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Abstract

This paper describes ways of extending the spatially-homogeneous two-dimensional computa-
tional ‘Fibonacci grid’ of Swinbank and Purser, and Hannay and Nye, to related grids exhibiting
more general patterns of variable resolution and to higher dimensions. In principle, such a grid
allows a single unified global computational framework to contain several independent sub-
regions of enhanced resolution, blending smoothly with the rest of the grid where a uniform
coarser resolution is maintained. Remarkably, it is able to do this without the geometry of the
immediate neighborhood of any grid point (except near its two ‘polar’ singularities) exhibiting
departures larger than a small fixed measure of deformation from a square, or cubic, lattice
configuration. For meteorological data assimilation, such a grid has the advantage that the
whole global domain’s data can be assimilated in a single procedure that automatically ac-
counts for the need to provide higher resolution in locations of special meteorological interest
(cyclones, fronts, etc.). It may prove possible to use the new class of grids as the computational
frameworks of numerical weather prediction models, in which case, the same advantages of
unification carry over into this activity also.

Associated with the higher-dimensional generalizations of these Fibonacci computational
lattices we find generalizations, or analogues, of the Fibonacci and Lucas numbers themselves,
but these new numbers occupy regular arrays having a dimensionality one less than the di-
mensionality of the space in which the Fibonacci lattices reside. It is shown that these ‘Quasi-
Fibonacci’ numbers assume roles with respect to the generalized Fibonacci lattices exactly anal-
ogous to the roles played by the standard Fibonacci numbers in relation to the two-dimensional
Fibonacci lattices, where they determine which generalized lines of the computational lattice
can ever become suitable lines along which it is feasible to apply standard numerical operations
of finite differencing, integration, filtering and interpolation.



1. Introduction

The ‘Fibonacci matrix’:

M =

[

1, 1
1, 0

]

, (1.1)

produces the well-known Fibonacci number series, three consecutive members at a time, as the
components of each of the successive powers of M . The eigenvalues are, φ and −1/φ, where
{1 : φ} = {φ − 1 : 1} defines the ‘golden ratio’, φ being the quantity:

φ =

√
5 + 1

2
≈ 1.618. (1.2)

The magnitudes of the components of the eigenvectors are in this ratio and their orthogonal
orientations, that is, rotations from the Cartesian directions by an angle,

α = arctan(φ), (1.3)

provide the optimal choice for principal component directions of pure deformations when it is
required that the action of arbitrary deformations of this kind lead to no close collisions of the
deformed lattice points. This is the crucial condition exploited in the construction of the highly
homogeneous two-dimensional (2D) ‘Fibonacci grid’ of Swinbank and Purser (1999, 2006) and
Hannay and Nye (2004). The difference between the homogeneous and the adaptive Fibonacci
grids can be characterized by the differences between the two latent frameworks, here called
‘skeleton grids’, which guide the construction of the Fibonacci grids. In each of the two cases,
the skeleton grid is orthogonal and its local coordinate directions are oriented with respect to
the associated Fibonacci grid (‘F-grid’) in such a way that, at points where the F-grid is locally
square, the relative orientation between it and the guiding skeleton grid is very close to the
angle α defined by (1.3).

If we imagine continuously ‘uncurling’ the skeleton grid to make it Cartesian and regular,
then each of the families of lines of the embedded F-grid also uncurl and become straight,
parallel and regular in their spacing. However, in the case of the homogeneous F-grid, the
original skeleton grid was envisaged to be formed of uniformly spaced coordinates of an equal-
area orthogonal mapping of the horizontal domain. Such a coordinate pair is formed by azimuth
and the square-root of radius for the plane, or longitude and sine–latitude for the case of the
sphere. The equal-area property was then inherited by the F-grid. In contrast, by allowing
the skeleton grid to have variable areal resolution, while remaining very nearly orthogonal,
the collision-avoiding property of the associated F-grid (which only depends upon the skeleton
grid’s orthogonality) is maintained, but it is now the adaptive enhancement of resolution that
is inherited by the F-grid.

The adaptive F-grids in two dimensions require, at each grid point, two geographical co-
ordinates to be defined. The number of ‘unknowns’ therefore fortuitously matches the two
constraints that we wish to impose at each point: one constraint to maintain orthogonality of
the skeleton grid coordinates and the other to specify the desired absolute Jacobian, or areal
resolution.

In three dimensions, we are slightly restricted, and must therefore make compromises, in
enforcing the constraints we desire since, although there are only three ‘unknowns’ at each
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gridpoint (to specify their location in space) we would ideally wish for the freedom to enforce the
three necessary orthogonality constraints and the additional specification of the grid’s absolute
Jacobian. Given that compromises, articulated in the form of a suitable variational principle,
will be made in constructing a skeleton grid in 3D, we still must come up with a systematic
way of generalizing the crucial properties of the F-grid to three dimensions that will ensure the
same kind of guaranteed collision-avoidance amongst the 3D F-grid points that the classical
Fibonacci sequence and ‘golden ratio’ formalism achieved in the case of the 2D F-grid. It is
this part of the problem of consistently formulating a 3D (adaptive or homogeneous) F-grid
that this note will focus upon. The natural solution to this part of the problem has been
found, and is summarized in the following section. While the classical Fibonacci numbers and
‘golden ratio’ no longer play a role in the 3D formulation, obvious mathematical properties and
relationships of the new ‘quasi-Fibonacci’ numbers (and the analogous ratios associated with a
new set, this time, of three eigenvalues) will not fail to be noticed by anyone familiar with the
more well-known attributes of the classical Fibonacci and Lucas sequences (e.g., Conway and
Guy 1996).

Some of these higher-order quasi-Fibonacci numbers have been studied in the context of
aperiodic tiling problems and quasi-crystals that exhibit seven-fold symmetries (Terauchi et al.
1990, Steinbach 1997, Franco 1993) while, in pure mathematics, the quasi-Fibonacci numbers
have been generalized in other ways (e.g., Witu la et al. 2006) and found to display numerous
intriguing identities with recognizable analogues in the original Fibonacci and Lucas sequences.

2. Definition of orientations

Relative to the 3D Fibonacci lattice when it is cubic, the deformation axes aligned with the
skeleton grid can be defined as the eigenvectors of the quasi-Fibonacci matrix, M 0:

M0 =







1, 1, 1
1, 1, 0
1, 0, 0






. (2.1)

The possible eigenvalues of M 0 in the expression,

M0V = V R (2.2)

are given by roots R in the characteristic equation,

det(M0 − IR) = 0, (2.3)

or,
R3 − 2R2 − R + 1 = 0. (2.4)

Applying the standard trigonometric approach to solving the cubic, let θj, j = 0, 1, 2 be the
three angles in [0, π] that satisfy,

cos(3θj) =
1

2
√

7
. (2.5)
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Then, to each such θj there is a corresponding root to the characteristic equation of the form:

Rj =
2

3

(

1 +
√

7 cos(θj)
)

. (2.6)

However, as we show in the appendix, by exploiting the special form of the matrix, M 0, we
can alternatively write the eigenvalues,

Rj =
(−1)j

2 sin[(2j + 1)π/14]
, j = 0, 1, 2. (2.7)

Either way, the three possibles solutions are:

R0 ≈ 2.246979603717467, (2.8a)

R1 ≈ −0.801937735804838, (2.8b)

R2 ≈ 0.554958132087372, (2.8c)

and the corresponding eigenvectors can be taken as the columns of the symmetric orthogonal
matrix,

V =







v0, v1, −v2

v1, v2, −v0

−v2, −v0, v1






, (2.9)

where,

v0 =
2√
7

cos(π/14) ≈ 0.7369762290995780, (2.10a)

v1 =
2√
7

cos(3π/14) ≈ 0.5910090485061035, (2.10b)

v2 =
2√
7

cos(9π/14) ≈−0.3279852776056819. (2.10c)

Assuming modulo-3 arithmetic on the index, α, we find that:

vα =
1

Rα+2 − Rα+1
, (2.11)

and that
Rα = − vα

vα−1
. (2.12)

We define a matrix, P , that denotes the signed-permutation of the coordinate basis:

P =







0, 0, −1
1, 0, 0
0, −1, 0






(2.13)

and, from the cyclic pattern of the eigenvectors, V , we find that the application of P to V

preserves, but cyclically rotates, the sequence of columns with sign-changes that preserve matrix
symmetry:

PV =







v2, v0, −v1

v0, v1, −v2

−v1, −v2, v0






, (2.14)
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and again:

P
2
V =







v1, v2, −v0

v2, v0, −v1

−v0, −v1, v2






. (2.15)

The same repeated orthogonal transformation therefore produces two independent matrices
similar to M 0 that must mutually commute (since they share the same eigenvectors):

M1 ≡ PM0P
−1 =







0, −1, 0
−1, 1, −1
0, −1, 1






, (2.16a)

M2 ≡ P
2
M0P

−2 =







1, 0, −1
0, 0, 1
−1, 1, 1






. (2.16b)

The significance of finding such commuting integer-component matrices is that, if an initially
cubic lattice alligned with Cartesian coordinates is subjected to a pure linear deformation whose
principal axes coincide with the orientation expressed in this Cartesian coordinate system by
the eigenvectors, and if the dilatation components are proportional to the logarithms of the
absolute values of the eigenvalues, then, after a finite lapse of time, the deformed lattice comes
into a new configuration which is also a perfect cubic lattice and which is the mirror image in
one of the coordinate planes of the original lattice. After a further equal lapse of time under
the same constant deformation conditions, the lattice transforms to another perfectly cubic
configuration, and this time the lattice points exactly coincide with the original lattice points.

A cyclic rotation of the three deformation principal components leads to three completely
different deformation operators, but each has the same property of returning the initially cubic
lattice periodically to new cubic lattices that alternate between the original configuration and a
mirror image of it. There is a sense, which can be expressed rigorously, in which the ‘distance’
of the deformed lattice from its original cubic configuration never exceeds a definite quantifiable
bound, even when arbitrary amounts of the ‘allowed’ (commuting) deformation operators are
applied. Pathological lattice configurations cannot occur where, along lines or within planes,
distances between the adjacent lattice point become very much closer than between these lines
or planes themselves. In effect, each member of the commuting set of general deformations
defines a point in a Euclidean deformation space in which the metric ‘distance’-squared between
two deformation operators, A and B is just the sum of the squares of the logarithms of the
eigenvalues of the combination A−1B or, equivalently, B−1A. Restricting attention to unit-
determinant deformations so as not to complicate the picture with considerations of overall
scale, the ‘points’ in deformation space at which the originally cubic grid becomes cubic once
again, is itself a regular lattice and no point in deformation space is a greater distance from
one of the ‘cubic’ points than the largest radius of the representative Voronoi cell of this two-
dimensional deformation-space lattice. (The Voronoi cell of a regular lattice is the set of points
closer to the central lattice point than to any other lattice point. For example, see Preparata
and Shamos, 1985.)

The effect of applying generic eigenvector-aligned deformations is produced in practice by
building up the generalized Fibonacci grid as a perfectly regular lattice within the coordinate
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framework supplied by an arbitrarily defined smooth orthogonal coordinate system. In the
original Fibonacci grid defined by Swinbank and Purser (1999, 2006) this skeleton coordinate
system was implicit – simply the ordinary orthogonal system of sine-latitude and longitude
whose areal resolution is perfectly uniform on the spherical surface. However, it is possible to
generate a vast range of less trivial skeleton coordinate systems which can be made visible by
plotting their associated grids of lines at equal coordinate increments. When the Fibonacci
lattice is embedded within such a grid and shares the relative deformations of the skeleton
grid across regions where the aspect ratio of the unit increments of the skeleton framework is
changing, the embedded Fibonacci grid shares this same deformation. But, as a result of the
special alignment it has relative to the skeleton grid’s coordinate directions, it never suffers the
pathologies of grid-point near-collisions. In fact, as we have indicated, it can never be very far
away (in the sense of the deformation metric) from a locally square grid.

The two-dimensional case is easier to illustrate than one in higher dimensions. In Fig. 1
a two-dimensional curvilinear, but approximately orthogonal, polar grid is constructed over a
portion of the Euclidean plane containing three distinct regions where enhanced resolution is
prescribed: an elongated elliptical region to the ‘west’ with a mild enhancement, and a pair
of approximately circular regions of stronger enhancement located north-east and south of the
‘pole’ of the coordinate system. The enhancement is measured by the areal resolution of the
skeleton coordinate system (i.e., by its Jacobian) and it is quite immaterial how large the local
aspect ratio of the skeleton grid becomes. This point is important because, in general, we
should not expect the skeleton coordinate system itself to be remotely suitable as a numerical
modeling framework. Nevertheless, regardless of how extremely ‘deformed’ it appears locally,
the Fibonacci grid embedded within it retains the local appearance everywhere of a smooth
and well-proportioned curvilinear grid.

The generalized Fibonacci lattice associated with the skeleton grid of Fig. 1 is shown in Fig.
2 and the arrangement, apart from the inevitable irregularities near the ‘pole’ (where special
numerical treatment are always needed; Swinbank and Purser 2006) shows that the Fibonacci
grid does indeed succeed in providing the desired degree of enhancement of the resolution in the
three specified regions while retaining smooth continuity throughout. The square box where
the high density of grid points obscures their gridded arrangement is shown expanded in Fig.
3 and another subregion of that figure is given a further enlargement in Fig. 4, where it is
especially striking how smooth and regular the enhanced grid seems, even within the region of
maximum resolution.

To summarize, a system of n − 1 mutually commuting and multiplicatively independent
integer-component symmetric matrices with shared eigenvectors aligned obliquely to the basic
Cartesian directions guarantees the existence of an associated generalized ‘Fibonacci’-type grid
having the areal or volumetric resolution proportional to that of any given orthogonal ‘skele-
ton’ coordinate system spanning the domain of interest. Extreme aspect ratios inherent to the
skeleton system are not inherited by the embedded ‘Fibonacci’-type lattice because the n − 1
dimensional space of possible unimodular deformations that share the oblique eigenvectors con-
tains a lattice of deformation points, corresponding to where the Fibonacci grid is exactly
square, cubic or hyper-cubic, which makes it impossible for any given deformation of the pre-
scribed kind to be farther than a known fixed ‘distance’ from one of these cubic-configuration
lattice points.
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The question of how a suitable skeleton system can be constructed to provide the intended
resolution enhancements is one that deserves a separate technical discussion and is not further
considered here. Instead, we explore some of the algebraic and geometrical properties of the
particular n = 3-dimensional example of the generalized Fibonacci grid which forms the main
focus of this study.

3. Identities connecting the eigenvalues, Rα, and the ‘quasi-Fibonacci’ numbers

The R are connected by various identities, a sample of which are as follows:

Rα−1 = −2Rα + R2
α, (3.1a)

=
Rα

R2
α − 1

, (3.1b)

=
Rα − 1

Rα
. (3.1c)

(3.1d)

From the first of these it is evident that an algebraic expression comprising a sum of terms
whose factors are all integer multiples of arbitrary integer powers of R0, R1, R2, can be reduced
to sums of powers of just one of them, R0, say. Moreover, since the characteristic equation can
be used iteratively to reduce each exponent of R0 to either: zero, one, or two, the general power
expansion is reduced to an integer-coefficient quadratic. We see how this works by considering
simple powers of R0 itself. The following equations establish a simple recursive pattern:

R0
0 = 1 + 0R0 + 0R2

0, (3.2a)

R1
0 = 0 + 1R0 + 0R2

0, (3.2b)

R2
0 = 0 + 0R0 + 1R2

0, (3.2c)

R3
0 = −1 + 1R0 + 2R2

0, (3.2d)

R4
0 = −2 + 1R0 + 5R2

0, (3.2e)

R5
0 = −5 + 3R0 + 11R2

0, (3.2f)

and so on. If we write the generic terms,

Rp
0 = f(0)p + f(1)pR0 + f(2)pR

2
0, (3.3)

we find that each of the three types of coefficient, f , obeys the same recurrence:

fp − 2fp−1 − fp−2 + fp−3 = 0, (3.4)

which mirrors the form of the characteristic equation (2.4). We could perform the expansions
of the powers of the other two roots, R1 and R2, in exactly the same way, of course. However,
it is more interesting to expand the powers of, say, R2, but expressed as quadratics of R0:

R0
2 = 1 + 0R0 + 0R2

0, (3.5a)

R1
2 = 0 − 2R0 + 1R2

0, (3.5b)
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R2
2 = 2 − 3R0 + 1R2

0, (3.5c)

R3
2 = 3 − 8R0 + 3R2

0, (3.5d)

R4
2 = 8 − 17R0 + 6R2

0, (3.5e)

R5
2 = 17 − 39R0 + 14R2

0, (3.5f)

and so on.
Note that the each member of the trio of successive coefficients in this sequence obeys

precisely the same recurrence as before. In both series, applying the recursion in the negative
direction establishes equally valid formulas for the reciprocal powers of R0 or of R2. Owing to
linearity in the recurrence relations it is also possible to build up a lattice of identities defining
each mixed combination of powers of both R0 and R2 together, each as a quadratic expression
in R0. When this is done, we see that the expressions collectively manifest a great deal of
redundancy, with the same numerical coefficients reappearing in the expressions for several
terms. Some of this redundancy is already evident in the sequences for simples powers of R0

and R2 above. It turns out that a single array will suffice to provide all the needed coefficients
and, with appropriate sign changes, for the corresponding expansions of powers of R1 in terms
of the R0.

The natural pattern made by the coefficients in their most symmetrical arrangement is
an equilateral-triangular, or ‘hexagonal’ lattice. There is a three-fold symmetry exhibited by
the pattern formed by the magnitudes of these numbers. This symmetry is reproduced in the
indices of the tabulated entries when we deliberately introduce the redundancy of requiring three

indices for each entry (although two are formally enough to define each number uniquely). The
numerical values, which in many ways form higher dimensional generalization of the classical
Fibonacci sequence, are therefore each denoted, Fi,j,k, referred to collectively as ‘F -numbers’,
or ‘quasi-Fibonacci numbers’, and their triple-indices are subject to the ‘zero sum’ consistency
condition:

i + j + k = 0, (3.6)

together with a modulo-3 ‘cyclic offset’:

j − i ≡ k − j ≡ i − k = 1 mod 3. (3.7)

The absolute magnitudes of the numbers Fi,j,k are symmetrical under cyclic permutations
of the indices, but their signs vary in accordance with:

Fi,j,k = (−)jFj,k,i. (3.8)

The quadratic polynomials of Rα, representing simple powers jointly of Rα and Rα−1, and
whose coefficients are found in the infinite array of these F , are each denoted Fi,j,k(Rα), where
the zero-sum condition, (3.6), is maintained (as it is for all indexed quantities discussed in this
note), but the cyclic offset condition for the polynomials, Fi,j,k, is:

j − i ≡ k − j ≡ i − k = 0 mod 3. (3.9)

The definition of each F in terms of the quasi-Fibonacci numbers F is

Fi,j,k(Rα) = −Fi−3,j+1,k+2 + Fi−4,j+3,k+1Rα + Fi−1,j,k+1R
2
α. (3.10)
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Tabulated values of the F for a fairly small hexagonal patch of index combinations centered
on the origin (marked by an asterisk) are shown in Fig. 5. The index i is a measure of the
location relative to the origin in the ‘compass direction’ 90◦, contours of constant i therefore
run along directions 0◦–180◦. Index j measures the same distance but in the 210◦ direction,
contours of j running 120◦–300◦. Finally, the third (and formally redundant) index, k = −i − j
measures displacement in the direction, 330◦ with contours of k running 60◦–240◦. The ‘index
point’, i = (i, j, k), of the polynomial (3.10) is therefore positioned at the lower-right corner of
the hexagonal cell in Fig. 5 that contains the polynomial’s third coefficient.

With these tabulated values, we may inductively verify that the coefficient for the general
term formed by powers of Rα and Rα−1 is defined by,

Rp
αRq

α−1 = Fi+2p−q,j−p+2q,k−p−q(Rα). (3.11)

Now consider the polynomial expression for Rα+1 in terms of Rα. Applying (3.1a) twice and
employing the characteristic equation to convert third and fourth power terms to combinations
of lower powers, we find that:

Rα+1 = 2 + Rα − R2
α. (3.12)

Inspection of the numbers in Fig. 5, together with the index definitions, reveals that:

−Rα+1 = F−1,−1,2(Rα). (3.13)

Thus, we see that powers of the basic root, Rα, form quadratic polynomials in Rα that march
progressively away from the origin of the array of F -numbers array in the positive i-index
direction; powers of Rα−1 form polynomials in Rα that march away from the origin in the
j-index direction; powers of −Rα+1 form polynomials in Rα that march away from the origin in
the k-index direction. Moreover, it is clear from the algebraic linearity of the these recurrences
that they must remain equally valid for powers that are negative integers. It is tempting to
conjecture that any rational-coefficient algebraic expression in combinations jointly of the R0,
R1 and R2 can be reduced to a unique rational-coefficient quadratic polynomial in any one
of these roots. In order to make the assertion evident, we must first reveal some additional
identities and relationships among the F -numbers and their generalizations.

We have deduced from the cyclic pattern made by the components of its eigenvectors, V ,
that the matrix M 0 shares these eigenvectors with, and therefore commutes with, the similar
matrix, M 2. When we look at powers of M 0 and of M 2, and combinations of them, in the
context of the tableau of F -numbers, an obvious pattern emerges: each such matrix is encoded
by a triangular pattern of the F-numbers in the following way. We define the matrix [F ]i,j,k,
indices subject to (3.6), and the same offset condition (3.9), by:

[F ]i,j,k =







Fi+2,j,k−2, Fi+1,j−1,k, Fi,j+1,k−1

Fi+1,j−1,k, Fi,j−2,k+2, Fi−1,j,k+1

Fi,j+1,k−1, Fi−1,j,k+1, Fi−2,j+2,k






. (3.14)

Then

I ≡ [F ]0,0,0, (3.15a)
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M0 ≡ [F ]2,−1,−1, (3.15b)

M
2
0 ≡ [F ]4,−2,−2, (3.15c)

M2 = −2M0 + M
2
0 ≡ [F ]−1,2,−1. (3.15d)

Thus, associating the ‘index point’ of each such matrix with the central point of its triangular
configuration within the tableau, we find a perfect algebraic match between each matrix [F ]i,j,k
and the corresponding polynomial, Fi,j,k, where the elementary polynomial, F(Rα) = Rα,
stands in for the basic matrix M 0, and the polynomial that describes Rα+2 in terms of Rα

becomes exactly the same polynomial that describes M 2 in terms of M 0. To complete the
correspondence, we should define:

M1 = 2I + M0 − M
2
0, (3.16)

whose polynomial is exactly the one that expresses Rα+1 in terms of Rα.
The inverses of these matrices can now be read straight from the F -number array and are:

M
−1
0 =







0, 0, 1
0, 1, −1
1, −1, 0






, (3.17a)

M
−1
1 =







0, −1, −1
−1, 0, 0
−1, 0, 1






, (3.17b)

M
−1
2 =







1, 1, 0
1, 0, 1
0, 1, 0






. (3.17c)

In general, we now see that the matrix formed as the product of arbitrary integer powers of
M0, M1 and M2 can be expressed in our F -number notation:

M
p
0M

q
1M

r
2 = (−)q[F ]2p−q−r,2r−p−q,2q−p−r. (3.18)

The set of six matrices Mα and M
−1
α may be considered to be equidistant from the identity

matrix I in the following sense. As defined in Purser (2005), there is a natural distance measure,
s, between any two symmetric matrices A and B of a given order, where s2 is the sum of
the squares of the logarithms of the absolute magnitudes of the eigenvalues of A

−1
B. In

general, the metric space thus defined is one exhibiting negative curvature on most geodesic
2-surfaces, but an exception occurs for the cases in which such 2-surfaces correspond to a subset
of the matrices sharing the same eigenvectors, and therefore commuting. In this special case,
which corresponds to the situation we are dealing with, the geometry implied by the metric is
Euclidean. In fact, the arrangement provided by the tabulated F -numbers of Fig. 5, with its

60
◦

regular hexagonal grid, precisely reflects the correct geometrical relationships among the
matrices represented here.

Other curious regularities inherent in the arrangement of F -numbers are evident. A 3-vector
{F}i,j,k can be formed according to the rule:

{F}i,j,k = (Fi+1,j,k−1, Fi,j−1,k+1, Fi−1,j+1,k)T (3.19)
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with the index cyclic-offset for these vectors:

j − i ≡ k − j ≡ i − k = 2 mod 3. (3.20)

Notice that the set of components forms a 2-high ‘ball stack’ in the F -numbers table, oriented
in the same sense as the stacks formed by matrices. It is readily verified that these vectors
conform to a simple and natural definition for dot-products:

{F}i,j,k · {F}i′ ,j′,k′ = Fi+i′,j+j′,k+k′, (3.21)

and for the product of a matrix with a vector:

[F ]i,j,k{F}i′,j′,k′ = {F}i+i′,j+j′,k+k′. (3.22)

We also notice that, since three ordered eigenvalues suffice to define any matrix belonging to
the equivalence class that commutes with the set sharing the same eigenvectors, then any three
linearly independent matrices of the kind [F ] are sufficient as a basis to construct any matrix
in the equivalence class. We have already seen how a basis consisting of I, M 0 and M

2
0 forms

a quadratic polynomial that expresses the other commuting matrices we have looked at; we
now see that this is a general property. However, if the description of each symmetric matrix
in the equivalence class can be given by just three coefficients, then, in addition to the trivial
requirement of symmetry, each such matrix must additionally possess three linear relationships
among its components. It is not too hard to find that these additional conditions are supplied
by the following expressions for the off-diagonal matrix elements in terms of the diagonal ones:

H2,3 = H1,1 − H2,2, (3.23a)

H1,3 = H2,2 − H3,3, (3.23b)

H1,2 = H1,1 − H3,3, (3.23c)

or, in terms of the F -numbers themselves:

Fi,j,k = Fi+3,j,k−3 − Fi+1,j−2,k+1, (3.24a)

= Fi,j−3,k+3 − Fi−2,j+1,k+1, (3.24b)

= Fi+1,j+1,k−2 − Fi−3,j+3,k. (3.24c)

By the repeated use of the recurrences, (3.24a)–(3.24c), we can deduce the numbers in one
part of an array of F -numbers, or generalizations of them conforming to the same recurrence
rules, from a suitably independent set in another part of the array. In particular, for a quadratic
polynomial whose three coefficients, fp, correspond to the one denoted Fi,j,k, we can formally
verify that the components of the associated matrix, [F ]i,j,k really are given by

[F ]i,j,k = f0I + f1M0 + f2M
2
0,

=







f0 + f1 + 3f2, f1 + 2f2, f1 + f2

f1 + 2f2, f0 + f1 + 2f2, f2

f1 + f2, f2, f0 + f2






. (3.25)
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4. Division algebra for polynomials and the generalized quasi-Fibonacci num-

bers

It is convenient to adopt the algebraic shorthand (‘L-notation’) for a term such as A =
a0f0 + a1f1 + a2f2 and the products of such terms, by grouping the coefficients into an ‘L’ of
the appropriate size:

A ≡
∣

∣

∣

∣

∣

a1

a2, a0
. (4.1)

Then, if C = AB, and C = c00f
2
0 + c11f

2
1 + c22f

2
2 + c12f1f2 + c02f0f2 + c01f0f1, we can write:

C ≡

∣

∣

∣

∣

∣

∣

∣

c11

c12, c01

c22, c02, c00

,

=

∣

∣

∣

∣

∣

a1

a2, a0
∗

∣

∣

∣

∣

∣

b1

b2, b0
,

with the coefficients b expressing the quantity, B, and symbol, ‘∗’, denoting the convolution of
the two coefficient arrays so that,

c00 = a0b0,

c11 = a1b1,

c22 = a2b2,

c12 = a1b2 + a2b1,

c02 = a0b2 + a2b0,

c01 = a0b1 + a1b0.

Using L-notation, the matrix [F ]i,j,k in (3.25) that corresponds to the polynomial Fi,j,k(R) ≡
f0 + f1R + f2R

2 can be written (dropping the indices, i, j, k, for brevity):

[F ] ≡

































∣

∣

∣

∣

∣

1
3, 1

,

∣

∣

∣

∣

∣

1
2, 0

,

∣

∣

∣

∣

∣

1
1, 0

∣

∣

∣

∣

∣

1
2, 0

,

∣

∣

∣

∣

∣

1
2, 1

,

∣

∣

∣

∣

∣

0
1, 0

∣

∣

∣

∣

∣

1
1, 0

,

∣

∣

∣

∣

∣

0
1, 0

,

∣

∣

∣

∣

∣

0
1, 1

































. (4.2)
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In order to invert this matrix, say [G] ≡ [F ]−1, we first obtain the matrix [C], of signed cofactors:

[C] =













































∣

∣

∣

∣

∣

∣

∣

0
1, 1
1, 3, 1

,

∣

∣

∣

∣

∣

∣

∣

0
0, −1
−1, −2, 0

,

∣

∣

∣

∣

∣

∣

∣

−1
−2, −1
0, −1, 0

∣

∣

∣

∣

∣

∣

∣

0
0, −1
−1, −2, 0

,

∣

∣

∣

∣

∣

∣

∣

−1
−1, 1
2, 4, 1

,

∣

∣

∣

∣

∣

∣

∣

1
2, 0
−1, −1, 0

∣

∣

∣

∣

∣

∣

∣

−1
−2, −1
0, −1, 0

,

∣

∣

∣

∣

∣

∣

∣

1
2, 0
−1, −1, 0

,

∣

∣

∣

∣

∣

∣

∣

0
1, 2
2, 5, 1













































. (4.3)

From the inner product of any line of [F ] with the corresponding line from [C] we obtain the
determinant, D:

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1
−2, −1

1, 1, 2
1, 5, 6, 1

. (4.4)

From the coefficients of the matrix inverse, [G] = [C]/D, we can recover the three coefficients,
g0, g1, g2, of the quadratic polynomial that corresponds to it:

(g0, g1, g2) = [G3,3 − G2,3, G1,3 − G2,3, G2,3] ,

=
1

D







∣

∣

∣

∣

∣

∣

∣

−1
−1, 2

3, 6, 1
,

∣

∣

∣

∣

∣

∣

∣

−2
−4, −1

1, 0, 0
,

∣

∣

∣

∣

∣

∣

∣

1
2, 0

−1, −1, 0






. (4.5)

These results allow us to reformulate any finite rational expression in one of the roots, Rα

as a quadratic polynomial in Rα. We have already seen that the inverses of the eigenvector
components are expressible as differences of the Rα, and hence as quadratics in one of these
roots. For example, in terms of R0:

1

v0
= −2 − 3R0 + 2R2

0, (4.6a)

1

v1
= 0 + 3R1 − 1R2

1, (4.6b)

1

v2
= +2 + 0R1 − 1R2

1. (4.6c)

While none of these polynomials is to be found within the existing array of quasi-Fibonacci
numbers, F , we can employ the recurrences implied by (3.23a)–(3.23c) to construct a table of
‘generalized quasi-Fibonacci’ numbers for each of (4.6a), (4.6b) and (4.6c) so that the respective
polynomial will be found within its own table. However, rather than constructing three distinct
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tables in this manner, we find that, apart from sign changes, all three tables of the new numbers,
which we shall call F ′-numbers, are equivalent. Moreover, these numbers also exhibit a three-
fold symmetry of their magnitudes about the suitably chosen origin. In this case, the cyclic-
offset condition for the indices of F ′

i,j,k, becomes:

j − i ≡ k − i ≡ i − k = 2 mod 3. (4.7)

The same sign-switching rule, (3.8), continues to hold. Fig. 6 shows a hexagonal patch of
the F ′-numbers. We find that, in terms of their associated polynomials, F ′(R1), the reciprocals
of the eigenvector components are symmetrically arranged around the origin:

1

v0
= F ′

−1,0,1(R0), (4.8a)

1

v1
= F ′

0,1,−1(R0), (4.8b)

1

v2
= −F ′

1,−1,0(R0). (4.8c)

Now consider the eigenvector components themselves. When we apply the formula for the
determinant, D, to the polynomial for 1/v0, with coefficients, (2, 3, −2), we find that D = 7.
Consequently, applying the formulae for the inverse coefficients, we find that (g0, g1, g2) =
(1, 4, −3)/7. In a similar manner, we may determine quadratic polynomial expressions for v2

and v3. These may be summarized together:

v0 =
1

7
(−1 − 4R0 + 3R2

0), (4.9a)

v1 =
1

7
( 3 + 5R0 − 2R2

0), (4.9b)

v2 =
1

7
( 5 − 1R0 − 1R2

0). (4.9c)

In fact, it is apparent that all the determinants associated with the matrices contained in
the array of F ′-numbers are ±7 and so it is natural to seek a third array of generalized F -
numbers, which we shall call the F ′′-numbers, in which we can find seven-times the inverses
of polynomials or matrices of the F ′-numbers. This third class of generalized quasi-Fibonacci
numbers is displayed in Fig. 7, where we find the polynomials describing vα to be, in the natural
extension of our notation:

v0 =
1

7
F ′′

1,0,−1(R0), (4.10a)

v1 =
1

7
F ′′

0,−1,1(R0), (4.10b)

v2 = −1

7
F ′′

−1,1,0(R0). (4.10c)

Note that the indices of the F ′′-numbers conform to the cyclic-offset condition that com-
plements those that characterize the F - and F ′-numbers. That is, for the numbers, F ′′

i,j,k, we
have:

j − i ≡ k − j ≡ i − k = 0 mod 3, (4.11)
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and the numbers themselves continue to satisfy the same sign-switching rule, (3.8).
The F ′- and F ′′-numbers, being the simplest and most symmetrical of the generalized

quasi-Fibonacci numbers, are somewhat analogous in their relationship to the F -numbers, to
the way the classical Lucas sequence of numbers relate to the true Fibonacci numbers. With
the inclusion of the F ′- and F ′′-numbers, their vectors, matrices and quadratic polynomials,
we note that the following generic multiplication rules, are satisfied for the quantities written
‘(F )’, ‘(F ′)’ and ‘(F ′′)’, whether the multiplication symbol, ‘×’ be interpreted as polynomial
products, matrix–matrix products, matrix–vector products or vector–vector dot-products:

(F ) × (F ) → (F ), (4.12a)

(F ) × (F ′) → (F ′), (4.12b)

(F ) × (F ′′) → (F ′′), (4.12c)

(F ′) × (F ′) → (F ′′), (4.12d)

(F ′) × (F ′′) → 7(F ), (4.12e)

(F ′′) × (F ′′) → 7(F ′), (4.12f)

and the three positional indices always add. Thus, the number of primes in the product-type
is the sum, modulo–3, of the primes in the factor-types, and a numerical factor of 7 is put in
every time an accumulation of three primes in the product is discarded.

The determinants of the matrices in the numbers systems F , F ′ and F ′′ are respectively
±1, ±7 and ±72. The trace of each matrix satisfies the following relations:

trace[F ]i,j,k = F ′′

i,j,k, (4.13a)

trace[F ′]i,j,k = 7Fi,j,k, (4.13b)

trace[F ′′]i,j,k = 7F ′

i,j,k. (4.13c)

5. Associated geometrical relationships

The quasi-Fibonacci numbers are arranged in Figs. 5–7 so that multiplication of their
matrices, normalized to unimodularity, corresponds to addition of their indices. These indices
therefore serve to map out the ‘logarithms’ of these commuting matrices. The vectors of the
F -system have a special role to play in the construction of the 3D adaptive Fibonacci grid; at
every point of the ‘zone plane’ defining a particular ratio of the three components of orthogonal
deformation to which the Fibonacci grid is subjected, six of the vectors collectively form the six
generators of the appropriate ‘hexad’ of generalized lattice lines along which finite differencing
is carried out. The six line-derivatives can then be combined to form the spatial gradient.
The lattice hexads are precisely those defined by the algorithm of that name used at NCEP
in the production of anisotropic covariances for meteorological data assimilation (Purser et al.
2003; Purser 2005). In the data assimilation context, hexads conform to a covering of the
six-dimensional space of symmetric second moment ‘aspect tensors’ by non-overlapping ‘tiles’
which each form a cone of six-pointed simplex cross-section. Gaussian smoothing filters with
the desired aspect tensor are reconstructed by sequentially smoothing, with one-dimensional
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filters, along the six lines prescribed by the hexad and with smoothing strengths (as measured
by second moments in grid-spacing units along each of the six lines) proportional to the six
‘weights’ that emerge as the projection of the aspect tensor into the given hexad basis. In the
present context, the six hexad weights can be multiplicatively combined in threes and these
triple products, or monotonic functions of them that fade smoothly to zero, used to weight
the representation of the gradient associated with finite differencing along the corresponding
three lattice lines. There are 20 ways to choose three lines from a hexad, but only 16 of
these correspond to linearly independent directions (the hexad lines exactly correspond to the
six diameters of a cuboctahedron and there are four planes that each contain three of these
diameters; being linearly dependent, these triples must be disallowed). Thus, the 3 × 6 matrix
by which the six line-derivatives are locally combined to form the gradient is implicitly built
up from the 16 aforementioned contributions in a perfectly systematic and well-defined way.

The connection with the ‘hexad algorithm’ comes about because, for any valid deforma-
tion (i.e., one that is correctly aligned with the three eigenvectors of the M α) the algorithm
uniquely defines how an isotropic Gaussian is decomposed into line-smoothing operators. The
appropriate hexad can be found for each point in the plane whose coordinates are proportional
to the logarithms of the deformation components – the ‘zone plane’. We may also contour, in
this plane, the ‘distance’ (in the sense defined by Purser 2005) to the middle of the correspond-
ing hexad. The middle, or centroid, of the hexad corresponds to a deformation of the lattice
(not allowed by the rules for Fibonacci deformations) that would make the lattice one of the
‘closest-packing’ or ‘face-centered cubic’ arrangements, with the six opposing pairs of nearest
neighbor directions corresponding to the hexad’s line directions. Such a contouring is shown
in Fig. 8 for a part of the zone plane and with the log-deformation coordinates arranged in
the most symmetrical way. Note that, since we are not concerned with the magnitude of the
determinant of the deformation (i.e., the absolute Jacobian) the standardized parameter space
for such deformations reduces to two dimensions instead of three. The F numbers are also
plotted in their natural positions, together with the vectors they form. The hexad boundaries
are clearly seen as kinks in the centroid-distance contours. Each F -number vector corresponds
to the particular lattice line it generates. A particular vector’s lattice line achieves a domi-
nance among the hexads which are active where that vector is plotted on the zone map. The
particular vector, [1, 0, 0], is singled out in Fig. 8 to show, by the slightly darker shaded and
heavy-bordered region, the 24 hexads in which it participates. From a copy of this figure a mask
can be made with the shaded region forming an aperture. Rotating the mask (same side up)
180◦ allows one to see which six F -vectors form the hexad of any given point in this zone-map.

If we standardize the map of deformation by normalizing according to the trace of each
matrix rather than the determinant another natural mapping, the ‘gnomonic’ zone map, is
found. In this case, the original zone plane is mapped to the interior of a triangle, which is most
symmetrically represented as an equilateral triangle and, as shown in Fig. 9, the boundaries
between the hexads now map to straight line segments. The contours of the hexad weights also
form straight line segments in this projection.

In this mapping, it is possible to represent non-standard deformations where some of the
deformation components are negative. In fact, if we were to take the unnormalized matrices
of the quasi-Fibonacci systems as if they (rather than their squares) represented the relative
aspect tensors, we would find that, in each of the systems F , F ′ and F ′′, the lattices of these
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numbers separate into four interleaved half-resolution grids whose members generically map to
the gnomonic projection in the following ways: If the triple-index vector is completely even
(all three components divisible by two), then the mapping is to the interior of the equilateral
triangular region; but if the lattice is one of the three other shifted half-resolution lattices, then
mapping is to a region formed by the union of an opposing pair of sectors outside the triangle
and having the same two ‘produced’ lines of this triangle as the region boundary (clearly, there
are three such combined exterior regions). A straight line through this gnomonic projection
plane maps back to the original zone plane as a three-asymptote ‘tricorn’, as shown for two
such curves in Fig. 10. We see that such tricorns are all mutually congruent and identically
oriented. This figure also deliberately shows how short segments of such tricorns serve as the
hexad boundaries in the original zone map. The natural geometry for any gnomonic map
is classical projective geometry (Coxeter 1987). For the plane, this geometry includes points
at infinity in each of 180◦ of direction, and a single ‘line at infinity’ that connects them. We
might inquire what curve this most isotropic ‘line at infinity’ corresponds to in the original zone
plane. The answer is that it corresponds to the most symmetricaly-placed tricorn, centered on
the origin. The matrices in the F -systems for which the traces of their squares vanish, always
have their index points lying on this most symmetrical tricorn.

6. Algebraic identities related to asymptotic approximations

Another curious pattern emerges when we look at the cyclic sums of integer powers of the
roots, Rα. Since these cyclically permute as the ordered eigenvalues of M 0, M1 and M2, and
from the trace identity, 4.13a, we find that:

trace(Mp
0M

q
2) ≡

2
∑

α=0

Rp
αRq

α−1 = F ′′

2p−q,−p+2q,−p−q, (6.1)

or,

trace(M p
0M

q
1M

r
2) ≡

2
∑

α=0

Rp
αRq

α+1R
r
α+2 = (−)rF ′′

2p−q−r,2r−p−q,2q−p−r. (6.2)

The dot-product identities can be used to derive from this expression various other (but more
complicated) cyclic sum formulae for the F -numbers and F ′-numbers. We may also use (6.1)
to examine and explain the very obvious feature of the Figs. 5, 6 and 7 — namely the presence
and orientations of directions 120◦ apart close to which the numerical magnitudes of the F -,
F ′- and F ′′-numbers are invariably much smaller than those of the numbers at corresponding
distances from the origin along other radii. For example, take the quantity, F ′′

−19,14,5 = 9, which
is formed by (6.1) from the sum of three terms:

F ′′

−19,14,5 = 9 = R−8
0 R3

2 + R−8
2 R3

1 + R−8
1 R3

0

≈ 0.000263 − 57.32449 + 66.32423. (6.3)

Here we have a negligible first term and the other two terms approximately opposite and equal.
For exact equality of the second two terms we would require that the two exponents in (6.1) be
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in the ratio:

q

p
=

log |R1

R2
|

log |R1

R0
|
,

=
log R0 + 2 log R2

log R2 + 2 log R0
,

≈ −0.357308. (6.4)

In the opposite direction in the F ′′-numbers we find that the three terms that sum to form
F ′′

19,−14,−5 = 3802 are the reciprocals of what we found before, that is, the first term now dom-
inates:

F ′′

19,−14,−5 = 3802 = R8
0R

−3
2 + R8

2R
−3
1 + R8

1R
−3
0

≈ 3802.0023 − 0.017 + 0.015. (6.5)

Moreover, this first-term dominance tends to hold throughout the interior of this broad sector
of the relatively large F ′′-numbers, and, by virtue of the dot-product relations, therefore within
the corresponding sectors of the F - and F ′-numbers. This gives rise to several useful asymptotic
results that hold within this ‘positive sector’, such as:

R0 ≈ +
Fi+2,j−1,k−1

Fi,j,k
, (6.6a)

R1 ≈ −Fi−1,j−1,k+2

Fi,j,k
, (6.6b)

R2 ≈ +
Fi−1,j+2,k−1

Fi,j,k
, (6.6c)

which are exactly analogous to the way ratios of the consecutive large true Fibonacci numbers
relate to the ‘golden ratio’. These identities tend to be particularly accurate at positions in
the number arrays close to the positive ray that corresponds to exponents p and q in the ratio
given by (6.4), or equivalently, with indices, (i, j, k), close to the ratio:

i : j : k = log |R0| : log |R2| : log |R1| (6.7)

≈ (0.809587) : (−0.588862) : (−0.220724).

The angle, β, by which the figures 5–7 must be rotated to make the asymptotically ‘relatively
small’ numbers in the left of these diagrams line up horizontally, as they do in Figs. 8 and 10,
can be shown from (6.7) to be such that:

tan(β) =
log |R1| − log |R2|√

3 log |R0|
(6.8)

≈ tan(14.71◦).

Approximations to the components of the normalized eigenvectors are given within what we
are calling the ‘positive sector’ by:

v0 ≈ Fi+1,j,k−1

F ′

i,j,k

, (6.9a)
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v1 ≈ Fi,j−1,k+1

F ′

i,j,k

; (6.9b)

v2 ≈ −Fi−1,j+1,k

F ′

i,j,k

, (6.9c)

The approximations (6.9a)–(6.9c) located close to where indices approximate the ratio, (6.7),
are particularly useful in fixing the single- or double-periodicity conditions for the 3D Fibonacci
grids whose skeleton grids have either one or two periodic coordinates respectively. Again, the
situation is analogous to the role of the genuine Fibonacci numbers in determining the numbers
of spirals in the 2D Fibonacci grid.

The quasi-Fibonacci numbers also exhibit the ‘duplication formulae’:

F2i + (−)k2F
−i = (F ′

i
)2, (6.10a)

F ′

2i
+ (−)k2F ′

−i
= 7(Fi)2, (6.10b)

F ′′

2i
+ (−)k2F ′′

−i
= (F ′′

i
)2. (6.10c)

where i denotes the composite index, i = (i, j, k). There are analogous formulae for the true
Fibonacci and Lucas numbers. Note that the ubiquitous occurrence of ‘fives’ in the theory
of classical Fibonacci and Lucas numbers is replaced by the ‘sevens’ we find throughout the
algebraic development of the quasi-Fibonacci numbers.

7. Generalization at higher dimensions

As the appendix makes clear, there is a clearly defined pattern by which it is possible
to generalized the two-dimensional geometrical grid construction associated with the classical
Fibonacci numbers to exactly analogous grid constructions in some higher dimensions, together
with infinite arrays, now themselves multi-dimensional of the correspondingly analogous ‘quasi-
Fibonacci’ natural numbers. Apart from the three dimensional case we have dealt with in this
article, the only other dimensionality that could be of conceivable practical use in geophysical
modeling or data assimilation is the four-dimensional case which, owing to the fact that 2n + 1
is not a prime number in n = 4 dimensions, cannot be included in the family of generalizations
analyzed in the appendix.

Nevertheless, it is possible to search for alternative constructions in four dimensions, each
characterized by a sufficiently complete set of mutually-commuting order-four integer-component
matrices. The merit of each example found could be measured objectively by the magnitude
of the largest radius of the voronoi cell of the associated deformation-space lattice that picks
out the ‘hypercubic’ locations of the deformed Fibonacci-type grid; this measures the maxi-
mum possible deformation-distance from perfectly cubic that the Fibonacci grids associated
with such a system can ever suffer. Therefore, a small Voronoi radius is an indicator of a good
generalized Fibonacci grid system. Unfortunately, the ‘best’ four-dimensional Fibonacci grid
generalization by this measure, having a Voronoi cell largest radius of about 0.94 dimension-
less units of deformation, possesses very little symmetry in its deformation-space lattice. If we
are willing to accept a somewhat larger magnitude of maximum departure from the perfectly
(hyper-)cubic Fibonacci lattice, having a Voronoi radius of about 1.2 units of deformation, then
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a much more symmetrical lattice of commuting unimodular integer-component matrices can be
found.

One basis for this recommended system is provided by the three matrices:

N 0 =











1, 1, 0, 0
1, 0, 0, 0
0, 0, 1, 1,
0, 0, 1, 0











, (7.1a)

N 1 =











1, −1, 1, 0
−1, 2, 0, 1

1, 0, 0, 0
0, 1, 0, 0











, (7.1b)

N 2 =











1, 0, −1, −1
0, 1, −1, 0

−1, −1, 1, 1
−1, 0, 1, 0











. (7.1c)

Powers of the first basis, N 0, are simply block-diagonal replications of the powers of the the
classical two-dimension Fibonacci matrix. The degeneracy of the eigen-structure is only resolved
when the other members, N 1 and N 2, of the basis are included. We find that any product of
integer powers of these unimodular matrices or their inverses produces another matrix, say A,
having as its most obvious additional symmetry, the property:

A1,4 = A2,3. (7.2)

Recall that

φ =
1 +

√
5

2
,

and define four coefficients:

a± = 3 ±
√

5, (7.3a)

b± =
√

6(5 ±
√

5), (7.3b)

and from these,

ν1 =
a− − b−

4
≈−0.827090915285, (7.4a)

ν2 =
a+ − b+

4
≈−0.338261212718, (7.4b)

ν3 = −ν−1
1 =

a− + b−

4
≈ 1.20905692654, (7.4c)

ν4 = −ν−1
2 =

a+ + b+

4
≈ 2.95629520147. (7.4d)
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Then the eigenvalues of N (α) are given by the elements of the diagonal matrices:

V
T
N 0V = diag{φ, −φ−1, φ, −φ−1}, (7.5a)

V
T
N 1V = diag{ν1, ν2, ν3, ν4}, (7.5b)

V
T
N 2V = diag{ν4, ν1, ν2, ν3}, (7.5c)

with the eigenvector matrix being of the form,

V =











φg, h, φν3g, ν4h
g, −φh, ν3g, −φν4h

−φν3g, −ν4h, φg, h
−ν3g, φν4h, g, −φh











, (7.6)

and with g and h chosen to ensure these eigenvectors are properly normalized:

g = [(1 + ν2
3)(1 + φ2)]−1/2 ≈ 0.3350700804456, (7.7a)

h = [(1 + ν2
4)(1 + φ2)]−1/2 ≈ 0.1684578700610. (7.7b)

N 1 and N 2 are similar, sharing exactly the same eigenvalues. In all the matrices, eigenval-
ues occur in negative-reciprocal pairs. Another symmetry relates to the deformation-metrical
properties of these three basic matrices: in deformation-space they are all mutually-orthogonal
with respect to the deformation metric. Therefore, the lattice of the deformation-space points
that mark the locus of each instance of a generalized Fibonacci grid configuration that is pre-
cisely cubic, is itself an orthogonal lattice possessing equal spacing in the N 1 and N 2 directions
(the spacing in the N 0 direction being smaller).

With such a high degree of symmetry it is no surprise that the associated ‘quasi-Fibonacci’
numbers that encode the possible matrix products fall into a tidy lattice arrangement. The
symmetry, (7.2), leaves nine distinct components of the generic product, A, of arbitrary integer
powers of the N (α). These can be arranged in a 3 × 3 array according to the scheme:

A ≡











A2,2, A1,2, A1,1

A2,4, A1,4, A1,3

A4,4, A3,4, A3,3,











(7.8)

and this pattern then efficiently encodes all possible product matrices formed of the three basis
matrices when the quasi-Fibonacci numbers of this system are placed at the three-dimensional
deformation-lattice points according to the scheme whose central portion is depicted in Fig.
11. Here the exponents of N 0, N 1, N 2 are denotes X, Y and Z respectively. Each matrix
A is encoded by the 3 × 3 sub-array arrangement on the constant Z layer centered at the
corresponding lattice location. Thus, the identity matrix at the origin is encoded by the central
square of numbers of level Z = 0:

I ≡











1, 0, 1
0, 0, 0
1, 0, 1











. (7.9)
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The generalized Fibonacci grids constructed according to this scheme (or one of the viable
less symmerical alternatives that can be found) would, in principle, allow a gradual and coordi-
nated enhancement of the resolution of both space and time together. For numerical modeling
applications this implies the acceptance of the new challenge of designing fully asynchronous
time integration schemes (no two space-time grid points actually occur at the same time!) For
applications in data assimilation this curious feature of the grid is probably much less of a
problem since most of the numerical operations involved do not presuppose synchroneity.

8. Discussion and Conclusion

We have introduced a new class of computational lattices for applications in atmospheric
data assimilation and possibly for numerical weather prediction. The essential characteristic
of these ‘generalized Fibonacci grids’ is their ability to acquire high resolution in several in-
dependent locations while preserving the overall unity of the grid. In any given region, the
grid appears perfectly regular (though curvilinear, of course), so any standard numerical line-
operations, such as finite differencing, integration, filtering or interpolation, should remain quite
straightforward to apply. In the case of the special version of the Fibonacci grid with uniform
resolution over the sphere, Swinbank and Purser (1999, 2006) demonstrated that the unusual
configuration of this grid is no impediment to achieving successful integrations of a prediction
model.

In two dimensions, the number of degrees of freedom available in the construction of the
guiding ‘skeleton grid’, which must remain approximately orthogonal everywhere, is exactly the
number needed to allow regions of enhanced resolution to be defined more or less arbitrarily.
There is not complete freedom, however, because the grid over the surface of the sphere must
still satisfy certain global topological constraints in order to remain free of singularities. In
the three dimensional generalization of the adaptive qusi-Fibonacci grid system, the number of
orthogonality constraints imposed on the construction of the skeleton grid restrict how the as-
sociated Fibonacci grid can be adapted in a fully three-dimensional way. Crudely speaking, the
three independent constraints of orthogonality of the three-dimensional skeleton grid leave no
spare degrees of freedom left over to let this grid’s Jacobian faithfully follow any arbitrarily pre-
scribed geographical distribution. The six constraints of orthogonality in the four-dimensional
case are clearly even more restricting. Nevertheless, in these higher dimensions, as long as we
are prepared to adjust the effective metric we are using in our definition of ‘orthogonality’, we
still have the ability to allow the grid to concentrate in regions where a higher resolution is
needed.

The methods by which the orthogonal grid can be generated in response to the user’s
preference for enhanced resolution will be the topic of a future note. The best approach seems
to be a variational one, Although there is a literature for such methods (for example, Thompson
et al. 1985) the preservation of the (approximate) constraint of orthogonality is a delicate
problem that requires a special treatment.

At the present time it would appear that using these grids in data assimilation will be less
problematic than using them for the numerical integration of the dynamical equations. There
is very little practical experience in using a fully general curvilinear grid for numerical weather
prediction. In some very specialized theoretical computations, such as in semi-geostrophic
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theory, it is customary to adopt a smoothly distorted grid transformation which, in three
dimensions, leaves the ‘vertical’ directions of the computational lattice canted with respect to
the true vertical, but this is an unnatural-looking grid for the modelling of hydrostatic equations
of motion where the equations are strongly coupled in the strictly vertical direction. However,
as the adoption of nonhydrostatic equations becomes more and more widespread, the need
for the computational lattice to be so strictly constrained disappears. Even such ‘vertical’
processes as the fall of precipitation or the penetration through the atmosphere of incoming
radiation are not strictly confined to vertical directions in reality and, presumably, could be
equally well dealt with in some more general coordinate system such as the quasi-Fibonacci
grid proposed here. The real difficulty will be designing numerical integration methods for
the hydrodynamic equations on unstaggered curvilinear grids which remain sufficiently stable
through large changes in spatial resolution while being sufficiently efficient computationally to
be contenders for future numerical weather prediction systems for operations.

While we have introduced the mathematical framework by which a four-dimensional grid of
the generalized Fibonacci type can, in principle, be constructed, we are even less able to answer
the question, for this dimensionality, of whether such a grid could supply a viable framework for
a prediction model. Compounding the challenges we have mentioned for the three-dimensional
case, it would now be necessary to adopt stable numerical schemes that are also able to cope
with the complete lack of any temporal synchroneity between any pairs of the space-time lattice
points. Presumably, similar challenges have been faced and successfully met in the realm of
relativistic astrophysical models for which, again, the concept of synchroneity is absent (though
for the reason of physical necessity rather than of numerical choice). The advantage of a full
four-dimensional adaptive grid framework is that, where the spatial resolution is made finer, the
temporal resolution automatically becomes finer in the appropropriate proportion. This could
be a helpful factor in maintaining computational stability and in maximimizing the overall
efficiency (by not wasting excessively short time steps in the coarser-resolved regions where
they are certainly not needed). As in the three-dimensional case, the path to using these grids
for data assimilation seems a lot more straight-forward and most of the necessary numerical
tools, in the form of adaptive covariance generators and interpolation procedures, are already
available and could therefore be easily adopted.
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Eigen-structure of n-dimensional quasi-Fibonacci matrices
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Define M
(n) to be the n-dimensional Fibonacci matrix with components,

M
(n)
i,j =

{

1 : i + j ≤ n + 1
0 : i + j > n + 1

. (A.1)

Then the inverse has components:

(

M
(n)

)−1

i,j
=











1 : i + j = n + 1
−1 : i + j = n + 2

0 : otherwise
, (A.2)

and the square of this matrix has components:

(

M
(n)

)−2

i,j
=



















1 : i = j = 1
2 : i = j > 1

−1 : |i − j| = 1
0 : otherwise

. (A.3)

Thus, (M (n))−2 is the explicit matrix representation of the simplest possible finite-difference
approximation to the one-dimensional negative-Laplacian on a unit grid, i = 1, . . . , n, where a
Neumann boundary condition (zero derivative) is implicitly assumed at i = 1

2 , while a Dirichlet

boundary condition (zero value) is implicitly assumed at i = n + 1. Eigenvectors of (M (n))−1

(and hence of M
(n) itself) must therefore be those that correspond to ‘quarter-period’ dis-

crete Fourier transforms in which the wavelengths of the sinusoidal eigenvectors conforming
to the boundary conditions are odd-number multiples of the fundamental wavelength. The
unnormalized eigenvector matrix V can be assumed symmetric with components,

Vi,j = cos

[

(2i − 1)(2j + 1)π

4n + 2

]

, (A.4)

where the eigenvalue index j runs from 0 to n − 1. The corresponding eigenvalues, R−2, of
(M (n))−2 are easily found to obey,

R−2
j = 4 sin2

(

(2j + 1)π

4n + 2

)

, (A.5)

and, after a careful verification of the appropriate signs, those of M
(n) itself are found to be:

Rj =
(−)j

2 sin [(2j + 1)π/(4n + 2)]
. (A.6)

For the case, n = 2, we recover the familiar ‘golden ratio’ numbers:

R0 =
1

2 sin(π/10)
= φ ≈ 1.618, (A.7)

R1 =
−1

2 sin(3π/10)
= −1/φ ≈−0.618. (A.8)
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For the case n = 3 that is the main focus of this paper,

R0 =
1

2 sin(π/14)
≈ 2.247, (A.9)

R1 =
−1

2 sin(3π/14)
≈−0.802, (A.10)

R2 =
1

2 sin(5π/14)
≈ 0.555. (A.11)

From the symmetries of the cosine function in (A.4) and the properties of primes then, pro-
vided (2n + 1) is a prime number, we find that: (i) the absolute magnitudes of the components
of an eigenvector are n distinct numbers; and (ii) the absolute magnitudes of the components
of V in each eigenvector are all permutations of one another such that, from the first prop-
erty, each magnitude appears precisely once in each row and column; (iii) the columns of V

can be re-ordered so in a cycle of period n such that a set of n signed-permutation matrices
(each having a single ‘1’ or a ‘-1’ in each row or column, otherwise of zeroes) advances the
cycle without changing the relative order, and therefore forms a cyclic group of order n. These
symmetries ensures that, sharing these same eigenvectors V , there exist (n − 1) other matrices
that are equivalent to M

(n) via similarity transformations that involve only signed row and
column permutations of M

(n). To see this, note that each one of the signed permutations G

acting on the left of V permutes its rows, and acting on the right of V performs the inverse
permutation on V ’s columns, but, owing to the special structural relationship beween G and
V , the combination leaves the product unchanged:

GV G = V . (A.12)

Thus,
(GMG

T )(GV G) = (GV G)(GT
RG) (A.13)

shows that the eigenvalues are shuffled by the inverse similarity transformation to that of M .
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Figure 1. A two-dimensional polar skeleton grid constructed to be almost orthogonal and to enhance the areal
resolution of the curvilinear grid cells in three specified regions.
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Figure 2. The generalized Fibonacci grid built upon the framework supplied by the skeleton grid of Fig. 1. The
grid is locally never too far from appearing approximately isotropic in the sense that the distances to nearest
neighbors remain consistent all around any chosen grid point. The subdomain marked out by the square is shown

enlarged in Fig. 3
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Figure 3. An expanded view of the subdomain indicated in the two-dimensional generalized Fibonacci grid of
Fig. 2. The subdomain marked out by the square in the present figure is shown further enlarged in Fig. 4
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Figure 4. A further expanded view of the subdomain indicated in the two-dimensional generalized Fibonacci
grid of Figs. 2 and 3, showing that, locally, the Fibonacci grid constructed upon the framework supplied by
the skeleton grid of Fig. 1 appears locally to be perfectly smooth, and therefore suitable for numerical model

integration or data assimilation.
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For all such matrices, F, G,  embedded within this
double series, det[F] = +1 or -1,  and
F*G = G*F = H, another matrix of the series.

Figure 5. F -numbers. When indexed, (i, j, k), the index, i increases to the right (compass direction 90◦), while j
and k increase in the directions 210◦ and 330◦ respectively. The inset shows the configuration of a generic matrix
encoded within these numbers, the index point of the matrix being the central point of this 3-high ‘cannonball

stack’. A corresponding 2-high stack defines a 3-vector hidden within this table of numbers.
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Figure 6. F ′-numbers
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Figure 7. F ′′-numbers
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Figure 8. A part of the ‘zone map’ for zones of reconnection of the adaptive Fibonacci grid in three dimen-
sions, together with F -numbers and associated vectors. The contours depict ‘distance’ of the appropriate hexad
configuration, for each point in the zone map, to the centroid of that hexad, yellow contours being the smallest
distances and black being the largest. A hexad is a natural lattice configuration of six families of line connec-
tions, and the centroid of the hexad corresponds to the case where these connections link nearest neighbors in a
‘closest packing’ or ‘face centered cubic’ arrangement. The points where nine hexad regions meet correspond to

deformation parameters that happen to make the lattice cubic.

34



{-4, 8,-4}{-3, 6,-3}{-1, 5,-4}
{ 1, 4,-5}

{ 3, 3,-6}

{-4, 5,-1}

{-2, 4,-2}
{ 0, 3,-3}

{ 2, 2,-4}

{ 4, 1,-5}

{ 6, 0,-6}

{-5, 4, 1}

{-3, 3, 0}

{-1, 2,-1}

{ 1, 1,-2}

{ 3, 0,-3}

{ 5,-1,-4}

{-6, 3, 3}

{-4, 2, 2}

{-2, 1, 1}

{ 0, 0, 0}

{ 2,-1,-1}

{ 4,-2,-2}
{ 6,-3,-3}

{-5, 1, 4}

{-3, 0, 3}

{-1,-1, 2}

{ 1,-2, 1}

{ 3,-3, 0}

{ 5,-4,-1}

{-6, 0, 6}{-4,-1, 5}

{-2,-2, 4}

{ 0,-3, 3}

{ 2,-4, 2}

{ 4,-5, 1}

{-3,-3, 6}

{-1,-4, 5}

{ 1,-5, 4}

{ 3,-6, 3}

{ 4,-8, 4}

Figure 9. Gnomonic zone map whose projection center is aligned with the origin of Fig. 8
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Figure 10. ‘Tricorn’ curves whose segments form hexad boundaries.
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Figure 11. Central portion of the infinite array of integers definining a particularly symmetrical specification of
‘quasi-Fibonacci’ numbers associated with the construction of generalized Fibonacci grids in four dimensions.
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