 2 3 12

E3 = 8 1 1 1 1 4 24

arrangement we let σp,q,α measure the size of the pth subset, and let νq,α, record the number
of subsets. Clearly, for the case of α = 1 item, only the single trivial arrangement is possible:

ν1,1 = 1, (B.11)

and
σ1,1,1 = 1. (B.12)

But, if Eα−1 denotes the number of the ordered partitions of α, i.e., the maximum index q at
this α, then we may recursively define, for any α > 1:

νq,α =





νq,α−1 : q ≤ Eα−2

νq−Eα−2,α−1 + 1 : q > Eα−2.
, q = 1, . . . Eα−1, (B.13)

σp,q,α =





σp,q,α−1 + 1 : p = 1, q ≤ Eα−2

1 : p = 1, q > Eα−2

σp,q,α−1 : p > 1, q ≤ Eα−2

σp−1,q−Eα−2,α−1 : p > 1, q > Eα−2

, q = 1, . . . Eα−1. (B.14)

The number Eα−1 of such arrangements for a given α is also subject to a recurrence:

Eα = Eα−1 + Eα−1 = 2Eα−1, (B.15)

and, since E0 = 1, it is simply the indicated power of two: Eα = 2α. This suggests that a binary
indexing of the partitions at each α may be natural. Putting the α items to be partitioned in a
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row offers α − 1 intermediate positions where a separating partition is either present or absent.
If the presence or absence at each location is signified by a ‘1’ or a ‘0’, then one does indeed
obtain a binary indexing. (The resulting binary index is one less than our index q).

TABLE 7. Ordered ‘Fibonacci’ partitions of α
up to α = 6 conditional upon each subset being
of a size greater than one.

α q σ̂1,q,α σ̂2,q,α σ̂3,q,α ν̂q,α µ̂q,α

2 F1 = 1 2 1 1

3 F2 = 1 3 1 1

4 1 4 1 1

F3 = 2 2 2 2 6

5 1 5 1 1

2 3 2 2 10

F4 = 3 2 3 2 10

6 1 6 1 1

2 4 2 2 15

3 3 3 2 20

4 2 4 2 15

F5 = 5 2 2 2 3 90

Table 6 displays the examples of these functions for α ≤ 4 together with the multinomial
quantity,

µq,α = α!/

νq,α∏

p=1

(σp,q,α)!, (B.16)

which quantifies the number of distinct ways the α items may be distributed among subsets of
these given sizes.

We can use these combinatorial functions to formulate expressions for the successive deriva-
tives of the quantities gij , Xi and Y i that appear in the parametrix expansion of section 3.
First, we introduce a notation for a superscript factor meta-symbol, †, which becomes either a
/ or a | depending on whether or not its subscripts include the reserved subscript symbol, ‘◦’.
Let set, L, stand for a part of the subscript list and let L− = L \ {◦} denote the part of it that
excludes the reserved subscript, ◦. Then the action of meta-symbol, †, which always occurs in
association with a leading subscript, •, is defined:

†•L ≡





/•◦L− : ◦ ∈ L,

|•L : ◦ 6∈ L.
(B.17)

With this augmentation to our shorthand and combinatorial index notations we can immediately
formulate the degree-α partial derivative of X̃1 ≡ Xi1 :

X̃1
,(α) = −




Eα∑

q=1




νq,α+1∏

p=1

−†•(σp,q,α+1)


 |



1

, where (σ1,1,α+1) ≡ {◦} ∪ (α). (B.18)
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The factors of the product are consistently ordered from left to right with increasing p. In
other words, the partitioning occurring here involves a given set of α generic indices, plus the
special index, ◦ understood to be contracted with the final | of the concatenation implied by
the product operator in (B.18). The corresponding equation for the repeated derivative of Y i is
similarly structured, but simpler now that the mode-switching ‘†’ meta-symbol is not involved:

Ỹ 1
,(α) = −




Eα∑

q=1




νq,α+1∏

p=1

−|•(σp,q,α+1)


 |



1

, where (σ1,1,α+1) ≡ {◦} ∪ (α). (B.19)

Finally, a similar construction formulates the derivatives of the contravariant metric itself:

g̃12
,(α) ≡




Eα−1∑

q=1




νq,α∏

p=1

−|•(σp,q,α)


 |



12

, where (σ1,1,α) ≡ (α). (B.20)

However, if we intend only to evaluate these quantities at O, then the contributions associ-
ated with partitions containing a subset of size one disappear, since these factors translate into
a singly-differentiated metric. Therefore, it is convenient to formalize the special case in which
only partitions into subsets of size two or more are retained. The number of subsets of the qth
partition in this case will be denoted ν̂q,α and the size of the pth subset of this partition by
σ̂p,q,α. Then, the recurrences are initialized by the values:

ν̂1,2 = 1, (B.21)

and
σ̂1,1,2 = 2, (B.22)

and continue for ν̂:

ν̂q,α =





ν̂q,α−1 : q ≤ Fα−2

ν̂q−Fα−2,α−2 + 1 : q > Fα−2

, q = 1, . . . Fα−1 (B.23)

and for σ̂:

σ̂p,q,α =





σ̂p,q,α−1 + 1 : p = 1, q ≤ Fα−2

2 : p = 1, q > Fα−2

σ̂p,q,α−1 : p > 1, q ≤ Fα−2

σ̂p−1,q−Fα−2,α−2 : p > 1, q > Fα−2.

, q = 1, . . . Fα−1 (B.24)

The superficial similarities between these two sets of recurrence equations and the corresponding
(B.13), (B.14) are obvious, but the subtle differences have important effects. Fα−1 is now the
number of arrangements of the ordered subsets for each α and the recurrence relation it satisfies
is:

Fα = Fα−1 + Fα−2, (B.25)
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which, with F0=0 and F1 = 1, generates the Fibonacci sequence.
The equations for X i, Y i and gij evaluated at O can now be simplified, taking modified

forms of (B.18), (B.19), (B.20), but with F , ν̂ and σ̂ replacing E, ν and σ. As α increases, the
economy of terms achieved by this substitution become more and more dramatic.

To show how the formalism may be applied in practice, consider the evaluation, at O of
the quantity, δ̃1aX̃

a
,(3). Since F3 = 2, we obtain a summation over two partition-classes of terms

which can then be made more specific through the appropriate interpretation of the switching
operator, †:

δ̃1aX̃
a
,(3)|0 = δ̃1a




2∑

q=1




ν̂q,4∏

p=1

−†•(β̂p,q,4)


 |



a

, (β̂1,1,4) ≡ {◦} ∪ (3),

= δ̃1a

[
/•◦ (3)| −

(
/•◦ (1)|• (2)| + |• (2)/•◦ (1)|

)]a

= 24δ̃aa′

J̃aa′ 1(3) − 4δ̃aa′ bb′
(
J̃ab 1(1)J̃a′b′ (2) + J̃1a(2)J̃bb′a′(1)

)
,

= 8Q1(1) (2) − 2δ̃aa′ bb′Q̃a1 b(1)Q̃a′(1) b′(1) − 2δ̃aa′

Q(1)aQ̃1(1) a′(1). (B.26)

While this expression, through the corresponding W expression it contributes to, comes into
play at orders of the parametric expansion higher than second, the second order parametrix
coefficient itself (T2) requires only the combination in which the index label we have marked ‘1’
is replaced by the ‘(1)’ of a larger combination. Lemma 1 can then be invoked to simplify the
intermediate computations, or we can act on (B.26) directly to obtain:

δ̃(1)aX̃
a
,(3)|0 = 16Q(2)(2) − 2δ̃aa′ bb′Q̃a(1) b(1)Q̃a′(1) b′(1). (B.27)

Similar manipluations can be performed to obtain the corresponding Y expression, and
hence the W expression, all of them expressed as combinations of the Q tensors. Likewise, we
can derive the needed derivatives of the contravariant metric. Without providing the full step-
by-step details (which should, by now, hold no mystery), we simply state the results relevant
to the second-order parametrix expansion:

δ̃1a 2bg̃
ab
,(2)|0 = −Q̃1(1) 2(1), (B.28a)

δ̃aa′ g̃aa′

,(2)|0 = −2Q(2), (B.28b)

δ̃aa′ g̃aa′

,(4)|0 = −4Q(2) (2) + δ̃aa′ bb′Q̃a(1) b(1)Q̃a′(1) b′(1), (B.28c)

and

δ̃1aW̃
a
,(1)|0 = 2Q1(1), (B.29a)

δ̃(1)aW̃
a
,(1)|0 = 4Q(2), (B.29b)

δ̃(1)aW̃
a
,(3)|0 = 12Q(2) (2) − 2δ̃aa′ bb′Q̃a(1) b(1)Q̃a′(1)b′(1). (B.29c)

From the definition of the Riemann tensor arranged as:

R̃1
2 34 = Γ̃1

24,3 − Γ̃1
23,4 + Γ̃1

3aΓ̃
a
24 − Γ̃1

4aΓ̃
a
23, (B.30)
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it is not difficult to see that the product terms on the right-hand side are expressible in the new
notation. The full expansion is:

R̃1
2 34 =

[
1

2

(
− |3 24 + |4 23 + /23 4 − /24 3

)

+
1

4

(
+ |3 •|2 4 + |3 •|4 2 − |3 •/24 − |4 •|2 3 − |4 •|3 2 + |4 •/23

−|•3|2 4 − |• 3|4 2 + |• 3/24 + |• 4|2 3 + |• 4|3 2 − |• 4/23

−/3•|2 4 − /3•|4 2 + /3•/24 + /4•|2 3 + /4•|3 2 − /4•/23
)]1

. (B.31)

Of these terms, only the first four survive evaluation at O, where they yield the expressions in
J or in Q tensors equivalent to those given by (2.52).

Brevity is evidently not the main strength of this notation; rather it is the simplicity of
the rules of syntax and combination, which make this notation relatively straighforward to
mechanize. The terms (B.31) are listed systematically, with the four single-bifactor terms
placed first, followed by all the two-bifactor terms. Within each group, the terms are listed
lexicographically, with ‘|’ having precedence over ‘/’, and named digits having precedence over
bullets. Establishing a convention of lexicographic precedence (though not necessarily this one)
simplifies sorting, which in turn facililates the gathering of algebraically similar terms.

Being a true tensor, R̃1
234 generates other tensors by repeated covariant differentiation.

Moreover, the pattern, in which only the leading index is a superscript, is preserved. By
induction, we are then justified in expecting the entire sequence of covariant derivatives to
be expressible in our notation if we can show that the first covariant derivative is. The first
covariant derivative of the Riemann tensor can be written in the form:

R̃1
2 34|5 = R̃1

2 34,5 + Γ̃1
5aR̃

a
2 34 − R̃1

a 34Γ̃
a
25 − R̃1

2 a4Γ̃
a
35 − R̃1

2 3aΓ̃
a
45, (B.32)

from which it is clear that all terms in the result will indeed be expressible in our machinable
notation, but now as nontrivial ‘trees’ rather than just the ‘chains’ we have encountered so far
in each expanded term.

Appendix C

Practical application of the combinatoric notation and identities to obtain the parametrix

expansion terms.

The application of the combinatorial formulas of Appendix B allowed us to derive the
successive derivatives of gij and of W i needed to carry out the parametrix expansion method
of section 3. We now use these quantities to establish the proofs of theorems 2 and 3.

Proof of Theorem 2:

The statement of the theorem is given in Eq. (3.21). Using (B.28b) and (B.29b) in (3.19b),
we find:

G,(2)|0 = Q(2), (C.1)
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and thus,

T,(2) = −1

2
Q(2). (C.2)

Equation (3.20a) then implies that:

T1 = −1

2
Q. (C.3)

Recall that Qij kl = −(1/3)Rij kl, so, in terms of the Ricci scalar, R, we have indeed proved that

T1 =
1

6
R,

as required.
2

Before deriving the next coefficient in the parametrix expansion of the amplitude, we state
the exact relationship that connects the rank-six shape tensor, Q, to the second covariant
derivative of the Riemann tensor:

Lemma 4:

R̃12 34|56

∣∣∣
0
= −20Q̃12 34 56 +

1

9

28∑

α=1

cαδ̃aa′

R̃pαqα rαaR̃sαtα uαa′

∣∣∣
0
, (C.4)

(where α is a counting index, not a vector component, and where the cα are the set of numerical
coefficients of each quadratic combination, not a spatial vector.) The coefficients and index
permutations are given in table 8.

2

TABLE 8. Coefficients and index permutations of the quadratic combinations of the Riemann
tensor in the second covariant derivative of the Riemann tensor.

α c prq stu α c pqr stu α c pqr stu α c pqr stu α c pqr stu

1 3 123 456 5 -3 134 256 11 3 143 256 17 2 153 246 23 2 163 245

2 -6 123 465 6 6 134 265 12 -6 143 265 18 -4 153 264 24 -4 163 254

3 -3 124 356 7 -1 135 246 13 1 145 236 19 -2 154 236 25 -2 164 235

4 6 124 365 8 2 135 264 14 -2 145 263 20 4 154 263 26 4 164 253

9 -1 136 245 15 1 146 235 21 3 156 234 27 -6 165 234

10 2 136 254 16 -2 146 253 22 -3 156 243 28 6 165 243

Outline of the proof of lemma 4: The result in lemma 4 is obtained by mechanically
carrying out the manipulations described in Appendix B that correspond to the covariant
derivatives of the Riemann tensor when this tensor itself is encoded in the form given by
(B.31). After performing the two symbolic covariant differentiations on this expression, the
collected terms are ‘evaluated’ at O. By this is meant the following sequence of algebraic
operation. First, the removal of all the vanishing terms containing a factor corresponding to
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only a singly differentiated metric. Then a conversion in each remaining term of each bifactor
into its implied J tensor. Next, each J tensor factor is expanded, using (2.64), to its equivalent
Q-tensor representation. Each Q tensor is checked for lexicographic reducibility according to
the rules set out in table 4 and rewritten, if necessary, in its unique equivalent irreducible form
(conformable terms being gathered frequently throughout the process in order to keep their
number manageable). Finally, rank-4 Q tensors in the expression are replaced by the Riemann
tensor using (2.52). The corollary (2.68) to theorem 1 ensures that the only other Q term then
remaining is the single instance of the rank-six tensor with indices in the same order as those
of the twice-differentiated Riemann tensor. The coefficients of the numerous terms quadratic
in the Riemann tensor are those that have been gathered in Table 8.

2

We obtain:

Lemma 5:

∇2R
∣∣∣
0
≡ δijR|ij

∣∣∣
0
= −20δijQij +

4RijRij + 6Rij klR
ij kl

9

∣∣∣
0
. (C.5)

2

Proof: The result (C.5) is obtained by carrying out three pairs of index contractions:
(i1 ≡ i3); (i2 ≡ i4); and (i5 ≡ i6); in (C.4) and gathering the resulting conformable terms. The
trace of the twice differentiated Ricci scalar is identified with the Laplacian of this scalar.

2

Proof of Theorem 3:

The statement of the theorem is given in Eq. (3.34). Using (B.28c) and (B.29c) in (3.31b),
we find:

G,(4)|0 = 4Q(2)(2) −
1

2
δ̃aa′ bb′Q̃a(1)b(1)Q̃a′(1) b′(1), (C.6)

and from (C.1), (C.2) and (3.31c) we get:

Q,(4)|0 = −1

2
Q(2)Q(2). (C.7)

Therefore, bringing in (3.31a), and setting (T + G + Q),(4) = 0 at O, we get:

T,(4) = −Q(2) (2) +
1

8
Q(2)Q(2) +

1

8
δ̃aa′ bb′Q̃a(1) b(1)Q̃a′(1) b′(1). (C.8)

We have already calculated all the factors on the right-hand side of (3.32c), which enables us
to find:

Q1,(2)|0 = −1

2
Q(2)Q + δ̃aa′

Qa(1)Qa′(1) −
1

2
δ̃aa′ bb′Q̃a(1) b(1)Qa′b′ . (C.9)
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From (C.8), we can obtain:

δ̃aa′

T,aa′(2)|0 = −Q(2) − 2δ̃aa′

Qa(1) a′(1) − δ̃aa′

Q(2) aa′ ,

+
1

2
δ̃aa′ bb′Q̃a(1)b(1)Qa′b′ +

3

4
δ̃aa′ bb′ cc′Q̃a(1) bcQ̃a′(1) b′c′

+
1

4
Q(2)Q +

1

4
δ̃aa′

Q(1)aQ(1)a′ . (C.10)

Then the vanishing of (T1,(2) + Q1,(2)) at O implies that:

T1,(2) = −1

3
Q(2) −

2

3
δ̃aa′

Qa(1) a′(1) −
1

3
δ̃aa′

Q(2) aa′

+
1

3
δ̃aa′ bb′Q̃a(1) b(1)Qa′b′ +

1

4
δ̃aa′ bb′ cc′Q̃a(1) bcQ̃a′(1)b′c′

+
1

4
Q(2)Q − 1

4
δ̃aa′

Q(1)aQ(1)a′ . (C.11)

Invoking (3.33a) and (2.52) we therefore obtain:

T2 = −4

3
δ̃aa′

Qaa′ +
1

4
QQ +

1

6
δ̃aa′ bb′QabQa′b′ +

1

2
δ̃aa′ bb′ cc′ dd′Q̃abcdQ̃a′b′c′d′

= −4

3
δ̃aa′

Qaa′ +
1

36
R2 +

1

54
RijR

ij +
1

18
RijklR

ijkl. (C.12)

By combining this result with the expression (C.5) from lemma 5, we find that:

T2 =
1

15
δijR|ij +

1

36
R2 − 1

90
RijR

ij +
1

90
RijklR

ijkl, (C.13)

which is equivalent to the result (3.34) asserted.
2

Appendix D

Geometry of the eigen-structure of the generic 4D Weyl tensor

D1. Separating the Weyl tensor from the Riemann tensor

In four dimensions the parametrix expansion continues to contain the Ricci tensor and scalar
terms, but the quadratic term, Rij klR

ij kl now includes additional contributions not expressible
through Ricci components alone. Nevertheless, there is a sense in which the Ricci tensor still
captures much of the information of the full Riemann, and we therefore wish to ensure that,
to the fullest extent possible, this quadratic contribution is dealt with in the way that allows
the saturation functions we have already defined for the Ricci tensor’s eigenvalues to have their
maximum effect. As discussed in section 4(c), we are therefore motivated to decompose the
Riemann into the smallest part expressible in terms of the Ricci tensor, and the part left over,
the Weyl tensor, Wij kl:

Rij kl = Wij kl + Tij kl, (D.1)
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where,
Tij kl = Sij kl + Uij kl, (D.2)

with Sij kl and Uij kl defined by (4.10) and (4.11) for n = 4 dimensions. The contraction of T is
the Ricci tensor:

T i
j il = Rjl = Ri

j il, (D.3)

and where W and T are orthogonal in the sense:

Wij klT
ij kl = 0. (D.4)

Having done this, we can examine the structure of W to see how best to extract characteristic
scalars from it, to which we can apply the saturation function, with appropriate parameters.

The obvious characteristic quantities to use are the eigenvalues of W when W is interpreted
as a symmetric operator in its first pairs of indices and its second pairs of indices. Since the
Riemann tensor and its subdivisions W and T are antisymmetric in first pair and second pair
of indices, the order of the ‘matrix’ to which the Weyl reduces is effectively only six in 4D
(although, owing to the duplication of the antisymmetric components, we must take care to
restore magnitudes of all trace-like quantities by including a factor of two).

D2. Eigen-structure of the Weyl tensor

The number of degrees of freedom we have in specifying the Riemann tensor in n dimensions
is:

NR(n) = n2(n2 − 1)/12, (D.5)

while the Ricci tensor, Ri
j il, which can be any rank-2 symmetric tensor, has the number of

degrees of freedom given by:
NT (n) = n(n − 1)/2, (D.6)

leaving the number,
NW (n) = NR(n) − NT (n) (D.7)

left over for the degrees of freedom of the Weyl tensor. In 4D these numbers are:

NR(n) = 20, (D.8a)

NT (n) = 10, (D.8b)

NW (n) = 10. (D.8c)

Consequently, we seek a way of constructing tensors with the Weyl symmetries and possessing
ten continuous parameters.

Consider the bivector, Vij, in a local orthonormal coordinate frame, having the matrix
representation (row i, column j):

Vij =




0, A, B, C

−A, 0, C, −B

−B, −C, 0, A

−C, B, −A, 0




. (D.9)
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Construct a contender for a portion of the Weyl tensor from the outer product of V with itself:

W
(ζ)
ij kl = VijVkl, (D.10)

and consider the symmetries which the Weyl tensor needs to satisfy. First, consider the trace:

(W (ζ))i j il = V i
jVil. (D.11)

Take the case where j and l are equal, say, j = l = 1, and we find that this trace becomes
A2 + B2 + C2, but when j and l differ, we find that the trace vanishes. In general:

V i
jVil = gjlS

2, (D.12)

where
S2 = (A2 + B2 + C2). (D.13)

(Metric, gij , is equivalent to the Kronecker delta here since we are assuming normal coordinates.)
Next, consider the test of the Bianchi algebraic identity where we take the sum over cyclic

permutation of the last three indices, j, k, l. Take the case where i and j are equal, say i = j = 1.
Then

V11V23 + V12V31 + V13V12 = 0 − AB + BA = 0. (D.14)

For the case where all the indices are different, say, i = 1, j = 2, k = 3, l = 4, we get:

V12V34 + V13V42 + V14V23 = A2 + B2 + C2 = S2, (D.15)

and for other instances it is straightforward to verify that we obtain ±S 2 according to whether
the indices, i, j, k, l are an even (= +S2) or an odd (= −S2) permutation of (1, 2, 3, 4). Intro-
ducing the Levi-Civita symbol, εijkl, whose value is ±1 according to whether the permutation
is even or odd, we may express this result:

W
(ζ)
ij kl + W

(ζ)
ik lj + W

(ζ)
il jk = εij klS

2. (D.16)

The other trace and permutation symmetries are equivalent to the ones we have checked and
all give a violation for a tensor of the form W (ζ) proportional to S2. We can constrain the
parameters A, B and C to make their sum of squares, S2 equal to unity, and form a linear
superposition by multiplying each such normalized W (ζ) by a coefficient, w+

(ζ). If we do this,

the violation of the symmetries is directly proportional to the sum,
∑

ζ w+
(ζ), of the coefficients

by which the normalized W (ζ) are combined. Therefore, by ensuring that this sum vanishes,
we guarantee a total tensor that satisfies all of the Weyl symmetries:

W+
ij kl =

∑

ζ

V
(ζ)
ij V

(ζ)
kl w+

(ζ),
∑

ζ

w+
(ζ) = 0. (D.17)

Each set, (A, B, C)(ζ) forms a unit vector and an orthogonal triplet of such vectors produces

a corresponding orthogonal triplet of the W (ζ). It is therefore sufficient to sum ζ over only three
instances to capture the full range of variability that this pattern of construction permits. Three
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degrees of freedom permit this orthogonal triple to be rotated, and the constraint that the three
coefficients, w+

(ζ), sum to zero implies that these coefficients collectively supply an additional

two degrees of freedom in defining this class of Weyl tensors. In effect, the bivectors, V
(ζ)
ij , act

as the mutually-orthogonal eigenvectors of this part of the Weyl tensor, while the multiplying
scalar coefficients act as the corresponding eigenvalues.

Even accounting for the fact that each V
(ζ)
ij contains the duplication of coefficients (with a

sign change) upon taking the transpose, our construction in terms of (A, B, C)(ζ) involves an
additional duplication (i.e., each A, B, and C, appears four times in the matrix representation
of the bivector) which we can exploit to form a new, and linearly independent class of eigen-
bivectors. The new class can be written in the form:

Uij =




0, A, B, C

−A, 0, −C, B

−B, C, 0, −A

−C, −B, A, 0




. (D.18)

By performing the same symmetry tests as before, we can verify that the new set of bivectors
act as the eigen-bivectors of a distinct family of Weyl tensors requiring another five continuous
independent degrees of freedom. We thus account for the ten degrees of freedom of the full
Weyl tensor.

In order to gain insight into the geometrical significance of the normalized eigen-bivectors
we have constructed, we consider a canonical representation of a mutually orthogonal set of
them defined as follows:

V (1), V (2), V (3) =




0, 1, 0, 0

−1, 0, 0, 0

0, 0, 0, 1

0, , 0, −1, 0




,




0, 0, 1, 0

0, 0, 0, −1

−1, 0, 0, 0

0, 1, 0, 0




,




0, 0, 0, 1

0, 0, 1, 0

0, −1, 0, 0

−1, 0, 0, 0




(D.19)

U (1), U (2), U (3) =




0, 1, 0, 0

−1, 0, 0, 0

0, 0, 0, −1

0, , 0, 1, 0




,




0, 0, 1, 0

0, 0, 0, 1

−1, 0, 0, 0

0, −1, 0, 0




,




0, 0, 0, 1

0, 0, −1, 0

0, 1, 0, 0

−1, 0, 0, 0




(D.20)
A further analysis of each one of these bivectors through its own eigen-decomposition runs

into the problems associated with its double degeneracy (two pairs of the conjugate imaginary
eigenvalues,

√
−1). Fortunately, the canonical representation is simple enough to allow us to
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see that one natural decomposition uses the basis four-vectors themselves. We therefore define:

Q1 ≡ (a1, b1, c1, d1) =







1

0

0

0




,




0

1

0

0




,




0

0

1

0




,




0

0

0

1







, (D.21)

and note that the canonical eigen-bivectors are obtained:
[
V (1), V (2), V (3)

]
= [(a1 ∧ b1 + c1 ∧ d1), (a1 ∧ c1 + d1 ∧ b1), (a1 ∧ d1 + b1 ∧ c1)] ,

[
U (1), U (2), U (3)

]
= [(a1 ∧ b1 − c1 ∧ d1), (a1 ∧ c1 − d1 ∧ b1), (a1 ∧ d1 − b1 ∧ c1)] ,

(D.22)

where the wedge product is defined for two column vectors, p and q:

p ∧ q = pqT − qpT. (D.23)

While these equations make it transparent that the sums and differences of the corresponding
V ζ and U ζ lead to ‘simple’ bivectors, each expressible as the wedge product of a single pair
of vectors, it is perhaps less obvious that this property occurs with the pairing of any V ζ

with any U η. Each of the six possible permutations leads to a different system of mutually
orthogonal unit-vector pairs, {±a, ±b, ±c, ±d} from which right-handed orthogonal quartets
can be selected to serve as the alternative principal components. For example, we can define
two of the alternative right-handed orthogonal quartets:

2Q2 ≡ 2(a2, b2, c2, d2) =







1

1

1

1




,




1

1

−1

−1




,




1

−1

−1

1




,




1

−1

1

−1







, (D.24)

2Q3 ≡ 2(a3, b3, c3, d3) =







−1

1

1

1




,




1

−1

1

1




,




1

1

1

−1




,




1

1

−1

1







. (D.25)

Then we find
[
−V (3), −V (2), −V (1)

]
= [(a2 ∧ b2 + c2 ∧ d2), (a2 ∧ c2 + d2 ∧ b2), (a2 ∧ d2 + b2 ∧ c2)] ,

[
−U (2), −U (1), −U (3)

]
= [(a2 ∧ b2 − c2 ∧ d2), (a2 ∧ c2 − d2 ∧ b2), (a2 ∧ d2 − b2 ∧ c2)] ,

(D.26)
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or, using the third basis set, Q3:
[
−V (2), −V (1), −V (3)

]
= [(a3 ∧ b3 + c3 ∧ d3), (a3 ∧ c3 + d3 ∧ b3), (a3 ∧ d3 + b3 ∧ c3)] ,

[
−U (3), −U (2), −U (1)

]
= [(a3 ∧ b3 − c3 ∧ d3), (a3 ∧ c3 − d3 ∧ b3), (a3 ∧ d3 − b3 ∧ c3)] .

(D.27)

Note that the negatives of the V s and Us remain valid eigen-bivectors. However, the new V-
type triplets and the new U-type triplets separately retain the chiral senses of the two original
triplets, and this remains true for every valid alternative choice of righthanded {a, b, c, d}. If we
reverse the chiral sense of the set, Q1, the U become the new V and vice versa (with possible
index permutations and sign-flips). The new relationships between the V triplets and the U
triplets are the two possible cyclic rotations of the original set of correspondences; there are
three other possible permutations of ‘odd’ parity, and these correspond to the compositions we
obtain when we consider the additional alternative quartets defined:

√
2Q4 ≡

√
2(a4, b4, c4, d4) =







1

1

0

0




,




1

−1

0

0




,




0

0

1

1




,




0

0

1

−1







, (D.28)

√
2Q5 ≡

√
2(a5, b5, c5, d5) =







1

0

1

0




,




0

1

0

1




,




1

0

−1

0




,




0

1

0

−1







, (D.29)

√
2Q6 ≡

√
2(a6, b6, c6, d6) =







1

0

0

1




,




0

1

1

0




,




0

1

−1

0




,




1

0

0

−1







. (D.30)

Then, applying the standard pattern of composition:
[
−V (1), V (3), V (2)

]
= [(a4 ∧ b4 + c4 ∧ d4), (a4 ∧ c4 + d4 ∧ b4), (a4 ∧ d4 + b4 ∧ c4)] ,

[
−U (1), U (2), −U (3)

]
= [(a4 ∧ b4 − c4 ∧ d4), (a4 ∧ c4 − d4 ∧ b4), (a4 ∧ d4 − b4 ∧ c4)] ,

(D.31)

[
V (1), −V (2), −V (3)

]
= [(a5 ∧ b5 + c5 ∧ d5), (a5 ∧ c5 + d5 ∧ b5), (a5 ∧ d5 + b5 ∧ c5)] ,

[
U (3), −U (2), U (1)

]
= [(a5 ∧ b5 − c5 ∧ d5), (a5 ∧ c5 − d5 ∧ b5), (a5 ∧ d5 − b5 ∧ c5)] ,

(D.32)
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[
V (2), V (1), −V (3)

]
= [(a6 ∧ b6 + c6 ∧ d6), (a6 ∧ c6 + d6 ∧ b6), (a6 ∧ d6 + b6 ∧ c6)] ,

[
U (1), −U (2), −U (3)

]
= [(a6 ∧ b6 − c6 ∧ d6), (a6 ∧ c6 − d6 ∧ b6), (a6 ∧ d6 − b6 ∧ c6)] .

(D.33)

D3. Geometrical significance

The eight vertices formed by all of the plus and minus combinations of the members of a
given set, Qp, have a convex hull in the form of an ‘orthoplex’ (or ‘cross polytope’), which is the
n-dimensional analogue of the 3D octahedron. The three intersecting orthoplexes associated
with Q1, Q2 and Q3 have, as their convex hull, the regular polytope called the ‘24-cell’ (Coxeter
1963). This is composed of 24 regular octahedra meeting eight at a time at every one of the 24
vertices. Neighboring vertices are 60 degrees apart about the center. This remarkable polytope
is also self-dual, which means that the 24 unit vectors piercing the centers of the 24 octahedra
form the vertices of a second 24-cell. The 24-cell dual to the one we identify with Q1, Q2

and Q3 is itself identified in an exactly analgous manner, with the three sets, Q4, Q5 and Q6.
Thus, in the same way that a symmetric matrix has an eigenstructure whose vectors are always
associated with a particular orthoplex of eigenvector directions, we see that the 4D Weyl tensor
has a characteristic eigen-structure that we can always identify with a dual pair of 24-cells.

D4. Infinitesimal rotations

An infinitesimal rigid rotation of the sets Qζ induces a corresponding rotation of the eigen-
bivectors, V (ζ) and U ζ . For example, let (α, β, γ, α′, β′, γ′) be the infinitesimal rotation param-
eters such that the first-order perturbation of a vector q gives a new vector q ′ defined:




q′1

q′2

q′3

q′4




=




1, α, β, γ

−α, 1, γ′, −β′

−β, −γ′, 1, α′

−γ, β′, −α′, 1







q1

q2

q3

q4




. (D.34)

If we apply this rotation to, say, the set Q1, we can apply the standard composition scheme to
find the perturbations of the V and U bivectors. We find that these bivectors rotate according
to the scheme:

V ′(1) = V (1) − (γ + γ′)V (2) + (β + β′)V (3), (D.35a)

V ′(2) = V (2) − (α + α′)V (3) + (γ + γ′)V (1), (D.35b)

V ′(3) = V (3) − (β + β′)V (1) + (α + α′)V (2), (D.35c)

and

U ′(1) = U (1) + (γ − γ′)U (2) − (β − β′)U (3), (D.36a)
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U ′(2) = U (2) + (α − α′)U (3) − (γ − γ′)U (1), (D.36b)

U ′(3) = U (3) + (β − β′)U (1) − (α − α′)U (2). (D.36c)

We see that the primed rotation parameters rotate the V and the U in the same sense, while the
unprimed rotation parameters rotate the V and U in the opposite sense. This allows us to steer
a ‘path’ through the six-dimensional manifold of proper rotations in 4D (the members of the
orthogonal group, O+

4 ) to obtain any combination of the two independent representations of the
proper rotations (O+

3 ) needed to characterize any valid orthogonal right-handed representation
of the eigen-bivectors of the generic Weyl tensor.

D5. Chiral decomposition

From the pattern formed by the eigen-bivectors of the two parities, we can form projection
operators that preserve the V -type and nullify the U -type or vice versa. First, define:

Jij kl = gikgjl − gilgjk, (D.37)

and notice that, for any ζ,

1

2
J i′j′

ij V
(ζ)
i′j′ = V

(ζ)
ij , (D.38a)

1

2
J i′j′

ij U
(ζ)
i′j′ = U

(ζ)
ij . (D.38b)

In contrast, one half of the Levi-Civita tensor acts upon the forms V and U :

1

2
ε i′j′

ij V
(ζ)
i′j′ = V

(ζ)
ij , (D.39a)

1

2
ε i′j′

ij U
(ζ)
i′j′ = −U

(ζ)
ij . (D.39b)

Therefore, if we define:

(P+)ij kl = (Jij kl + εijkl)/4, (D.40a)

(P−)ij kl = (Jij kl − εijkl)/4, (D.40b)

then it follows that:

(P+) i′j′

ij V
(ζ)
i′j′ = V

(ζ)
ij , (D.41a)

(P+) i′j′

ij U
(ζ)
i′j′ = 0, (D.41b)

(P−) i′j′

ij V
(ζ)
i′j′ = 0, (D.41c)

(P−) i′j′

ij U
(ζ)
i′j′ = U

(ζ)
ij , (D.41d)
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so that P (+) projects out the V parts, and P (−) projects out only the U parts of any bivectors.
It also follows that, since,

W+
ij kl =

3∑

ζ=1

V
(ζ)
ij V

(ζ)
kl w+

(ζ), (D.42a)

W−
ij kl =

3∑

ζ=1

U
(ζ)
ij U

(ζ)
kl w−

(ζ), (D.42b)

define the structures of the positive and negative parity parts of the total Weyl tensor,

Wij kl = W+
ij kl + W−

ij kl, (D.43)

we can separate these contributions by applying the projection operators to the first pair and
the second pair of the indices of W simultaneously:

W+
ij kl = (P+) i′j′

ij Wi′j′ k′l′(P
+)k

′l′
kl, (D.44a)

W−
ij kl = (P−) i′j′

ij Wi′j′ k′l′(P
−)k

′l′
kl. (D.44b)

The parts, W + and W−, are said to be ‘self-dual’ and ‘anti-self-dual’ respectively (duality is with
respect to double-sided contraction with the Levi-Civita tensor). In General Relativity (GR),
where the curved space has the Minkowski signature, the Weyl tensor describes the possible
curvatures of space in the absence (locally) of matter or energy; the general classification of Weyl
tensors (Petrov 1954, 1969, Penrose and Rindler 1988) is then complicated by the presence of a
‘light-cone’, but the existence of two independent states of polarization of gravitational waves
of GR (Misner et al. 1970) would appear to relate to this implicit dichotomy of the Weyl tensor
in four dimensions.

The chiral decomposition will work even when, owing to chance degeneracies in the eigen-
values of W , the eigenstructure consists of a pair of eigenvectors that mix a V (ζ) with a U (η).
This decomposition could conceivably be of practical value if it is found that the self-dual and
anti-self-dual parts of W need to be treated with different saturation-function parameters in
the amplitude correction procedure.
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