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Abstract

Throughout the execution of a data assimilation algorithm, it is necessary to apply, with nu-
merous repetitions, the operator of interpolation from the regular analysis grid to interior target
points at the irregular observation locations, and the adjoints of these operators. In such a situ-
ation, and where a reasonably high level of numerical accuracy is required, it is sometimes worth
the expenditure of a little extra effort in establishing interpolation stencils and their weights
that achieve the formal level of required accuracy with significantly fewer stencil points than
would be required in the more conventional case of an interpolation scheme achieving the same
formal order of accuracy by employing a Cartesian product of basic one-dimensional interpola-
tion operators. A family of so-called ‘diamond interpolation’ schemes provides a natural way to
construct alternative compact stencils and weights for a quasi-uniform rectangular grid in two
or three dimensions. These methods, which employ approximately ‘diamond’-shaped stencils,
allow both values and derivatives of the gridded quantity to be interpolated. If continuity and
smoothness of the target value as a function of position is a requirement, these properties can
also be accommodated by modifications of these methods.

The techniques for generating and applying these interpolation schemes will be described
here together with a brief discussion of some applications in numerical weather prediction.

1. Introduction

Many tasks in numerical weather prediction require interpolations, either from one regular
grid to another, or from a regular grid to irregularly scattered points within the region covered
by the grid. The grid of values upon which the interpolation operator acts is referred to as the
‘source’ grid, and a point at which an interpolation provides an approximate value based on
the nearby surrounding source points is referred to as a ‘target’ point.

One typical application of interpolation in numerical weather prediction is the provision of
initial conditions of a ‘target’ regional model from the gridded ‘source’ values supplied by a
global model. Here, there is a high degree of regularity in both the source and target locations,
which can sometimes be exploited by interpolating through an intermediate grid formed by
intersections of one of the family of coordinates from the source grid with one of the family of
coordinates of the target grid, provided the resulting intersections are transversal (i.e., they do
not becomes tangential anywhere). In this case, one can seldom do better, in terms of com-
putational efficiency, than applying suitable one-dimensional interpolations from the original
source grid to the intermediate grid in a ‘step one’, followed by another set of one-dimensional
interpolations from this intermediate grid to the final target grid in a ‘step two’. Among
the suitable one-dimensional interpolation techniques are: Lagrange polynomials; smoothed
Lagrange polynomials (in order to guarantee continuity of derivatives with respect to target
points); Hermite interpolation (when derivatives at source grid points are available); and poly-
nomial spline methods. This form of ‘dimensional splitting’ of the grid-to-grid interpolation
problem has been formalized in semi-Lagrangian models, where the process needs to be carried
out each time step, and is referred to as the ‘cascade method’ (Purser and Leslie 1991, Leslie



and Purser 1995.) It has been shown to improve the computational efficiency of interpolations
in such models without compromising accuracy (e.g., Rančić 1995; Nair et al. 1999; Zerroukat
et al. 2002).

Another typical situation occurs where no obvious regularity of the distribution of target
points can be exploited. (An apt example is the case of data assimilation, where the targets are
the observation points, which are essentially random.) The obvious and standard method of
interpolating from a regular grid to an essentially random location inside the spanned region is
to use a Cartesian product of the appropriate one-dimensional interpolation operators. Thus,
for the example of a two-dimensional grid inscribed in Cartesian x and y directions, a bicubic
interpolation is effected by interpolating four times in the x direction along the lines of contant
y that straddle the target, then interpolating through the four intermediate target results in
the y direction to attain the final target value (see Fig. 1). This requires that 4 × 4 = 16
original source values and four intermediate results are invoked to compute the target. In
a tri-cubic interpolation in three dimensions, a total of 4 × 4 × 4 = 64 original source values
and 20 intermediate results are involved in the computation of the final target. However, if
it is anticipated that several interpolations to the same target are going to be carried out,
the 4 × 4, or 4 × 4 × 4 stencil of weights can be precomputed to keep the computational cost of
each application (in terms of multiplications and additions) equal to only 42, or 43, respectively.
Formally, a ‘fourth-order’ of accuracy is achieved by such an interpolation using cubics, since the
magnitude of the largest interpolation errors for the interpolation of a smooth source field scales
in proportion to the fourth power of the source grid spacing. With centered stencils possessing
a given even number, N , of points in each dimension, the interpolation formulae based on
Lagrange polynomials have an order of accuracy equal to this N , an average operation count
for the application of these scheme in two and three dimensions of approximately N 2 and N3,
respectively, and produce interpolated values that are continuous across grid box boundaries,
but with discontinuities in their derivatives there.

(a)

x

y

(b)

Figure 1. Schematic depiction of the conventional two-dimensional interpolation from a grid to a target point
using a Cartesian product of one-dimensional interpolations. (a) Four interpolations in the x direction along grid
lines of constant y; (b) Single interpolation in the y direction from the intermediate targets to the final target.

For about the same computational cost of application, it is possible to construct interpola-
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tions of a formal accuracy diminished by only one order, but possessing first derivatives of target
values that now remain continuous. This is done by linearly-weighting, in each one-dimensional
central interval, the pair of off-centered Lagrange polynomial formulae having an odd number,
N − 1, of points, which respectively omit each end point of the full one-dimensional centered
stencil of the N points. It is because these schemes naturally break the problem into the sep-
arate dimensions that they are so convenient to apply and their weights are very efficient to
calculate. Thus, they can be used also in grid-to-grid interpolations where, for geometrical
reasons (such as the presence of polar singularities), the dimensional splitting options are not
available. However, inherent in the Cartesian product construction of such multidimensional
interpolation formulae is an unnecessarily accurate computation of the polynomial ‘cross-terms’
of a degree higher than the N − 1 sufficient to achieve the formal Nth-order of accuracy. As
a consequence, there exist other, smaller stencils than the Cartesian product stencils used for
the multi-Lagrange polynomial interpolations, but which nevertheless attain a comparable ac-
curacy. The generic family of ‘diamond interpolations’, which we shall develop in the later
sections, exploits this opportunity to achieve an equal order of interpolation accuracy at a
smaller cost of each application. The cost of computing the interpolation weights for the new
methods is generally greater, but in cases where the same stencil is used repetitively, such as in
data assimilation, or in cases of interpolation to model boundary and initial conditions, where
geometrical consideration preclude dimensional splitting methods, the diamond interpolation
formulae can be computationally advantageous.

2. Polynomial interpolation

In one dimension, the standard polynomial interpolation technique for the estimation Ā of a
the value at a target straddled by an even number N of stencil points, {xi}, i = 0, . . . , N − 1,
where the gridded values are {Ai}, is the Lagrange polynomial:

Ā(x) =
N−1
∑

i=0

Wi(x)Ai, (2.1)

where the interpolation weights, Wi are defined:

Wi =
∏

j 6=i

(x − xj)

(xi − xj)
. (2.2)

An equivalent construction of the weights uses a Vandermonde matrix (Johnson and Riess
1982) to express the condition that a polynomial of the required degree fits the values at all
the stencil’s source points. The Vandermonde matrix V is the square N × N matrix of rows
and columns numbered 0, 1, . . . , N − 1, such that, with respect to a suitable local coordinate
system, the general element of V is simply:

Vi,j = xj
i . (2.3)

A ‘Vandermonde vector’, v, corresponding to the target point, x, can also be defined in the
same way:

vj = xj, (2.4)
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and then, if the first N coefficients of the interpolating polynomial form the vector, a =
[a0, . . . , aN−1]

T , and the stencil values are similarly gathered into the vector, A, we can use
the collocation condition,

V a = A, (2.5)

to infer the polynomial coefficients a, then apply them at the target to evaluate the interpolated
value:

v
T
·a = Ā. (2.6)

Assume the matrix V is nonsingular. Then, from (2.5) we have

v
T
·a = v

T
V

−1
A. (2.7)

Thus,
Ā = W

T
·A. (2.8)

where
W = V

−T
v. (2.9)

One advantage of the Vandermonde representation of this problem is that, if it is not only
the value, but also derivatives of the field, A, that we want to estimate at x, then these desired
target values are obtained very conveniently from their Taylor series in terms of the coefficients,
a. In extending this method to higher dimensions, we find that another significant advantage
is that the matrix method allows us to ‘pick and choose’ the stencil points and the fitted
polynomial coefficients to some extent. It is this latter property that we shall exploit in the
construction of more compact stencils in two or three dimensions.

3. The primary diamond interpolation scheme

Suppose that, in two dimensions, we wish to minimize the stencil sufficient to evaluate
uniquely all the coefficients of the general interpolating polynomial of degree, N − 1. The
number of such coefficients is MP = N(N + 1)/2 and, just as these coefficients might most
naturally be tabulated in a triangular array, a suggestive stencil of the same number of points
might also take a triangular form, as illustrated for the case, N = 4, as the array of MP = 10
circled points shown in Fig. 2a.

We shall show, by the following simple argument that, provided the labeled lines are dis-
tinct, this configuration does indeed provide sufficient information to determine all ten of the
polynomial coefficients up to total degree, N − 1, for a general polynomial in (x, y). First, we
note that, for each term of total degree, N − 1, in the polynomial, there is exactly one rectan-
gular sub-array of the stencil whose dimensions in the x and y directions suggest the unique
evaluation of the corresponding (N − 1)-th-order derivative term by finite derivatives of the
lowest order. For example, Fig. 2b shows, by the crosses, the six points of the stencil needed
to evaluate the coefficient a2,1 of the term, a2,1x

2y1, (of total degree, three) of the polynomial.
Having obtained the four such degree-3 coefficients, i.e., a3,0, a2,1, a1,2 and a0,3, and subtracted
their contributions from the original polynomial, we are left with a new residual polynomial
of degree, two, and can dispense with the right-most points of the original stencil, i.e., the
four points, (x3, y0), (x2, y1), (x1, y2), (x0, y3). The residual configuration of six stencil points
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y3

Figure 2. (a) A triangular array of points (circles) on a possibly nonuniform grid that will suffice to allow
interpolation by a polynomial of total degree three. (b) the subset of that array (large crosses) from which it is
possible to estimate the particular polynomial coefficient, a2,1 (see text) of total degree three by finite differences.

suggests, in turn, the way to evaluate uniquely the three polynomial coefficients of total degree,
two. Continuing in this way, we exhaust all the stencil points and accumulate all MP = 10 of
the complete polynomial coefficients.

(a)

x0 x1x2 x3

y0

y1

y2

y3

(b)

x0 x1x2 x3x4

y0

y1

y2

y3

y4

Figure 3. (a) A rearranged triangular array of points (circles), logically equivalent to that of Fig. 2, for a scheme
with N = 4, but built upon lines that alternate in an expanding pattern on either side of the target point. The

resulting ‘diamond’ stencil is more compactly arranged. (b) The diamond stencil for N = 5.

Note that the foregoing argument applies whether or not the lines of the stencil are uniformly
spaced; Fig. 2 shows the lines as unequally spaced but, in fact, they need not even be arranged
in monotonic order. The idea behind the basic construction of a diamond interpolation stencil
is to exploit this freedom to choose the successive labeled lines in the different grid dimensions
so that they fill out an alternating pattern moving outwards on either side of the target point,
starting from whichever line is closest (in each separate dimension) to this target. Thus, in
the case, N = 4 (but now depicting the source grid as a uniform one), the stencil of diamond
interpolation points for the target (shown as the ‘plus’ sign) is the set of circled points of Fig.
3 that lie within the diamond-shaped region. Note that each labeled horizontal and vertical
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line of the stencil of Fig. 3 shares exactly the same set of transversally-labeled points as in the
corresponding line of the stencil of Fig. 2. The algebraic structure of the calculation of stencil
weights is therefore not essentially different. But the lines have been shuffled into a different
order that makes the resulting stencil more compact. In terms of the L1-norm, this construction
guarantees the most compact stencil that suffices to allow interpolation of a given degree, so it
is likely to be a robust and reliable choice numerically. If we define the L1-norm distance for
an assumed unit-spaced source grid to be,

L1 = |x − x′| + |y − y′|, (3.1)

then the ‘radius’, by this measure, of the diamond stencil centered, (x0 + 1/4, y0 + 1/4), i.e., the
center of the half-unit-square grid-box quadrant that contains the target point, is just L1 = N/2.
The generalization to an arbitrary number of grid dimensions is not hard to find; for example,
in three dimensions, the number of stencil points to give an interpolation of formal order N is
M = N(N + 1)(N + 2)/6, and the stencil points now lie inside a compact octahedral region of
‘radius’ L1 = (2N + 1)/4.

Although the stencil of the simplest diamond interpolation scheme always fits within a
‘diamond-shaped’ region (in the sense appropriate to the dimensionality involved), the fit is not
a tight one along each side; that is, the stencil is slightly asymmetrical under mirror reflection in
each of the coordinate directions, as we can immediately see in the examples of Fig. 3. Optimal
use of the method requires that we not only identify the nearest grid point to the target to fix
the lines labeled x0, y0, etc., but we must also identify the quadrant (in two dimensions) or
octant (in three dimensions) adjoining this nearest grid point which contains the target. These
regions are shown in gray in Fig. 3. Only then can we properly orient the diamond stencil to
most compactly and centrally envelop the target.

Implementation of the basic diamond interpolation proceeds in two stages. First, upon
identifying the location and orientation of the stencil, the weights, W P , are found by a linear
inversion analogous to (2.9), but where the matrix, V , is the appropriate two-dimensional or
three-dimensional generalization of the Vandermonde matrix containing all the distinct poly-
nomial terms up to total degree, N − 1, in the coordinates measured in grid units from the
local stencil origin, (x0, y0) or (x0, y0, z0). Note that if we adopt the convention that the point
(x0, y0) serves as the local coordinate origin and we appropriately mirror-reflect (in either or
both of the coordinate directions), then the matrix, V , for a given N is the same for every
stencil and therefore need only be inverted once.

The relative addresses of all the stencil points relative to this origin form a standard pattern
common to all interpolations of a given order except for the small number (four, in two dimen-
sions; eight, in three dimensions) of possible orientations corresponding to the mirror reflections
in each coordinate direction. These orientations can be recorded as a simple ‘corner code’. The
second step is the implementation according to (2.8), but with the stencil positioned and ori-
ented by the nominal center, (x0, y0), and corner code. To make the diamond interpolation
approach worth the extra effort of computing its weights, we expect that the application step
is one that will typically be performed at each target point (but with different gridded data, of
course) a large number of times.
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4. Refinements

(a) Interpolating derivatives

One simple refinement of the basic diamond interpolation method allows it to be used
to evaluate the derivatives of the gridded quantity at the target point. For example, in two
dimensions, where the vector v contains the various mixed powers of x and y:

vj(i1,i2) = xi1yi2 , i1 + i2 < N, (4.1)

and hence

∂vj(i1,i2)

∂x
= i1x

i1−1yi2 , (4.2a)

∂vj(i1,i2)

∂y
= i2x

i1yi2−1. (4.2b)

Then the weights, X and Y , defined by

X = V
−T ∂v/∂x, (4.3a)

Y = V
−T ∂v/∂y, (4.3b)

used with the same diamond stencil, produce the x- and y-partial derivatives of the gridded
field at the target point, but to an order of accuracy now of only N − 1. Higher degrees of
derivatives are easily accommodated by extending this method in the obvious pattern.

(a) (b)

Figure 4. (a) Stencil (circles), of the symmetrized diamond interpolation scheme of order N = 4 and, (b) of
order N = 6. The target point for these schemes lies within the central shaded grid box.

(b) The ‘S-diamond’ scheme

Using a basic polynomial interpolation scheme, we do not expect the derivatives at this
target to remain continuous with respect to motion of the target point across the boundary
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of the domain of validity of each particular stencil. However, with diamond interpolation, the
discontinuity is worse since it also affects the undifferentiated field itself. The discontinuities
do not occur as the target moves from one grid box to the next, corresponding to a change in
stencil orientation but not of stencil origin x0; instead, the discontinuities occur as the target
crosses the center lines (or planes) of the grid box, corresponding to a change in the local origin
(x0) and a change in stencil orientation. Thus, one remedy that removes the discontinuity of
interpolated value is obtained by blending, bilinearly or trilinearly across the grid box, the four
or eight basic diamond interpolation schemes nominally associated with all targets points in the
neighborhood of the center of the grid box (where all the transitional center lines, or planes,
intersect). For an even N , this scheme makes the stencil a bit larger, but also conveniently
makes it a more symmetrical shape, as we can see for the two-dimensional examples shown,
for N = 4 and N = 6, in Fig 4. (The attempt to form a scheme of this kind with odd N leads
to exactly the same stencil as the even N + 1 scheme, so the odd schemes confer no numerical
advantage.) Distinguishing these ‘secondary modifications’, or (‘S-diamond’) schemes with
even N from the original ‘primary’ (‘P-diamond’) schemes, we find that the stencil sizes of the
even-order S-schemes are given by:

MS = 2N(2N + 2)/2, (4.4)

in two dimensions, and:
MS = 2N(2N + 2)(2N + 4)/6, (4.5)

in three dimensions.
Note that, for the case of N = 4, the stencil pattern is exactly the same as that described in

Simmons (1991), but attributed there to Phillipe Courtier, for applications in semi-Lagrangian
models. However, it does not appear that the methods used in the semi-Lagrangian context
achieve the formal order of accuracy, N = 4, that the more careful calculation of the stencil
coefficients by the bilinearly-weighted symmetrized S-diamond method allows. Unfortunately,
the symmetrized diamond stencil only partially addresses the problem of smoothness of tar-
get values; while undifferentiated values remain continuous, the method does not remove the
discontinuities of the derivatives, which persist.

(c) The ‘T-diamond’ scheme

A more fulfilling remedy, which removes discontinuities in both the interpolated value and

the interpolated derivatives, can be obtained by a slightly more general averaging of the basic
diamond schemes, three in a row in each dimension, and weighted according to a profile based
on quadratic ‘B-splines’ (as defined, for example, in Schoenberg 1967, de Boor 1978). B-splines
are closely related to piecewise-polynomial maximally-smooth partitions of unity. For example,
on a one-dimensional unit grid, define the positive remainder, r = x − FLOOR(x), where FLOOR

denotes the largest integer not larger than x (as in the FORTRAN function of the same name).
Then the functions,

Si(r) =



















0 : i < 1
r2/2 : i = 1

(1 + 2r − r2)/2 : i = 2
1 : i > 2

, (4.6)
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serve as smooth partitions of unity in each unit segment of x, as illustrated in Fig. 5a. Therefore,
by defining the quadratic ‘B-spline’ segements:

Bi(r) = Si(r) − Si−1(r), (4.7)

the fundamental B-spline function can be assembled:

B(x) =



























B<1(r) ≡ 0 : x < 0
B1(r) ≡ r2/2 : 0 ≤ x < 1
B2(r) ≡ (1 + 2r − 2r2)/2 : 1 ≤ x < 2
B3(r) ≡ (1 − 2r + r2)/2 : 2 ≤ x < 3
B>3(r) ≡ 0 : 3 ≤ x

. (4.8)

(a)

 0 0.5 1.0
0

0.5

S
[x

]

1
0.5 1.0

2

0

0.5

1.0
(b)

0 1 2 3
 x

0

0.5

1.0

B
(x

)

Figure 5. (a) Graphs of the two functions, S1(r) and S2(r) which smoothly partition unity, and from which the
quadratic B-spline is constructed. (b) the graph of the fundamental quadratic B-spline for a regular unit grid.

The non-trivial portion of this function is shown in Fig. 5b. B(x) is continuous in both its
value and in its first derivative as x varies and, since

∞
∑

i=−∞

B(i + r) = 1, ∀r ∈ [0, 1), (4.9)

it can be used to form a progressive and smooth weighted average of a sequence of terms, such
as the successive polynomial interpolation scheme evaluations of a given target value. With
this smooth average of such schemes, regardless of the lack of continuity between consecutive
members, their aggregrated result will be guaranteed continuous in value and derivative. In the
case of diamond interpolation in two dimensions of a given order, N , for a grid formed by the
integer values of x and y, denote by ‘W P,(I,J)(x, y)’ the basic weights deemed appropriate for
the target (x, y) in the grid box quadrant for which,

I = FLOOR(2x), (4.10a)

J = FLOOR(2y). (4.10b)
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Note that I and J change at twice the rate as the grid indices and effectively index a double-
resolution grid. It is also convenient to define the corresponding double-resolution remainders:

qx = 2x − I, (4.11a)

qy = 2y − J. (4.11b)

Then this B-spline-smoothed form of the diamond interpolation scheme, which we shall re-
fer to as the ‘tertiary modified’, or ‘T-diamond’ scheme, and whose weights will be denoted
W T,(I,J)(x, y), can be defined as the a proper weighted average of the nearest 3 × 3 array of
the basic P-diamond interpolations:

W T,(I,J)(x, y) =
1

∑

J ′=−1

1
∑

I′=−1

B(qx + 1 − I ′)B(qy + 1 − J ′)W P,(I+I′,J+J ′)(x, y). (4.12)

The weight given to any one of the contributing P-diamond schemes in (4.12) is seen to be
a function of (x, y) formed as the Cartesian product of the x- and y-oriented B-splines (each
with the profile shown in Fig. 5b) on a half-unit grid spanning the target, shown in Fig. 6 as
the shaded region of nine half-unit squares. The contribution of the particular P-scheme, being
a polynomial, is perfectly smooth; therefore the smoothness and continuity of the T-scheme is
determined entirely by the smoothness and continuity of the B-spline weighting.

Figure 6. Stencil (circles) of the T-diamond scheme of order N = 4. The central set of nine small gray-shaded
squares indicate the nominal centers of each of the P-diamond schemes that contribute, with B-spline weightings,
to the definition of this T-diamond scheme, as described in the text. The central, darker shaded square contains

the actual target

Being the superposition of nine of the original diamond stencils, the resulting stencil of W T

is not quite so obviously diamond-shaped. The case with N = 4 is illustrated in Fig. 6, where
the target is contained within the darker gray square, and the principal target domains of the
contributing P-diamond schemes are indicated by the surrounding 3 × 3 array of shaded half-
unit squares. The complexity of its construction makes it computationally less attractive except
in applications where smooth continuity of the interpolated values is important and where, as
before, it is expected that multiple applications of the same set of weights will be required to
make the investment involved in computing these weights worthwhile.

We can compare the results of each of these schemes for N = 4. Fig. 7 shows the interpolated
results, at very high target resolution, along the same random transect through the interior of
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Figure 7. Interpolated values of a quantity, P interpolated at very high resolution along a randomly oriented
transect through the interior of a three dimensional unit grid whose source values are initialized with independent
unit-variance Gaussian random numbers. (a) The values obtained with the primary diamond scheme, ‘P’ at
N = 4, showing that values are piecewise-polynomials without continuity wherever there is a transition in the
stencil. (b) The ‘S’ scheme in which the stencil is slightly enlarged and symmetrized, showing that the interpolated
value is now continuous along the transect, but possesses slight kinks at transitions of these stencils. (c) the
results for the same transect and data using the ‘T’ diamond scheme with the same N = 4, showing a higher

degree of smoothness.

a three-dimensional grid of source points where, in order to emphasize any tendency to form
discontinuities, the test values on the grid have been given as completely independent unit-
variance Gaussian random numbers. Panel (a) shows the ‘P-scheme’, and, as expected, the
random gridded data are interpolated to piecewise continuous segments exhibiting some positive
correlation, but no formal continuity, at the points of transition through the grid wherever the
interpolation stencil of source points changes. Panel (b) shows the S-diamond scheme results
for the same data and transect, where now the continuity of value, but not of the derivative, is
clearly evident. Finally, the panel (c) shows the superior continuity and smoothness achieved
by employing the B-spline-smoothed T-diamond scheme.

5. Discussion

Three families, ‘P’, ‘S’ and ‘T’, of diamond interpolation schemes have been defined and
compared. They are intended for applications where the greater cost of obtaining the stencil
weights (compared to conventional Cartesian product interpolators of the same order N) can
be offset by the greater efficiency of the application of the schemes in situations where the
applications to each given fixed target are repeated many times with only the gridded source
data varying between applications. It is helpful to quantify this relative efficiency by tabulating
the stencil size of each scheme compared to the nearest equivalent Cartesian-product scheme.
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This is done in Table 1 for the two-dimensional schemes, and in Table 2 for the corresponding
three-dimensional schemes. In two dimensions, the T-scheme stencil contains MT points where,

MT = [(N + 1)2 + 3(N + 1) − 2]/2 (5.1)

which is smaller than the corresponding Cartesian product stencil of bilinearly weighted La-
grange polynomials [requiring (N + 1)2 points] for N > 1. In three dimensions, the modified
stencil contains

MT = [(N + 1)3 + 9(N + 1)2 + 8(N + 1) − 12]/6 (5.2)

points, which is, again, less than the corresponding Cartesian product stencil’s size of (N + 1)3

for any N > 1. Tabulations of these various stencil sizes in two and three dimensions are given
in Tables 1 and 2 for N up to six.

The space-dependent weightings involved in the construction of the S- and T-diamond
schemes complicates the evaluations of the derivatives at the target points, and no attempt
has been made to carry this procedure beyond the evaluation of first derivatives. The basic
P-diamond method is not subject to such complications and would therefore be the scheme of
choice for applications where it desirable to construct a low-order Taylor series about a single
target point. In the data assimilation context, examples where this could be of value is where
a ‘vertical’ string of observations is in actuality a slanting vertical curve, such as the path of
an ascending radiosonde, the oblique rays of many of the off-nadir satellite soundings, or the
locations at which GPS radio occultation rays intersect the more substantial portions of the
atmosphere (where the significant phase delays occur) at each occultation ‘event’.

Another application of the described method is in the provision of boundary (or initial) con-
ditions of a model derived by interpolation from another model which contains it. A variation
of the theme involves the ‘Yin-Yang’ configuration (Kageyama and Sato 2004) of twin domains,
mutually nested, where each obtains boundary conditions, at every significant step of the dy-
namics, from its counterpart. Since the geometrical configuration of one grid relative to the
other does not change, the computation of the weights associated with diamond interpolation
stencils can be done once and the efficiencies associated with the smaller stencils (for a given
order of accuracy) provide a useful economy for the duration of the model’s simulation.

Early tests of the diamond interpolation method considered the use of grid spaced nonuni-
formly in their coordinates. However, in addition to suffering from an increase of complexity,
these methods tended to exhibit large excursions of the interpolated values between grid points
in a behavior reminiscient of (but not exactly equivalent to) the ‘Runge’ effect (that degrades the
value of significantly uncentered high-order polynomial interpolations even on uniform grids).
Therefore, it is recommended that, in cases where the given grid is non-uniform, a coordinate
transformation that forces the grid spacings in each direction to become uniform in the new
coordinate be adopted prior to application of the diamond schemes.

A package of FORTRAN-90 utility codes that facilitate the construction and application of
the methods described in this note for unit-spaced grids has been written (and is available, upon
request, from the author). Methods of the ‘diamond’ type have already been used for several
years at NCEP in the data assimilation context and are now also being considered for imple-
mentation in the boundary-reconciliation procedure in investigations of model configurations
employing the ‘Yin-Yang’ grid framework.
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TABLE 1. Comparison of stencil sizes in two dimensions

N MP MS N2 MT (N + 1)2

2 3 4 4 8 9
3 6 9 13 16
4 10 12 16 19 25
5 15 25 26 36
6 21 24 36 34 49

TABLE 2. Comparison of stencil sizes in three dimensions

N MP MS N3 MT (N + 1)3

2 4 8 8 20 27
3 10 27 38 64
4 20 32 64 63 125
5 35 125 96 216
6 56 80 216 138 343
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