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Abstract

This article describes a fairly general approach to the synthesis of smooth spatial covariance
operators, based on the application of certain geometrical properties of regular lattices. The
work is motivated by the need, in data assimilation, to be able to convolve an arbitrary distri-
bution of gridded data by a smooth covariance function, which we may assume locally to be
the superposition of at most a small set of bell-shaped quasi-Gaussians. This operation must
be carried out repeatedly during the course of the iterative solution to the optimization prob-
lem that constitutes the major computational task of objectively assimilating new data. Since
it tends to be highly non-local in all spatial dimensions, it becomes the main computational
bottle-neck of the whole process. It is therefore imperative that the combination of numerical
operations that collectively synthesize the covariance convolution are constructed to be as ef-
ficient as possible. With efficiency as one of the main objectives, we find that, once we have
established the Gaussian form as the versatile building-block for the additive synthesis of more
general covariance shapes, we are able to synthesize the Gaussian covariance profile itself via
only a modest number of orientations of parallel line-smoothing filters applied sequentially.

An earlier publication supplied a cursory outline of the most basic forms of these algorithms,
referred to respectively as the Triad and Hexad methods in two and three dimensions. However,
a great deal more about the underlying geometry and symmetry principles of these techniques
has been discovered recently. This allows us to extend the methods systematically to achieve
a greater degree of spatial consistency in the case of the markedly inhomogeneous statistics
so typical of meteorological or oceanic data analysis. The modified blended versions of these
methods utilize a few additional directions of filtering and a systematic reconstruction of the
collective smoothing parameters to ensure a smoother result overall.

We describe here some of these formal geometrical insights and the new algorithms they
have inspired and we briefly touch upon the construction of four-dimensional fully anisotropic
covariances by the analogous extension of this generic approach to covariance synthesis in
dimensions greater than three.

1. INTRODUCTION

The synthesis of covariances in an efficient manner is one of the crucial components of a
modern optimal data assimilation procedure in atmospheric or oceanic analysis (Thiébaux and
Pedder 1987, Daley 1991, Ghil et al. 1997, Lewis et al. 2006). The simulated covariance shapes
must be reasonably close to those that describe the statistical uncertainty of the background
error field, yet they must be of a form that permits rapid execution on a computer since, in
almost all the standard optimization techniques typically considered for problems of this kind,
the convolution operation involving the covariance kernel must be repeated many times (about
100, for example) in the course of the iterations used. Since this part of the process often
comprises the main bottle-neck, it is very important to make the synthesis of the covariance as
efficient as possible, subject to retaining a sufficient degree of fidelity to what is presumed to
be the appropriate structure of background error.



The geophysical data assimilation problem is generally a multivariate one since dynamical
considerations force us to take explicit account of the strong statistical correlations that occur,
for example, between wind and mass fields. Other important correlations exist among the ther-
modynamic variables and the various tracers in the atmospheric case, or between temperature
and salinity in the oceanic case. These aspects of variability can usually be separated out by
the adoption of appropriate new variables that combine different families of the characteristic
dynamical modes. For example, a stream function and mass combination that corresponds to
the geostrophically balanced structures usually possesses substantially greater variance than the
remaining component of unbalanced stream function, expressed in a common measure such as
an energy norm. Similarly, (unbalanced) horizontal divergence is inhibited, though not ab-
solutely prohibited, by assigning a relatively small amplitude of covariance to this quantity’s
background error. Except in boundary layers where surface friction effects are felt, the correla-
tions between these balanced and unbalanced parts can be neglected without detriment to the
resulting analysis. In this way, a multivariate problem is conveniently separated into univariate
(scalar) components that are then only indirectly linked in the optimization problem through
the observations.

Having reduced a multivariate covariance into separated scalar covariances, we model each
scalar’s covariance using a particular characteristic spatial profile. Historically, such covariances
have been artificially restricted to a geographically uniform homogeneous form. Also, there
has been an almost universal tendency to model the covariances of the derived balanced and
unbalanced scalar variables as having isotropic functional forms, as if the natural kinematic
stretching effects of deformational flows, or the well developed horizontal and vertical thermal
gradients in frontal zones and jets could be neglected. In the light of recent studies such
as Otte et al. (2001), we find such assumptions less easy to justify, especially now that the
computational tools are being formulated that make the treatment of more general covariances
computationally feasible. The proper shape for a covariance is not easy to define or to assess
from even vast stores of data, especially when these shapes are permitted to be adaptive to
geography and ambient flow characteristics. However, if, as is usually the case, the scalar
analysis variables can be chosen such that their covariances are predominantly characterized by
bell-shaped spatial profiles, then it is reasonable to suppose that the following principle holdst:

e The best bell-shaped isotropic and homogeneous covariance model of background error
tends to possess fatter tails and sharper peaks than a typical example of the best spatially
adaptive model of the same background error.

The justification for this idea, which we may refer to as the Kurtosis Principle, is that
the isotropic and homogeneous model must be taken as an average, or mixture of a great
variety of the best adaptive profiles that have different degrees and orientations of spatial
stretching and a wide range of characteristic spatial scales. But the averaging of such a mixture
inevitably tends to increase the kurtosis. The kurtosis is a measure of the size of the fourth
central moment of a distribution normalized by the square of the second central moment and,
informally, quantifies the degree of fat-tailedness of the distribution. While valid distributions,
including some which formally qualify as candidates for covariances, may have a kurtosis less

t I thank Dr. David Parrish for the discussions on this topic that stimulated the work presented in appendix A.



than that of a Gaussian (for which the value is k = 3), it is hard to find distributions as natural
as the Gaussian (in terms of smoothness, for example) that possess a lower kurtosis. We may
use this as an argument to claim that, in an adaptive-covariance assimilation scheme it is more
justifiable to use the Gaussian model than it is in schemes where, owing to technical limitations,
the covariance has to be artificially restricted to being isotropic and homogeneous. Some of
these fundamental properties of kurtosis are dealt with in appendix A for the one-dimensional
case but, as shown in Purser 2004, the concept has a generalization in higher dimensions also.
Even when the Gaussian assumption by itself is invalid, it is often possible to capture the main
features of a covariance through a linear superposition of just a few Gaussian contributions (e.g.
Wu et al. 2002). For all these reasons, we shall proceed under the assumption that the goal of
our covariance synthesis is primarily to produce an anisotropic quasi-Gaussian distribution as
efficiently as possible.

The Gaussian model enjoys several important analytical properties, some of which have
been exploited in data assimilation. This is true not just for statistical analyses, but also for
the empirical successive corrections variety, as in the Barnes (1964) or in the earliest recur-
sive filtering analysis scheme of Purser and McQuigg (1982) and Hayden and Purser (1995),
all essentially variants of the methods first pioneered by Bergthérsson and Do66s (1955) and
Cressman (1959). First we note that the result of a simulated diffusive process applied for a
finite pseudo-time results in an effective Gaussian convolution. For essentially isotropic diffu-
sion this property was exploited by Derber and Rosati (1989) in their ocean analysis. More
recently Weaver and Courtier (2001) have extended this technique quite effectively to produce
anisotropic covariances for an ocean assimilation, and Weaver and Ricci (2004) show that the
restriction to Gaussians may be relaxed somewhat by the strategy of using a limited number of
implicit solver iterations in the diffusion process. As Courtier (1997) has discussed, linear opti-
mal data assimilation methods may be solved equivalently either by a linear inversion in model
space or, following the tradition established by the classical optimum interpolation approach of
Gandin (1963), in the space of measurements. The equivalence of these dual methods extends
to the numerical condition numbers of the two methods. Using the framework of the Physical
Space Analysis System (PSAS) of da Silva et al. (1995), Gaspari and Cohn (1998, 1999) have
shown how to construct compact-support approximations to Gaussians from rational functions
of relative displacement. In this way, the covariances may be evaluated efficiently without
the supporting structure of a numerical grid, making this covariance choice very attractive for
measurement-space analysis. Given the widespread preference for Gaussian-based covariance
models it is worthwhile to examine some of the possible reasons for this preference.

A notable property of the Gaussian family is that it enjoys closure under linear deformation
of the space in which it is embedded. Since the Fourier transformation (which is the spatial
power spectrum) is also Gaussian, it too inherits this property.

There is another well known property of the Gaussian which is crucial to the systematic
construction of covariances by the means of what we have called Triad and Hexad methods
in two and three dimensions respectively: Gaussians convolved with each other produce a
Gaussian. That this remains true even when the combining factors are degenerate Gaussian
distributions confined to lines (regardless of orientation) makes it possible to build up any
homogeneous two-dimensional anisotropic Gaussian from a triad of (three) line-smoothers, and
to generate a three-dimensional one from a hexad of (six) line-smoothers. The lines referred to



are generalized grid lines that thread the grid possibly at oblique (non-Cartesian) orientations.

Note that the number of line-smoothers required is equal to the number of the independent
components, in the relevant dimensionality, of a symmetric aspect tensor (a term that gen-
eralizes the concept of an aspect ratio). This tensor represents the centered second-moment
of the response of the full product filter, normalized by its zeroth moment. The triad and
hexad algorithms outlined in Purser et al. (2003b) efficiently determine the line orientations
and associated smoothing coefficients that correspond to a given aspect tensor at each point of
an analysis grid.

At NCEP, we favor the recursive filter technique (for example, Purser et al. 2003a) to provide
the quasi-Gaussian line-smoothers for the new anisotropic analysis schemes under development,
because of this technique’s inherent computational efficiency. However, the triad and hexad
methods can equally well be combined with other styles of line-filtering, including simulated
iterative diffusion, direct convolution and multigrid-based smoothing strategies.

It is to be expected that, when the characteristic scale over which the covariance parameters
vary is comparable with the covariance scale itself, then several iterations of the sequential line-
smoothers may be needed to ensure a result devoid of numerical artifacts that betray the
line-by-line construction process. However, we have found that, even when the changes in
the covariance parameters are very gradual, the transition from one triad or hexad to another
is sometimes accompanied by a numerical dislocation in the result which is not sufficiently
mitigated merely by increasing the number of iterations in the construction process.

The problem of numerical dislocations occurs because, although the line-filter second mo-
ments, or weights prescribed by the triad or hexad algorithms for the oblique orientations are
continuous when they approach zero, they do not approach the zero value sufficiently smoothly.
Much of this article deals with a generalization of these procedures which, by including a larger
set of line-smoothers at each geographical point, enables the smoothing weights that vanish
to do so more gradually, so the aforementioned numerical artifacts may be completely and
elegantly eliminated. The modified methods will be referred to as the blended triads and
blended hexads algorithms. While the geometrical analysis required to develop the capa-
bility to perform these algorithms is not trivial, the application of them remains a relatively
straight-forward procedure.

In order to establish the geometrical framework, we introduce the so-called aspect space
of covariance shapes in the next section and describe its various metrical characterizations.
We particularly examine how the line smoothers on the two-dimensional lattice (‘Z2’) are
interpreted geometrically in the corresponding aspect space, since the geometrical principles
established here form the foundation for the various smoothing algorithms described in the
later sections. Section 3 describes the construction and geometrical interpretation of the basic
triad algorithm, the simplest of our algorithms to handle anisotropic shapes, which applies to
the 2D lattice. Section 4 extends this analysis and description to the basic hexad algorithm for
the 3D lattice and devotes separate subsections to the topics of symmetries and Galois fields,
which have been of crucial significance in constructing geometrically elegant and versatile forms
of this algorithm. Roughly, the second half of this paper is devoted to the refinements of the
basic triad and hexad algorithms to their corresponding blended forms. This has been found
necessary, or at least desirable, in cases of pronounced spatial inhomogeneity in the aspect
tensors, in order to avoid artificial unsightly numerical effects wherever the triads or hexads of



line smoothers change to a new configuration. Section 5 treats the blended triads algorithm and
shows idealized examples of its performance compared to the basic triad method. Section 6
treats the considerably more complex case of the blended hezads method for the 3D lattice. The
geometrical manipulations here involve up to six dimensions, and the systematic reduction of
the problems to manageable pieces is discussed within several specialized subsections. Section
7 discusses (without any great detail) the prospects for extending these methods to four dimen-
sions. Here, the complexity of the geometrical problems increase again by orders of magnitude.
While the basic form of the 4D algorithm has been successfully determined, the extension to a
blended form of the algorithm remains an unfinished project at this time. A further discussion
of the relevance and future prospects of these methods is provided in the concluding section 8.
Some of the more technical topics are relegated to the appendices.

2. ASPECT SPACE

(a) Geometry of the aspect space associated with R™

We characterize the multidimensional Gaussian shapes,
B(x) = exp(—xTA™1x/2), (2.1)

through the geometry of their aspect tensors, A. In two real dimensions (R?) these tensors,
being symmetric, possess three independent components, Az, Ayy and Agy,.

A
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Figure 1. Transformation of the aspect tensor components to form a 3-vector whose region of validity is the
interior of an infinite circular ‘aspect cone’.

As shown in Purser (2004), this vector of three independent components may be conveniently
rotated to a standard form, the aspect vector, A, whose components are:

A = (A~ Ay)/2, (2:2a)



Ay = Ay, (2.2b)
Ay = (Age+4y)/2, (2.2¢)

as sketched in Fig. 1.

|A| = A, A_= Const.

0

Figure 2. Schematic cross-section bisecting the aspect cone in a plane containing A, with a geometrical inter-
pretation of the eigenvalues of the aspect tensor as the pair of orthogonal distances to the boundary of the cone.
The locus of aspect tensors corresponding to any constant value of the determinant forms a convex hyperboloid.
Central projection (i.e., by a ray passing through the apex) onto the surface of this kind associated with unit
determinant provides one way of standardizing the scale of the aspect tensor while preserving its shape.

The component, Az, is aligned with the axis of the aspect cone occupying the region:

(A} +43) < 43, (2.3a)
A3 > 0, (2.3b)

which constitutes the entirety of the feasible region where the eigenvalues,
Ae = Az + (A7 + 43)'/2, (2.4)

of A are non-negative, as required for a distribution of the form (2.1) to make sense as the
profile of a smoothing kernel. When the apex angle of the cone is, by the choice of metric,
made a right-angle, the eigenvalues A; and A_ can be thought of as the orthogonal distances
to the boundary of the cone, as shown schematically in Fig. 2.

In any number n of physical dimensions (i.e., x € R™), a natural measure of separation
for aspect tensor A and an infinitesimal perturbation to it, A 4+ dA, is obtained by taking v/2
times the smallest Frobenius norm (e.g. Golub and Van Loan 1989) among infinitesimal spatial
deformation operators dT that transform A into A + dA according to the congruence:

A+dA=(1+dT)AQ+dT)T. (2.5)



The square of this natural distance measure is then:
1
IA, A+ dA||2 = 5tmce[(A—ldA)Q]. (2.6)

In terms of this metric, any affine transformation of the spatial domain, such as a shear,
rotation, contraction, or a combination of these, which transforms the aspect tensor according

to the congruence:
A’ = UAUT, (2.7)

for an arbitrary nonsingular operator U, induces an isometry in aspect space, in the sense that
|A", A" + dA'|| = ||A, A + dA]|. (2.8)

Using this result to transform one of an arbitrary pair of aspect tensors, A, Az, to the identity,
, it is readily shown that the formula for an infinitesimal separation integrates to the following
formula for a finite separation:

n

1
AL, Ag)? = 2 > (log A;)?, (2.9)
i—1

where A; are the eigenvalues of (Al_lAg). Equivalently,
2 1 —1p 12
A1, A = Strace{ log(AT ' A2)1, (2.10)

where the logarithm function has been extended in the natural way to tensor arguments. Trans-
formations U that map the grid into itself have matrix representations that have integer com-
ponents and determinants of either +1. The transformation of tensor A is therefore of a kind
that preserves its determinant. Equivalently, such a transformation confines the image of each
vector A to a manifold of dimension (n — 1)(n + 2)/2 in the aspect cone everywhere normal to
the vector A itself in the sense implied by the metric (2.6). We can choose a representative
manifold to correspond to aspect tensors having unit determinant. When distances within this
manifold are measured by the induced metric (2.6) we find that, for each n > 1, we are dealing
with a particular variety of non-FEuclidean geometry of negative intrinsic curvature.

(b) Geometry of the aspect space associated with Z?

Returning to our two-dimensional (n = 2) example, the surfaces of constant determinant,
D =X )_, form concentric hyperboloids:

A3 — (A2 + A3) =D, (2.11)

(an example of which is sketched in Fig. 2) upon each of which the natural metric (2.6) induces
the classical hyperbolic geometry with negative-unit Gaussian curvature. (It is the choice of
the otherwise arbitrary constant term, % in (2.6) that gives us this convenient magnitude for
the curvature.) It is useful to centrally project all aspect vectors onto the representative D =1
member of this family of surfaces for the purposes of visualization. In effect, this normalizes



the scale of the covariance without altering its shape. A map of this surface is obtained by a
projection of rays about a focus at the origin, A = [0, 0, 0]7, through the plane normal to the
cone’s axis, A3 = 1. This leads to a gnomonic mapping in which the space is projected to the
interior of the unit disk and the shortest paths with respect to metric (2.6), or geodesics, of
aspect space map to straight lines segments within this circle. This is traditionally referred to
as the Klein representation of classical hyperbolic geometry (Hilbert and Cohn-Vossen (1999).
Visualizing the outer regions of the map is often made easier by adopting the alternative stere-
ographic ray projection instead. In this case, the projection focus is placed at A = [0, 0, —1]7
and the mapping plane at A3 =0 in order to map the geometry once more to the interior of
the unit disk. This yields what is traditionally referred to as the Poincaré representation of
hyperbolic geometry, with geodesics now projecting to circular arcs that intersect the limiting
circle normally.

(a) (b)

AJA, A[A;+D "]

()
) O ) O |
N

Klein Poincare

Figure 3. Representations of aspect space corresponding to two-dimensional aspect tensors, normalized by two

commonly used map projections. (a) the ‘Klein’, or gnomonic, representation; (b) the Poincaré, or stereographic,

representation. In both cases, the shapes of the corresponding covariance profiles are depicted at selected points
by a single contour. The same set of aspect tensors is depicted in both maps.

In order to see the way shapes are mapped by these two standard representations of the
hyperbolic aspect space, Fig. 3 shows the Klein (a) and Poincaré (b) representations side by
side with a configuration of covariance shapes (delineated by a single representative contour)
centered at their proper positions within the respective maps. We may also examine how sets
of grid line orientations appear in these maps. A lattice generator consists of a non-vanishing
and irreducible integer-vector. The position vectors of all those unit-lattice points that are
visible (unobscured by other lattice points) from the origin are collectively equivalent to the set



of generators. A generator image in aspect space is the aspect vector equivalent to the rank-
one tensor obtained as the outer product of the lattice generator with itself. Thus, in the context
of 72, the generators g; = [1,0]7 and go = [0, 1] define the Cartesian ‘x’ and ‘y’ directions of
the lattice. As a tensor, the generator image of g; has components A, =1, Ay, =0, Az = 0.
Likewise, the tensorial generator image of go has components, Az, =0, Ayy =1, Azy = 0. Their
respective vectorial generator images are therefore: A; =[1/2,0,1/2]7, Ay =[-1/2,0,1/2]T.
The image of the negative of any generator is clearly identical to the image of the generator
itself, since the transformation involved is homogeneous of second degree. Note that all rank-one
aspect tensors map to the boundary of the aspect cone and, if obtained from integer-component
generator vectors, twice their image vector components, i.e., [241, 249, 243], always forms a
(possibly degenerate) Pythagorean integer triplef.

Klein Poincare

Figure 4. The honeycomb of triads of aspect space as they appear in (a) the Klein representation; (b) the
Poincaré representation. A few of the generators of the two-dimensional unit lattice are marked at the appropriate
locations around the limit circles of these maps.

Fig. 4 shows the Klein (a) and Poincaré (b) map representations of the images of some of
the integer lattice generators, as indicated, together with connecting geodesics that divide the
hyperbolic space into the regions associated with triads of these generators. These connecting
lines are the projections of the edges of the polyhedral shell forming the (lower) surface of
the convex hull of the aspect space images of all the grid generators. Given that the negative
of a generator is, for all practical purposes, the equivalent of that generator, we can exploit
that choice of sign in expressing each member of the feasible triad of generators written in the

fm fact, all the Pythagorean triples, once simplified by division of common factors, are expressible in this way.



standard tableau form:

g1
g |, (2.12)
g3
so that,
g1 +8g2+g3=0. (2.13)

Another property that every feasible triad is found to possess is that:

det{g1; g2} = * det{go; g3} = £ det{g3; g1} = £1. (2.14)

Although, by inverting the order of some of the triad generators, we could insist that this
determinant is always +1, the triad algorithm can be put into a more symmetrical form when
the sign of this determinant alternates from one triad to the next. The aspect space triangles
associated with the triads of line generators tile the hyperbolic domain without gaps in a
completely symmetrical configuration when interpreted in terms of the natural metric of this
space. Thus, despite the distorting effects of the map projections, every triangle is actually
equivalent in shape and size. A celebrated theorem of Gauss relates the area of a polygon
inscribed by geodesics in a surface of constant curvature to its summed exterior angle excess,
defined as the sum of exterior angles, minus 27. For example, in the Euclidean plane, an
equilateral triangle has three identical exterior angles (the angle through which one turns as
one traces out the outline of the polygon) of 27/3, giving zero excess, which holds for all other
simply-connected polygons too. In a uniformly curved surface the angular excess is minus the
product of the curvature and the area. Thus, for the triangular tiles of the hyperbolic aspect
space, where the interior angles are degenerate and where the curvature is minus-unity, the
angular excess, and hence each tile’s area, is 7. However, the largest diameters of the tile are
infinite, so toward the three vertices, each tile tapers exponentially, as interpreted according to
the natural metric (2.6).

Any valid aspect vector maps, by central projection, into either: (i) the interior of precisely
one triad or, (ii) to a point on the interface between two adjacent triads. The projection takes
the form,

3
A=Y wi(gigl) (2.15)
i=1

In the case (i), the three weights w; by which the generator images are modulated to recover
the target aspect vector are all positive; in the case (ii), two of the weights, associated with the
two generators common to both adjoining triads, are positive but a zero weight is assigned to
the third, ambiguous member of either of the two possible triads. Thus, the triad decomposition
is essentially unique, and the weights are always in proportion to the barycentric coordinates of
the central projection of the target aspect vector into the plane containing the three generator
images.
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3. GEOMETRY OF THE BASIC TRIAD ALGORITHM FOR Z2

The basic triad algorithm initially takes a feasible trial triad of three generators satisfying
(2.13) and (2.14), and carries out the projection (2.15) to determine, from the signs of the three
w;, whether this is the valid triad for the given aspect tensor. When one w; is negative, the
triad is mot valid and the offending generator associated with this negative weight must be
replaced by a better candidate. There is only one feasible alternative (apart from a trivial
sign reversal of all three triad members) at each step that satisfies (2.13). One of the most
symmetric prescriptions for what we shall refer to as the transition rules asks that, when the
ith generator of the tableau is replaced, the new tableau is given by the rule, R(i), defined for
each i as follows:

g2 — 83 g1 —81
R1)=| -g |, R2)=|g-8g |, R(3) = g2 : (3.1)
g3 —83 g1 — 82

It is readily verified that these rules preserve the condition (2.13) but switch the sign of the
determinant in (2.14). Performing a transition, then reversing it according to the same rule
exactly restores the original tableau. Each iteration finds a feasible triad closer to satisfying the
positive-weights criterion and never fails to converge if the aspect tensor itself is a valid one.
This iterative process is essentially equivalent to a special variant of the simplex algorithm
of linear programming (e.g. Dantzig 1963), the connection being revealed most directly by
applying a Legendre-Fenchel transformation (Rockafellar, 1996) to the geometrical picture of
the aspect-cone structures we have developed here. The search for the valid triad amounts to a
progression of steps along the infinite binary-tree formed by all the connecting triads. For the
hexad, we shall see in the next section that the geometry and topology become considerably
more complicated. Nevertheless, many of the same underlying principles will continue to apply.

(a) Efficient scheduling of line filters

Even assuming we have succeeded in decomposing the given field of aspect tensors into its
triads of component line smoothing operators, a practical problem arises when the time comes
to apply these line filters efficiently. With processing occurring in parallel the line filters must
be partitioned amonst the available processors and the work synchronized in a way that ensures
that the filtering operation along one line segment is not interrupted by one of the other line
filtering operations on a second segment that intersects the first.

A solution to this problem of line filter scheduling involves the adoption of a ‘color coding’
of all the generalized grid line orientations using three colors such that, for every valid triad,
the three line orientations are associated with the three colors. Such a color coding of the two
dimensional lattice of line orientations is shown in Fig. 5a, where the origin is shown in solid
black. A 2 x 2 pattern containing the three colors (and one uncolored element) is repeated in
both coordinate directions to tile the lattice in a way that ensures that: (i) every integer vector
corresponding to a ray generator has a color; (ii) every valid triad possesses all three colors. The
second property, though perhaps less obvious, is easily proved inductively. Fig. 5b shows the
Poincaré map of triads with some of the generators’ colors, consistent with panel (a), indicated
by the pointers arranged around the limiting circle.

11



Figure 5. Panel (a) displays a coloring of the lattice of grid generators. Precisely one of the three colors occurs

on, and thereby characterizes, any given generalized grid ray extending from the origin (marked solid black).

The pattern is doubly periodic, repeating a basic 2 x 2 block. That this simple arrangement suffices to confer

upon each valid triad the complete palette is corroborated by the corresponding Poincaré map of panel (b). The

alternating gray and white triads, which match the alternating signs of their determinants in (2.14), serve to
make the triad regions visible.
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By performing all line operations synchronized by color, in three distinct stages, we nec-
essarily avoid any possibility of a clash of intersecting line operators. We shall see in later
sections that more elaborate color codings are sometimes necessary, as when we generalize the
present basic triad algorithm to its blended form, or pass to lattices in higher dimensions. We
defer discussion of the abstract algebraic tools which serve to guide these generalizations until
we consider the three-dimensional examples, where the power and elegance of these algebraic
techniques becomes self-evident.

4. GEOMETRY OF THE BAsic HEXAD ALGORITHM FOR 73

(a) Symmetries

Hexad generators of an idealized three-dimensional unit-spaced lattice Z* are sets of six
integer 3-vectors whose images in the corresponding 6-dimensional aspect space form the vertices
of the tiles that collectively make up the five-dimensional boundary of the convex hull of these
image aspect vectors. Again, the tiles are congruent to one another, interpreted in terms of
the natural metric (2.10) of this aspect space, but the configuration is less regular than in the
triad case owing to fact that each hexad tile is not internally symmetric under all the possible
permutations of its vertices.

As described in Purser et al. (2003b), the configuration of a hexad’s six grid-line generators
and their negatives lie at the vertices of a linearly transformed cuboctahedron. The geomet-
rical reasons why this particular shape is selected are discussed in appendix B. Not counting
the chirality-reversing improper rotations, which are undetectable in aspect space, the relevant
symmetry group of this configuration, in the most isotropic representation of the geometry,
would be referred to as the octahedral group. It permutes the diameters linking the centers
of the four opposing pairs of triangles of this configuration, and in this sense is a representation
of the abstract ‘symmetric group’ (‘S4’) whose order (number of elements) is 4! =24. We
have found it more convenient to adopt a different convention for the labeling and grouping of
standard generators than was used in Purser et al. (2003b); we shall adopt the convention that,
for the integer Cartesian grid, Z3, the first three standard generators, g;, g2, g3, when formed
into a matrix, give positive unit determinant,

det{g:; g2; 83} = +1, (4.1)

(i.e., they form a right-handed basis for the grid). Also, interpreted as position vectors, they
form one of the triangular facets of the linearly-deformed cuboctahedral configuration. The
remaining three of the set of six standard generators then obey the 3-cyclic pattern:

g4 = 83— 82, (4.2a)
g5 = 8183 (4.2b)
g = 82— 8- (4.2¢)
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(a) (b)
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9s -d,

Figure 6. Schematic depiction of hexads of generators on a cubic lattice outlined by their associated convex
hulls that form linearly-deformed cuboctahedrons. (a) A hexad configuration involving the six generators, g1-ge
and their negatives. (b) The configuration evolved from that of (a) by replacing generator pair, g1 and —g: by
the only valid alternatives, which we call, g7 and —g7. In practice, the generators of (b) would now need to be
re-labeled so as to conform to the standard tableau, (4.3) and the rules, (4.1) and (4.2a)—(4.2c).

This puts g; and g4 at opposite corners of a quadrilateral facet, and likewise for the other
two associated pairs, go and g5, and g3 and gg (see Fig. 6a). To highlight the significance of
this pairing of generators that share the same quadrilateral, we shall often adopt the convention
of tabulating the generators of the hexad in the matrix tableau generalizing the one used for
the triad and which, for the hexad defined above, would be:

g1 84
g 85 |- (4.3)
g3 86

As a short-hand, it is also convenient sometimes, in large lists or tabulations of single
generators, to drop the ‘g’ and simply write the algebraic sign and the generator’s identifying
subscript. Thus, we can explicitly list all the 24 valid ways of choosing from the complete set
12 generators, {£g;},i=1, ..., 6, those patterns of six that would, according to the relabeling
implied by the tableau (4.3), also conforming to the rules (4.1)-(4.2c). But we do this in Table
1 by setting down the two columns of threes of the standard tableau into a combined row of six
in each row and in each of the three major columns of the table. Here, the three rearrangements
implied by the entries in each row of this table are related simply by 3-cyclic permutations of
these entries.

The iterative algorithm for finding the valid hexad that has all non-negative weights w;
is very like the triad algorithm. The generator associated with a negative weight is replaced;
but, in contrast to the triad algorithm, where valid aspect tensors cannot make more than
one weight of a trial triad negative, in the case of the hexad algorithm, as many as three of
the weights can be negative in an erroneous choice of structurally feasible trial hexad. It is
customary to choose the identity of the most negative w; as the criterion for selecting the
direction to be replaced. Again, there is then only one feasible alternative replacement possible
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TABLE 1. SET OF ALL POSSIBLE CONSISTENT EQUIVALENT LABELINGS OF THE HEXAD DEFINED BY
(4.3), WHOSE TWO COLUMNS ARE HERE LISTED AS CONSECUTIVE ROWS OF THREE EACH SEPARATED BY
A SEMICOLON. THE THREE LABELINGS IN EACH ROW OF THE TABLE ARE 3-CYCLIC ROTATIONS OF EACH
OTHER IN WHICH THE PRIMARY TRIANGULAR FACET OF THE CUBOCTAHEDRON CORRESPONDING TO THE
FIRST THREE LABELS IS THE SAME, BUT ROTATED TO ITS THREE DIFFERENT ORIENTATION RELATIVE
TO THE LABELING STENCIL. THE PRIMARY TRIANGLES IMPLIED BY THE FOUR ROWS OF SECOND HALF OF
THE TABLE ARE THE RESPECTIVE OPPOSITES OF THOSE OF THE FOUR ROWS OF THE FIRST HALF OF THE TABLE.

+1, +2, +3; +4, +5, +6 | +2, +3, +1; +5, 46, +4 | 43, +1, +2; +6, +4, +5
~1, —5, +6; —4, —2, +3 | -5, +6, —1; -2, +3, —4 | +6, —1, —5; +3, —4, -2
+4, -2, —6; +1, —5, —3 | -2, —6, +4; -5 -3, +1 | —6, +4, —2; -3, +1, —5
—4, +5, —3; —1, +2, —6 | 45, -3, —4 42, —6, —1 | =3, —4, +5; —6, —1, +2
—1, =3, -2 +4, +6, +5 | -3, —2, —1; 46, 45, +4 | —2, —1, —3; +5, +4, +6
+1, —6, +5 —4, +3, —2 | —6, +5, +1; +3, -2, —4 || 45, +1, —6; —2, —4, +3
—4, +6, +2 +1, -3, —5 | 46, +2, —4; -3, —5 41 | +2, —4, +6; —5, +1, -3
+4, 43, -5 -1, —6, +2 | +3, —5, +4 -6, +2, —1 || —5, +4, +3; +2, —1, —6

once the reject has been selected. However, as we have seen from its intrinsic symmetries,
there are 24 different valid ways of labeling the generators of a given hexad and, since there
are six ways in which a transition from one hexad to a neighbor can potentially occur, there
are, in principle, 24% = 191,102,976 distinct and equally correct ways of choosing the complete
list of transition rules of the hexad algorithm. We greatly narrow down the choice by imposing
some reasonable conditions of symmetry on the algorithm. In addition to endowing the method
with a satisfying aesthetic form, the imposition of some symmetries will also lead later to some
substantial practical advantages in the blended form of the algorithm, which we discuss in a
section 6.

The first symmetry we shall impose on the transition rules is that, under simultaneous and
equivalent cyclic rotations of the labels {1, 2,3} and {4, 5, 6} of the generators, the same rules
are retained. It is then sufficient to list the rules R(1) for the arrangement into the tableau slots
of (4.3) resulting from the replacement of g1, and the rules R(4) for the case of a replacement
of g4; the rules R(2) and R(3) can be recovered from R(1), while rules R(5) and R(6) can be
recovered uniquely from the form of R(4). This reduces the number of combinations to 242 =
576. The other condition, which becomes especially desirable in the case of the blended hexads
method, is to ask that, if possible, the algorithm automatically chooses labeling orientations at
each stage such that, on taking the hexad algorithm around any circuit of successive hexads,
starting and ending at the same one, the initial and final labelings are always the same. (There
are no nontrivial circuits in the triad case since the entire connected set of triads forms an
unending binary tree rather than the multiply-connected network that characterizes the
collection of hexads; however, note that even in the triad case, we fashioned the transition rules
in order to preserve the original labeling under reversal of a transition.)

For the hexad, the 2-circuit is what occurs when the second step undoes the first. When
we further restrict the transition rules of our 576 3-cyclic possibilities to those that at least
yield an invariance of labels under all six of the possible 2-circuits, we find that we are left
with only 16 possible choices. These are given in Table 2, where just the R(1) and R(4) rules
are explicitly listed, each ‘unrolled’ as in the format of Table 1, but the ‘7’ in the table now
referring to a new replacement generator, ‘g7’. For the cyclic rotations of the transition rules
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to the other positions, we would also need to define ‘gg’ and ‘gg’. For later reference we define
all three here in terms of the existing six:

g7 = 8318s (4.4a)
gs = 81184, (4.4b)
g9 = 82 + g5, (44C)

and note that the transition rules are now invariant to synchronized cyclic permutations of
the three triples, {g1, 82,83}, {84, 85, 86} and {g7, gs, 89} Figure 6b shows the result of the
transition from the hexad shown in Fig. 6a when the generator pair, +g1, is deleted and the
pair, £g7, is added.

TABLE 2. SET OF ALL THE REPRESENTATIVE TRANSITION RULES R(1) AND R(4) FOR SCHEMES INVARIANT TO

3-CYCLIC LABEL ROTATIONS AND THAT PRODUCE LABELINGS INVARIANT TO TRANSITIONS THROUGH 2-CIRCUITS.
BULLETS DENOTE THOSE THAT ARE ALSO 3-CIRCUIT AND 6-CIRCUIT INVARIANT.

Index R(1) R(4) 3-circuit 6-circuit
consistent | consistent

1 +3, +4, —6; +5, +7, —2 | =5, 43, +7; +6, -2, +1 . .

2 +4, —6, +3; +7, —2, +5 | +7, -5, +3; +1, +6, -2 .

3 —6, +3, +4; —2, +5, 47 | 43, 47, —5 -2, +1, +6 .

4 -3, +6, —4; +5, -2, 47 | =2, -7, —6; +3, -1, 45 .

5 +6, —4, -3; -2, +7, +5 | -6, -2, -7, +5, +3, -1 .

6 -4, -3, +6; +7, +5, -2 | -7, -6, —-2; -1, 45, +3 .

7 +5, —4, +2 43, -7, +6 | +2, +6, +7; +3, +5, -1 .

8 —4, +2, +5; -7, +6, +3 | +7, +2, +6; -1, +3, +5 .

9 +2, +5, —4; +6, +3, -7 | +6, +7, +2; +5, -1, +3 . .

10 -5, —2, +4; +3, 46, -7 |45, -7, =3; +6, +1, -2 .

11 -2, +4, -5 +6, -7, +3 | -3, +5, -7, -2, 46, +1 .

12 || +4, =5, -2 -7, +3, +6 | -7, -3, +5 +1, -2, +6 .

13 +7, 43, +2; -4, -5, —6 | -1, -2, =5 47, -3, —6

14 +7, +3, +2; —4, -5, —6 | -1, 46, -3; -7, -5, +2

15 -7, -2, -3; -4, -6, -5 | -1, -2, =5 47, -3, —6

16 -7, -2, -3; —4, -6, =5 | -1, +6, —-3; -7, =5, +2

A glimpse of the topology of the network of connections corresponding to adjacency of
hexads reveals that there exist nontrivial 3-circuits, 6-circuits, and circuits of every larger size.
For example, the two alternative hexads obtained by the algorithm when g; is replaced, or
when g4 is replaced, are themselves mutual neighbors, therefore forming a 3-circuit with the
original hexad. Our set of 16 transition rules of Table 2 is further narrowed down to only the
first 12 of this list when we impose the restriction of label invariance with respect to excursions
around the 3-circuits, as indicated in the table. When we take excursions around the 6-circuits,
we are left with only two possible contenders. It turns out that these two schemes, indexed
in the table as schemes ‘1’ and ‘9’, do indeed possess the universal label invariance that we
seek, but we shall need more powerful geometrical and algebraic techniques to prove this. The
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formal mathematical tools we need include the abstract algebraic structures called Galois
fields (Dickson 1958). Since these will also figure prominently in the development of efficient
ways to schedule the various line-filters that both the triad and hexad methods imply, it is
worth devoting a subsection to a description of the fundamentals of this algebra, and to the
properties that pertain to the hexad algorithm. This will set the stage for the proof that our
two winning transition rules do indeed lead to unconditional label invariance.

(b) Galois fields

A Galois field possesses p™ elements where p is prime and 7 is a natural number. Addition
and commutative multiplication are defined and the usual distributive and associative rules
of algebra hold. For addition, the elements form an n-dimensional vector space over integers
modulo-p, while the p™ — 1 non-null elements can be shown always to be capable of being
put into an arrangement that conforms to the cyclic group of this order under multiplication.
The prime field, GF(p), is just the field of integers {0, ..., p — 1} where addition and mul-
tiplication are carried out modulo-p. The elements of a Galois extension field GF(p™) can
be thought of as the field of the equivalence classes of the polynomials having the elements
of the associated prime field, GF'(p) [which is referred to as the so-called base field of this
GF(p™)], as coeflicients, and where the resulting polynomials are taken as equivalent, modulo
some appropriate primitive polynomial of degree n. Thus, by the prescribed equivalence,
every polynomial can be reduced to an equivalent one of degree not exceeding n — 1 and having
coefficients not exceeding p — 1, giving the total of p™ possible nonequivalent elements of the
resulting extension field. All the constructions of Galois fields of a given order according to
this prescription turn out to be mutually isomorphic — that is, the Galois field of a given order
is essentially unique up to isomorphisms. It is always possible to find a primitive element
of the field that generates all nonzero elements by taking its successive powers — hence the
identification with the cyclic group structure under multiplication. For our purposes, it is the
Galois fields whose n is the dimensionality of the lattice, Z", that are relevant. For example,
consider the following construction of GF(8) = GF(23) using the primitive polynomial,

PA)=1+X+X,

of degree n =3 and the primitive element,

multiplying under modulo-p ( =2 ) rules. We shall denote the null element, ¢y, and generate the
7-cycle group (under multiplication) of remaining elements, ¢y, ..., c7;. Starting with ¢; =1,
these remaining elements may be produced by repeated multiplication by the primitive element,
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c2 =q()\). The complete list of the elements in this representation of GF(23) is therefore:

N\

c = 0,

cCl = 1,

Cy = )\,

3 = N\,

s = MN=1+2) ( (4.5)
s = A+ )\2,

g = N+HXN=14+2+)2

= AN +XN=1422 )

The relevant ordered-triples of coefficients that define this representation are conveniently listed
in Table 3.

TABLE 3. A REPRESENTATION OF THE ELEMENTS OF THE
GALOIS FIELD, GF(2%)

ELEMENT INTEGER-VECTOR

oF GF(8) COEFFICIENTS
Co 0 0 0
c1 1 0 0
() 0 1 0
c3 0 0 1
C4 1 1 0
Cs 0 1 1
Ce 1 1 1
cr 1 0 1

In order to relate the geometrical properties of lattices to Galois fields, consider the regular
n-dimensional lattice of integer displacement vectors x generated by a basis set B multiplying
an integer n-vector, v € Z":

x =Bv. (4.6)

Then we can identify each lattice location x with an element ¢; of GF (p™) whenever the ordered
coordinates v are congruent, modulo-p, with the corresponding coefficients of the polynomial
representation of this ¢;. When the components of a non-vanishing v have no common factor,
this induced mapping is always to a non-null member of the Galois field. We can therefore think
of the nonzero elements of GF(p™) as a way to ‘color’, with a palette of p™ — 1, the nodes of
the lattice that are wvisible (that is, not obscured by intervening lattice nodes) from the origin.
However, for p > 2 we find that each ray of the lattice would associate with (p — 1) of the colors,
namely, a subset C; of the non-null elements of GF (p") of the form {cF¢;}, k=0,...p—2
where ¢, is one of the elements that satisfy ¢? ' = ¢; (the root of the multiplicative unit element
of the field). Thus, the colors associated with rays are more consistently identified with the
various sets C;j rather than the elements ¢; themselves. In this way, there are (p™ —1)/(p — 1)
colors in the palette for rays associated with the scheme using GF(p™). (This convention
assumes the colors attributed to rays are invariant to a reversal of direction; if we wish to color
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oriented rays and distinguish between the two orientations of a line, then we may double the
palette of colors when p > 2). It should be no surprise that the coloring of the two-dimensional
lattice of generators and the associated triads of Fig. 5 can now be seen as an application of this
Galois field identification for the case of GF(4), implying three colors. A 13-color identification
is of considerable importance to the efficient construction of the blended hexads algorithm, as
we shall discover. Table 4 contains one possible representation of this field.

TABLE 4. A REPRESENTATION OF ELEMENTS OF GF(3%) AS TRIPLES OF THE SUCCESSIVE
COEFFICIENTS OF POLYNOMIALS WHOSE NONZERO INSTANCES ARE GENERATED USING
MODULO-3 ARITHMETIC WITH A PRIMITIVE ELEMENT, A, AND A PRIMITIVE POLYNOMIAL,
142X+ X3, 13 ‘COLORS’, Ci, ARE ASSOCIATED WITH ROWS OF THE TABLE CONTAINING
THE NON-NULL ELEMENTS.

COLOR ELEMENT OF GF(27) INTEGER-VECTOR COEFFICIENTS
Co 0 0O
Ci ci, Ci4 100 2 00
C> c2, cCi5 010 0 2 0
Cs c3, Cig 0 0 1 0 0 2
Cy ca, C17 2 1 0 1 2 0
Cs cs, Ci8 0 2 1 01 2
C6 Cg, C19 2 1 2 1 2 1
Cr cry  C20 1 11 2 2 2
Cs cg, C21 2 21 11 2
Cy Co, C22 2 0 2 1 0 1
010 Ci0, C23 1 1 0 2 20
Cu Cc11, C24 0 1 1 0 2 2
Cia c12, C325 2 1 1 1 2 2
Cis c13, C26 2 01 1 0 2

Although the matrix B of basis vectors in (4.6) is not the only one we can choose to define
the lattice, and alternatives lead to different mappings between the Galois field elements and
the lattice points or lines, one property that does not change with the different choices of
B is the classification of the subsets of the elements of the Galois field that correspond to
the lattice planes through the origin. In our example of the representation GF(2%), we find
that, in addition to ¢y, the lattice planes through the origin involve the following seven triples:
(c1, €2, €4), (€2, ¢3,C5), (c3, C4, Cq), (4, c5,7), (C5, C85 1), (C8, 7, C2), (C7,C1,c3). This incidence
pattern is nicely encapsulated in the diagram of Fig. 7a, where the numbers are the indices
of the Galois elements. This may be interpreted as the specification of the Fano plane (Fano
1892, Coxeter 1968), the simplest example of the class of finite projective planes, where
the numbered elements are the points and the connecting straight lines and the circle identify
the seven lines of this geometry. Each pair of lines intersect at a single point and each pair of
points defines a single line in a projective plane. Similar constructions of finite projective planes
result from the incidence relations among lattice planes and lines when the coloring of lattice
points derives from the mapping from the three-dimensional lattice to the elements of any other
GF(p3) [with (1 + p+ p?) colors] while the equal number of inequivalent lattice planes acquire
subsets of (1 + p) colors in accordance with representations of GF(p?) associated with each of
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these planes. In each case, the palette of (14 p + p?) colors forms a cycle, the points of the
cyclic projective plane, within which the incidence pattern defining the lines is simply the same
basic stencil rotated coherently through all (1 + p + p?) of the possible positions. For the seven-
color example with p =2 the stencil is always in the shape (or its reverse) shown in Fig. 7b
where it is picked out for the case of the line of points indexed, 1, 2, 4. The relative locations,
(0,1, 3), define a perfect difference set since, modulo-7, the index differences produce all
natural numbers up to 6, each in a unique way. The other cyclic projective planes of this
general family also produce perfect difference sets whose indices dy, . . ., d, yield differences,
modulo-(1 + p + p?), of all natural numbers up to p + p?>. However, the case p =2 seems to
be unique in allowing only one stencil pattern (within reversal). This feature helps to show
that the two forms of the basic algorithm, represented by rows 1 and 9 of Table 2 are indeed
solutions satisfying the symmetry requirements we mandated above. The cyclic properties
of finite projective geometries have been extensively studied, notably by Singer (1938). The
practical importance of this subject has increased enormously in recent times owing to the
development of applications in efficient error-correcting codes for electronic communication
and storage. A highly technical mathematical survey of the subject is the book by Hirschfeld

(1998). (b)
O
/5 3
6
\ 7

Figure 7. (a) The so-called ‘Fano plane’ finite projective geometry of seven ‘points’ and ‘lines’. (b) The cyclic

pattern formed by the points of the Fano plane and the generic incidence pattern of a line (for the case exemplified

by line comprising points, 1, 2 and 4) marked by the bold circles. The other six lines are picked out by the cyclic
rotation of this stencil to other positions of the cycle of points.

(¢) The two basic hezad formulations favored by symmetries

From the seven colors associated with the GF(2%) lattice mapping, each hexad possesses
six of them. Hence, we can unambiguously associate the missing seventh color with the hexad
itself. In an iterative step of the hexad algorithm a generator of one color is replaced by a new
generator that becomes the same color as that of the original hexad, while the color of the new
hexad is correspondingly the color of the generator replaced. These facts suggest the following
way of ensuring that the same alignment of any given hexad’s indices is arrived at every time
the search algorithm passes through this particular hexad. For any hexad of a given color,
seek to establish a standard orientation of it such that the six remaining colors are assigned to
the index tableau slots of (4.3) in the same pattern every time. The chosen pattern of colors
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leads to no ambiguity in the signs of the generators represented in the standard index tableau
because the chirality condition (4.1) is consistent with only one sign of each of the six tableau
entries.

The two distinguished entries of Table 2 each have the property that they will place each
one of the seven colors just once in each position of the tableau when we consider some initial
starting hexad together with the six replacement hexads one transition step away from it. This
suggests that we seek a cyclic color assignment such that a transition step from any one hexad
to any neighboring one is associated with a multiplication of all the initial tableau’s implied
GF(23) elements (or ‘colors’) by one of the nonzero and non-unit elements of GF(2?), this latter
element being determined according to which slot in the initial tableau the replaced generator
for this particular transition step is to be found. For this to work, the cyclic pattern of incidence
relations between the points and lines of the Fano plane as depicted in Fig. 7b must also appear
in all those subsets of the cyclic elements (‘colors’) that define the seven inequivalent planes
through the origin of our 3D lattice. Four of these planes through the origin always contain
generator triplets, namely the triplets {g1, g5, 83}, {82, &6, 81}, {83, &4, 82} and {g4, 85, 86}
of each given hexad, in its standard tableau, (4.3). The remaining three inequivalent planes
through the origin contain only the generator pairs, {g1, g4}, {82, 85} and {g3, g6}. The same
coloring assignment cannot fit both schemes and still enjoy these cyclic properties, but each
can be mapped separately in this desirable way. Then the color patterns of the seven possible
versions of the standard tableau for each of the two schemes can indeed be derived by Galois
field multiplication of the the elements of any one of the seven tableaux by the appropriate
nonzero ¢;.

Let us rename our two realizations of the hexad algorithm: Scheme A (row 1 of Table 2)
and Scheme B (row 9 of Table 2). Scheme A’s transition rules for the six generator replacement
options are listed below, where, for brevity, only the sign of each ‘g’ and its index are tabulated,
and the particular generator of the original set {g;} of (4.3) replaced is indicated by the notation
‘R(i) = prefixing each corresponding replacement tableau:

+3 +5 -4 -3 +6 +9

R()=|+4 +7|, R@=|+1 +6 |, R@)=| -5 -1 |, (4.7a)
-6 -2 +5 +8 +2 +4
—5 +6 +8 +2 12 —1

R4)=|+3 -2 |, ROB)=| -6 +4 |, RO6)=|+9 +3 |. (4.7b)
+7 +1 +1 -3 -4 45

This is consistent with a representation of the Galois field mapping that assigns field elements
(and hence, colors) according to the identifications:

:I:gG = C1,
:l:g5 = C2,
:I:g3 = c3,
+gs = cy, 4 (4.8)
:I:gl = s,
+gy — s,
i{g% £s, g9} = Cr, )

21



whereupon the standard tableau (4.3), whose hexad color is ¢7, is endowed with the colors:

Cy C4
Cg C2 s (49)
3 G

and, of course, the colors of the substitution tableaux (4.7a) and (4.7b) are just the appropriate
modulo-7 rotations of these.
The alternative scheme, Scheme B, is:

+2 +6 -5 -8 +4 42

RA)=|+5 +3 |, R@2)=|+3 +4|, RB)=|-6 -9 |, (4.10a)
—4 -7 +6 +1 +1 +5
+6 +5 +3 +1 +9 -3

R4)=|+7 —1|, RB)=|+4 46|, R@E)=| +1 +2 |. (4.10b)
+2 +3 +8 —2 +5 +4

This is consistent with an assignment of colors:

tgs = o,
:tgf) = C2,
+g1 — 3,
+gs — c4, > (4.11)
tg3 — s,
:I:g2 = Cg,
+{g7, 88,8} +— ocr,

whereupon the standard tableau (4.3) has the colors:

3
Ce C2 s (4. 12)
Cs C4

while the colors of the entries in (4.10a) and (4.10b) are all modulo-7 rotations of this one.

A close examination reveals that the schemes A and B are not actually completely inde-
pendent, but chiral reflections of each other. To recapitulate, we have noted that, owing to the
chirality convention, a given hexad can only be oriented, or labeled, in one way (at most) to
put the colors of its six generators into correspondence with a preset pattern of colors assigned
to the tableau locations of (4.3). We have also shown that there exist only two successful
contenders for transition rules possessing both 3-cyclic symmetry and label-invariance for 2-
circuits, 3-circuits and 6-circuits through the network of contiguous hexads. Finally, we have
shown that, for both these selected schemes, A and B, a GF'(8)-based coloring scheme can be
made consistent with the idea that each possible transition from one hexad to its neighbor is
associated with a 7-cyclic permutation of the colors that occur in the tableau together with that
complementary color attributed to the hexad itself. Taking these properties together, we may
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therefore surmise that, regardless of the path of transition steps taken to go from one initial
hexad to any other (however distant from the initial one), and provided that either scheme A
or scheme B is consistently used throughout the intermediate steps, then the hexad labels at
the destination hexad will be fixed and independent of the intermediate path taken. Thus, of
the 3-cyclic transition schemes, A and B, and only these schemes, have the universal labeling
invariance property we sought.

5. CONSTRUCTING THE BLENDED TRIADS SCHEME

A practical defect of the basic triad and hexad algorithms is that, when the aspect tensor
changes smoothly across the domain and the triads or hexads consequently change, there is
a small but noticeable roughness that appears in the filtered fields at the interfaces between
adjacent triads or hexads. The problem occurs because the triad weight approaches zero at
the interface at too fast a rate for the filters to keep up with. Fig. 8a shows an example of a
transect passing straight through the aspect cone, as it is seen in the Klein mapping. The two
end points of the transect are the aspect tensors, elerf and egeQT, where

el = [cos(—45o),sin(—45o)],
el = [003(300),sin(300)].

Fig. 8b shows a graph of the weights returned by the basic triad scheme along this transect.
Note that, since only three weights are ever simultaneously non-zero, the three-color assignment
will suffice to schedule filtering operations that prevents conflicts. However, the weights, while
continuous, are clearly not smooth functions of position along the transect. Since each weight
is proportional to the square of the corresponding smoothing scale, we may anticipate that
a problem will arise where the weights go to zero at a rate that is linear; it implies that, at
some point, the smoothing range associated with the orientation corresponding to the weight
that goes to zero must exceed the distance to the locus of transition where no smoothing along
this orientation should occur. Before discussing the remedy it is instructive to illustrate the
actual effects of the unsmoothed basic triad method in an idealized model of an inhomogeneous
covariance.

These effects are illustrated in Fig. 9 where the aspect tensor in two horizontal dimensions
projects onto one triad on the left of the figure, but projects onto another on the right. An array
of nine sample source point impulses are smoothed, in this illustrative example, using the basic
triad algorithm to supply the three respective weights at every point. In this case, to make the
defects of the filtering more obvious we have not symmetrized the sequence of line smoothers
(as one would do in practice for a real covariance synthesis), and we have used explicit Gaussian
filters (instead of recursive, or simulated diffusion filters) along each line, which also serves to
expose the defects of the synthesis.
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(a) Klein map of triads with transect (dashed line). (b) Color coded basic triad weights (W3) on this

Figure 8.
transect. (c) Weights (W4) from the blended triads algorithm.
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(a) Basic triad, one smoothing iteration (b) Basic triad, four smoothing iterations

Figure 9. A smooth change of aspect tensor components can lead to a discrete change in the triad, which
is shown here by the line of demarcation running from the upper right to the lower left in each panel. The
aspect tensors are taken along a transect at a1 = A;1/As = 0.2, with a smooth tanh-profile symmetrical about
the point of transition at a; = A2/A3 =0. (a) Although the weights corresponding to the triad lines that are
being replaced go continuously to zero at the transition interface, they cannot go to zero fast enough in the basic
triad algorithm to prevent the unsightly numerical artifacts, ‘dislocations’, that we see here at the spatial locus
of this interface. In this example a single application of the unsymmetrized smoother is applied. Panel (b) shows
that, even when replacing the single iteration with four correspondingly weaker applications of the filter that are
calculated to possess the same overall aspect tensors, the dislocations are still present, and with amplitudes only
slightly diminished.

Fig. 9a shows the result of using the basic triad method with one iteration of each line
smoother. The line of transition that separates the regions associated with the two active
triads is shown as the dotted line. The aspect tensor components change smoothly across
the zone of transition straddling this line, with a profile proportional to the ‘tanh’ function,
and this profile remains constant along lines parallel to the transition line. In this case the
changing aspect tensor corresponds to a transect in the aspect cone at a; =0.2, where a; is
the ‘horizontal’ coordinate, A;/As of Fig. 3a. The physical domain inside the square shown
is gridded with 200 points on each side. The response function contours clearly show a severe
numerical dislocation wherever the contours intersect the line of transition. Figure 9b shows
that replacing the single iteration with four (each with a smoothing scale one half of that
used previously, so as to preserve the theoretical overall dispersion) only serves to reduce the
amplitude of the spurious disturbance somewhat, but comes nowhere close to eliminating it.

If we want to be sure of a smooth transition it is necessary at least to constrain the way the
weights go to zero so that their graphs make tangential contact with zero, rather than cutting
the zero axis abruptly. (Of course, this not a sufficient condition since, even with the smoothest
of tangential contacts, it will always be possible to engineer continuous changes of the aspect
tensor with distance that are simply too large to be adequately recovered by a synthesis based
on a handful of line smoothers.) This necessary condition in turn implies that we must consider
a generalization of the triad and hexad procedures so that, in the vicinity of a transition point,
we are effectively blending weights as if from a symmetrically dispersed distribution of aspect
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space points rather than taking the weights as if from the single aspect point. By dispersing
the aspect point to a distribution of finite radius in aspect space it is, in principle, possible to
prevent the weights from going steeply to zero. This is because, in the vicinity of a transition,
the blending distribution surrounding the target aspect point can be made to overlap the triads
or hexads on either side of any transition interface in aspect space and the finite radius of this
averaging distribution then effectively smooths out the filtering weights without altering the
implied reconstructed aspect tensor. The implied price is the need at some points to apply more
than the minimum of three line filters that the basic triad is automatically limited to. But,
with careful control of the range of averaging implied by the aspect-space smoothing kernel, we
can still keep the number of line smoothers at each point restricted to no more than four.

In the case of the triad algorithm, where the junctions between adjacent tiles that cover the
standardized aspect space are relatively simple interfaces involving only two adjacent triads at
a time, this averaging can be achieved implicitly by the following purely geometrical procedure.
We find the triad to which the aspect point belongs (by the regular basic triad algorithm),
rotating the labels to associate the third direction with the smallest weight. This implies
geometrically that the aspect point is closer to the edge joining the first two generator images
of the triad than to either of the other two edges. We perform the transformations like (2.2a)—
(2.2c), that convert the aspect tensor into a 3-vector, but in a framework where the three
generators of our triad have aspect vectors, [1/2,0,1/2]T, [-1/2,0,1/2]T and [0,1,1]7. A
fourth generator, formed by the difference of the first two, will supply a fourth aspect vector in
this framework, [0, —1, 1]7, which completes the nearest neighboring triad to the one in which
the target aspect point lies. Next, we centrally-project our transformed aspect vector A to
form its two Klein-map Cartesian coordinates:

ar = Ai/4s, (5.1a)
ay = As/As. (5.1b)
Define
d=a2/(2 — az), (52)
and L la]
— lay
dr, = . 5.3
LT3 o (5:3)

The locus of as formed by d =dy within this triad and the equivalent locus within its
neighbor together form the rhombus shown as the bold dashed lines in the Klein-map of this
situation, shown in Fig. 10. This rhombic region occupies the respective thirds of these two
tiles nearest to their common edge (in the Klein projection, the proportion looks larger owing
to the projection’s emphasis on the middle of this map). Note that, for any target aspect point
in this rhombic region, the quartet of generator images formed by both triads is the nearest
such quartet to that chosen point (in a sense that is unambiguous); points outside the rhombic
region are closer to other quartets of generator images. The next step is to use d and df,
to reintroduce a third coordinate and also to amplify the Klein-map coordinates to place the
image of the aspect vector in the interior of the convex hull of the aspect vectors of the four
generators in such a way that the locus of this image forms a smooth surface as a function of
the original aspect tensor, even as the second component, Az, of the transformed aspect vector
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passes through zero. In effect, we are smoothing the dihedral angle formed by the two adjacent
triad tiles with a saddle-shaped surface that spans the rhombic region outlined in Fig. 10. This
is accomplished by setting:

(5.4)

' (2—|—dL+d2/dL)/4 : d<dL,
az =
(1+d)/2 : d>dg.

—11.0

-0.5

[1/2,0,1/2] 4 0 [1+]

Figure 10. A Klein-map whose focus is a rhombic region straddling a pair of adjacent triads such that: an

aspect point mapping to the interior of this rhombus is closer to the common edge (the horizontal diameter of

the map) than to any other triad edge. Such points can be assigned weights associated with the four generators

whose aspect images form the inscribed square of the Klein-map with the vertices labelled in this case by the
three-dimensional coordinates, A; of their vertex images.

Then a corresponding amplification of what had originally been the rotated Klein-map
coordinates to:

a) = aaj, (5.5a)
ahb = aqaj, (5.5b)
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gives a new location in the aspect cone whose Klein-map position is unchanged, but which is
now positioned on a curved, approximately saddle-shaped surface, that meets the two triad
tiles that it partially straddles with tangential contacts at the rhombic boundary.

The four barycentric coordinates of this projected aspect vector relative to the four sur-
rounding generator image aspect vectors associated with the four active generators are easily

found from the vector a’ = [a}, a), a}]":
w' =w, + Wa, (5.6)
where
. T
w, = [ 1, 1, —1/2, —1/2 ] , (5.7)
and
1, o0, -1
1, 0, -1
W=1"0" 172 1 (5:8)
0, -1/2, 1

Finally, we must further amplify the weights according to the ratio of the magnitudes of the
original A3 to the projected a:
w=wA3/a5. (5.9)

The direct result of this effective blending of two adjacent triads can be seen in the graphs of
the weights, of which there are now up to four that are simulataneously non-vanishing, plotted
along the same transect illustrated in Fig. 8a. Figure 8c shows the new weights that result
from the same transect and provides a visual confirmation that, in the interior, the new weights
that go to zero do so tangentially. We note that, strictly speaking, the saddle-shaped function
we have used to bridge adjacent triads is still not free of discontinuities in derivatives of weights
away from zero since such a discontinuity exists where a; = 0. This is the part of one of the
symmetry axes of a triad, marking the locus where the two dominant weights from either the
basic or blended triad algorithms become equal. The subtle effect of this lack of smoothness
is visible as a very slight kink in the graphs of the weights assigned to generators (—1, 1) and
(1,0) of Fig. 8c where they intersect. However, this feature does not appear to translate into
discernable artifacts in the fields smoothed in accordance with this blended triads prescription.

Clearly, the 3-color scheduling of line filters discussed in section 3 is no longer an adequate
guide to conflict-free line filtering in the blended triads method because, by blending pairs of
adjacent triads, we necessarily involve two lines of the same color in the resulting quartet of line
smoothers at each grid point. It is the coloring associated with the Galois field, GF(3%) that
comes to the rescue and provides us with the appropriate 4-color assigment in this case. Since
every triad under this coloring regime possesses three of the four colors, it is natural to confer
upon the triad itself the color that its own line generators do not possess. An illustration, in
the same style as Fig. 5, shows both the color assignment on the generator lattice, Fig. 1la,
and the corresponding Poincaré map, consistently colored as described above, in Fig. 11b. A
glance will confirm that the quartet of generators belonging to pairs of triads that are adjacent
(and therefore blended) has the full complement of four colors, so that a four-stage scheduling
of the line operators according to this color assignment guarantees the avoidance of numerical
conflicts.
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Figure 11. (a) A mapping of the two-dimensional lattice of grid generators to four colors consistent with the
Galois field, GF(9). (b) The corresponding Poincaré map, with each triad accorded the color missing from its
generators.

Figure 12 shows the same smoothing portrayed in Fig. 9, but performed now according to
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the blended triads scheme. Even with only one iteration of smoothing (Fig. 12a), the dislocation
corresponding to the transition has been entirely removed and the only remaining distortion of
the contours (a slight tremor in the contours on the right side of the middle distribution of the
bottom row) is completely cleaned up by the application of four iterations, as shown by Fig.
12b.

(a) Blended triads, one smoothing iteration (b) Blended triads, four smoothing iterations

Figure 12. (a) A major improvement in the quality of the response function is achieved by adopting a blended

triads method, which compares very favorably to Fig. 9a, and shows no dislocations on the line of transition

itself. (b) Using four iterations of the blended triads method, no visible roughness in the resulting contours

occurs anywhere, in contrast to the poor results still seen after four iterations of the basic triad, shown in Fig.
9b.

6. CONSTRUCTING THE BLENDED HEXADS SCHEME

The method of using projections onto a smooth surface in order to construct the blended
triads method was feasible because the junctions between adjacent triads in the aspect cone
are geometrically simple; each junction only involves a pair of triads and is therefore a plane in-
terface of dimension two within the full 3D aspect space. The complementary co-dimension
of the triad junctions is one — the maximum number of triad weights that can vanish simul-
taneously and still leave an aspect tensor that lies in the proper interior of the aspect cone.
In general, in order to reveal and describe the essential geometrical characteristics of a junc-
tion it is sufficient to restrict consideration only to a section transverse to that junction and
sharing the junction’s co-dimensionality. Projections, like the Klein and Poincaré mappings,
which leave the important geometrical relationships among the regions separated by junctions
intact, reduce the mapped junctions’ dimensions, but not their co-dimensions; in this sense, it
is always the junction’s co-dimension that is the intrinsically more revealing index.

Junctions among hexads in the interior of the aspect cone are of higher co-dimensionality
than the trivial interfaces that separate the triad tiles. This is because it is possible for up to
three, but not more than three, of the weights, w;, of a hexad to vanish simultaneously without
the aspect tensor becoming singular. This implies that the co-dimension of the most singular
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generic junction, and therefore the minimal dimension of an affine subspace in which the full
complexity of the junction is still retained, is three.

Given this extra complexity, we will not even attempt to solve the problem of blending
hexads by a direct projective manipulation analogous to that used to effectively blend triads.
Instead, we will construct the vector of smoothing weights by additively combining the basic
hexad weights that, for each basic hexad, correspond to a point in a suitably weighted ‘cloud’,
or averaging kernel, of such points arranged symmetrically around the target aspect point
of interest. The averaging kernel is symmetrically distributed so that integration of the aspect
points over the kernel (whose own weight integrates to unity) must produce exactly the same
aspect tensor as that of the target point about which the kernel is symmetrically distributed.
We must be sure, when applying the averaging kernel, that it does not overlap more than one
generic junction of co-dimension three, otherwise the number of smoothing directions involved
can become very large. This requires us to know both qualitatively and quantitatively enough
about the geometry of the honeycomb of hexads in aspect space to intelligently judge the
appropriate radius of the averaging kernel. We also need to select a radial profile for it that
leads to a tractable quadrature. Moreover, it will not normally be feasible to carry out these
geometrical investigations and the resulting quadratures for every individual assimilation point’s
aspect tensor; instead, we must be pragmatic and store the relevant information encoded in
suitable tables and provide efficient interpolation software to use these tabulated data effectively.
The tabulation problem itself is not trivial since the aspect space is six dimensional. We
shall treat this problem in subsection 6b. Meanwhile, we shall describe the hexad honeycomb
geometry in sufficient detail to allow us to formulate an adequate kernel-averaging strategy.

(a) Geometrical structure of the honeycomb of hezads

For a canonical example of such a junction in the case of the unit cubic lattice, Z3, take
u; =[1,0,0]7, ug =1[0,1,0]7, uz =[0,0,1]7. All three of these u;, and their negatives, are
found amongst the generators of the hexads whose g1, g2, g3 are of one of the following forms:

{81, 82, 83} = {s1u1, s2up, s3us}, (6.1)

or

{gl, g2, gB} = {Siuia SkUg, S{U; — Sjuj}, [i, j, k] € {[1, 2a 3]a [2a 3a 1], [3a 1a 2]}, (62)

where, in each expression an odd number of the three sign terms, s, are equal to ‘4’ leaving
an even number that are ‘—’, in keeping with the chiral convention (4.1). This leads to a total
of 16 distinct possible hexads that contain uy, us and us, no other hexads being possible. We
note that the 16 hexads of this cluster involve all generators belonging to the outer 26 points
of the 2 x 2 x 2 lattice cube of points [v1, v2, v3]T with v; € {—1,0, 1}, with |v| # 0. Since any
hexad may be brought into coincidence with any other by an appropriate linear transformation
of the lattice into itself, then, in general, a cluster is associated with an origin-centered lattice
parallelepiped of the same volume.
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[0,1,-1]

[1,0,1]

[15'1 51]

[1 7'1 !0]

Figure 13. Schematic depiction of the sectors surrounding a typical junction among a cluster of 16 mutually

touching hexads. In this example, all hexads include the generators, [1, 0, 0], [0, 1, 0] and [0, 0, 1]. The 10 rays

are labeled by additional generators of this cluster. Thus, each hexad of this cluster shares the three generators
common to all the hexads, together with the three generators of the 10 that specify the particular hexad.

On the same unit cubic lattice, the aspect tensor A = D lies on the junction of our canonical
cluster for D any diagonal matrix. Thus, the junction itself is the intersection of a 3D linear
subspace (containing the origin) with the interior of the aspect cone and, using rescaling argu-
ments, we understand the shape of the configuration of hexads that surround this singularity to
be qualitatively the same at any point of it that we choose to look at. We choose the particular
example, Ag =1, and look for neighboring aspect tensors A that explore a maximal 3D affine
subspace containing Ay but oriented transversally to the singularity. The simplest construction
is to choose the three local coordinates {a1, ag, a3z} of this subspace (whose three dimensions
correspond to the complementary three co-dimensions characterizing the singularity) to be the

32



off-diagonal elements of an aspect tensor, A, defined to be:

A = as, ]_’ a1 . (63)

Note that A reduces to Ay =1 when the three components a; are simultaneously zero. If
we divide up this space of A in the neighborhood of Ag into octants (like the division into
eight corner pieces of a radar reflector) separated by the three planes, a; =0, az =0, az =0,
we find that the hexad (6.1) with all the s equivalent to ‘+’ occupies the nearby portion of
the octant, a1 <0, as <0, az < 0; the other three octants obtained by reversing pairs of these
inequalities contain the other three hexads of (6.1). The remaining four octants are each
further partitioned into three narrow corners by the portions of the appropriate three planes of
the kind: |az| = |az]; |as| = |a1]; |a1]| = |az|; that join each edge of the octant to its interior axis
of three-fold symmetry. The resulting total of 12 new regions contain the 12 hexads defined
by the combinations (6.2). An illustration of the geometry of this 3D projection of the generic
junction of hexads is sketched in Fig. 13.

The complete set of all possible generators of hexads in a given cluster have been shown
to form an origin-centered 2 x 2 x 2 parallelepiped in the lattice of generators. With this
identification, we can ask: for a given hexad, what is the complete set of clusters which contain
this particular central hexad as a member? It turns out that 16 clusters contain any given hexad.
Since the given central hexad has its most symmetrical geometrical form in the so called ‘face-
centered cubic’ (fcc) lattice (Ziman 1979), whereupon the opposing pairs of generators of the
hexad then form the 12 corners of a geometrically true (undeformed) cuboctahedron, we shall
find the most symmetrical geometrical representation of this set of 16 clusters in this fcc lattice.

One convenient numerical representation of the fcc lattice of generators is defined using
integer 3-vectors, [vi, v, ’03]T, where v1 + v2 + v3 is even. Twelve generators (six opposing
pairs) forming the vertices of the central hexad of this lattice are those with all |v;| < 1. The
parallelepipeds of 12 of the clusters look like the one with corners, in this representation,
at +[3,0, 1], +[-1, -2, 1], +[-1,2, -1]", £][-1,0,1]7. The other 11 of this dozen are
obtained from it by application of some of the 24 proper rotations about the origin which map
the lattice into itself. The parallelepipeds of the remaining four clusters look like the one with
corners at +[2,2,2]7, £[-2,0,0]7, £[0, -2, 0], £[0, 0, —2]7. The other three of this quartet
are again obtained from this prototypical example via the rigid rotations which map the lattice
into itself. To give the configuration of 16 clusters associated with the central hexad a name,
we call it the hexad’s starburst. The generic starburst configuration involves 37 pairs of
opposing generators and, as an aid to appreciating the geometrical relationships involved, the
shape formed by the union of the 16 parallelepipeds of the component clusters is sketched as
a non-convex polyhedron in Fig. 14. The innermost 12 vertices of this polyhedron (of which
only three are visible in this sketch) are the vertices of the central hexad’s cuboctahedron.
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Figure 14. The ‘starburst’ configuration of clusters and their generators in the case of a face-centered cubic
generator lattice. Each cluster is here represented as a particular elongated parallelepiped having two generalized
grid spaces along each of its edges and is characterized by its unique pair of outermost vertices. The outermost
32 points of the starburst account for these extreme pairs of characterizing vertices of each of the 16 clusters.

The kernel for the blending operation can have any radius so long as it can be contained
within a single cluster. Then it will be possible to color all lattice rays used at this particular
point by the 13-color scheme associated with GF(33). The larger the kernel radius, the more
likely that we are to have a truly smooth covariance operator. However, we cannot use one
constant radius everywhere because, as we explicitly saw for the triad case and as also applies to
the hexad, these tiles tend to thin exponentially toward their extremes. We therefore seek a non-
constant radius, as a function of position in a representative hexad tile, such that a smoothing
kernel just stays within the bounds of a cluster everywhere. We might also require that this
radius is a smooth function of position; otherwise we would be risking a fresh source of numerical
roughness through the kernel averaging process itself. The question of which cluster the kernel
must be confined within can be answered by a geometrical analysis that involves consideration
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of the relevant starburst whose central hexad contains the particular target aspect point of
interest. The critical radius at such a target point is found as follows. Having identified (by
the basic hexad algorithm) the hexad containing the target, and hence the starburst whose
central hexad this is, then for each of the 16 clusters of this starburst, calculate the shortest
distance to the boundary of the cluster. Of these 16 shortest distances, choose the largest. This
1s the critical radius. Then the corresponding cluster is nominated to be the one that supplies
the 13 line directions that will be used for the line-smoothers at this geographical point. The
actual radius of the smoothing kernel must never exceed the local critical radius; it can be a
little less, in order to allow this critical radius to be rendered a smooth function of aspect space
location, although this additional requirement did not seem to be critical for the success of the
blended triads algorithm and, in fact, is not rigorously satisfied by the construction for that
case described in section 5.

We have referred to the critical radius without reference to the metric by which this dis-
tance is measured. Consistency between points in one hexad and points in a neighboring one
requires that we adopt a metric that is smoothly defined over aspect space and is invariant to
the symmetries that transform one hexad to another and to the group of 24 symmetries we have
already identified that transform one hexad into itself. In most respects, the ideal contender is
the natural Riemannian metric implied by (2.6), except this choice makes the requisite geomet-
rical calculations exceedingly complicated. A more pragmatic alternative, which we shall refer
to as the tangent metric, enables all the relevant geometrical manipulations to be carried out
in a Euclidean geometry of only five dimensions. If Ay is the target aspect vector then there
is a unique 5D tangent plane through Ay which, at this target, is normal to the vector A
itself with respect to the natural metric (2.6). This natural Riemannian metric now induces a
unique Fuclidean metric on the tangent plane by virtue of the fact that aspect vectors already
form a linear space and, on the tangent plane, only one choice from the range of possible Eu-
clidean metrics that we can confer on this plane is consistent, at Ay, with the restriction of the
natural metric (2.6) to this 5D plane. The tangent plane intersects all the hexads in the aspect
cone. In fact, the hexads and their associated aspect vectors map to this plane in the higher
dimensional equivalent of the Klein or gnomonic representation, but having the orientation of
A, as the central projection axis. The hexads each map to a 5D simplexr whose 4D boundary
elements are themselves flat in the induced tangent metric. Each cluster, regarded as the union
of the simplexes of the 16 constituent hexads, is a non-convex polytope (the term generalizing
polyhedron to arbitrary dimensions) whose boundary can be analyzed in terms of the bounding
elements of the 16 constituent hexads. It can be shown that the boundary of the generic cluster
in this five-dimensional projection consists of 48 4D (i.e., five-pointed) simplexes. Since the
projected locations in the tangent plane of all the vertices are readily determined, it is also a
relatively straightforward calculation to find the Euclidean shortest distance to the boundary of
a particular cluster that contains Ajy. Some details are provided in appendix C. The calculation
is repeated for all 16 of the clusters that contain Ag in order to find the selected cluster that
has its boundary farthest away and to record this tangent-metric distance.

(b) Gridding a simplex
As we have remarked, the distance we obtain from the procedure above gives us an upper
bound to the radius of the averaging kernel we are permitted to use. However, this upper bound
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is a continuous, but not a smooth function, of the location Ay in aspect space. In order to
choose a practical kernel radius that is smooth, then some smoothing and rescaling of this dis-
tribution of upper bounds must be performed numerically, which requires that these quantities
first be collected in an appropriate regular gridding over a 5D projection of a nonredundant
representative portion of a generic hexad. Likewise, to tabulate the subsequently calculated
weights attributed to each resulting line smoother, we are obliged to devise a regular gridding
and tabulation strategy for such a representative portion of the generic hexad.

The simplest way to grid a simplex in any number of dimensions is to uniformly subdivide
the simplex in intersecting families of (hyper)planes parallel to the boundaries of the simplex.
A simple inductive argument shows that the number N of grid points resulting from such a
decomposition of the simplex in n dimensions subdivided by planes that partition each edge

into M segments is:
n+ M
N = A4

N = (M +1)(M + 2)(M + 3)(M + 4)(M + 5)/120. (6.5)

or, in our example of n =5,

The size N of this tabulation is clearly very large for any reasonable resolution M (for example,
with M =40, N = 1221759), but the intrinsic symmetries of the generic hexad can be exploited
to reduce the size of the minimal representative portion of this table by a factor that approaches
24 as M increases, provided transformation software is available to expand efficiently from
this minimal portion of recorded data back to the full tabulation. This gridding allows the
smoothing of kernel-radius upper bounds, if desired, by a numerical simulation of isotropic
and homogeneous diffusion, as these concepts are interpreted within the context of the local
tangent metric. Symmetries that allow us to map one hexad into any other also allow us to
define the appropriate boundary conditions of our smoothing filter’s diffusion operator on the
representative hexad. The same gridding of the non-redundant portion of the representative
hexad is then used to store the weights that emerge from the blended hexads, but we defer
detailed discussion of this tabulation until subsection 6f.

(¢) Awveraging kernels and Abel transforms

Having obtained a tabulated field of kernel radii, we must next determine the radial profile of
the averaging kernel that will be used in the hexad blending and a numerical procedure by which
the necessary quadratures can be carried out. Scaling symmetry allows us to trivially rescale
any aspect vector so that, for example, it lies on the plane which contains the six aspect images
of the generators of the hexad in which the aspect tensor resides. This scaled aspect vector is
therefore expressible as a convex mixture of these generator images. This is a convenient way
to reduce the dimensionality of the tabulation from six to five, since the original scaling is easily
undone once the standardized blending weights are obtained for the aspect vector normalized in
this way. The averaging kernel centered at this normalized aspect point will intersect up to all
16 hexads of the nominated cluster associated with this target aspect point and, in each of the
hexad regions of the target point’s tangent plane, the fragment of the kernel that occupies each
projected hexad has a centroid. Owing to the linearity of aspect tensors, the integrated effect of
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the aspect vectors weighted by the averaging kernel within one of the cluster’s hexad regions is
equivalent to the effect of that centroid, weighted by the amount of the kernel that occupies the
hexad regions. The weights, w;, that we associate with the six generator images of each hexad
are linear functions of aspect space position A throughout the region of aspect space occupied by
that hexad. We found at the beginning of section 6 that the co-dimension of the hexad junctions
is three, which, with the aforementioned linearity, implies that the actual quadratures needed to
identify the centroid of each kernel fragment can be reduced to only the three dimensions of the
affine subspace that, with respect to the tangent metric, intersects the junction normally and
contains the projected target aspect point Ag. If the kernel only intersects a simpler junction
of co-dimension two or one, then the dimensionality of the quadrature can be correspondingly
reduced. However, the reduction of quadrature dimensionality is accompanied by a change in
the radial profile of the kernel effective in the subspace. An original radial profile, f,(r) in n
dimensions with r < R is replaced at a dimension n — 1 by the corresponding marginal profile,
fn—1(r), according to the Abel transform:

faci(r) =2 / @ aa (6.6)

which we can iterate to successively lower dimensions when required. Statisticians are familiar
with families of distribution profiles for both finite and infinite R for which repeated marginal-
ization is particularly simple. For finite R the simplest family have radial density profiles
that relate to the symmetric beta distributions (Abramowitz and Stegun 1970) on the interval
[~ R, R], which we shall now describe.

(d) Kernels derived from symmetric beta distributions

Consider the radial density profile in n dimensions to have the form:

’l"2 a—1
fra(r) =Tha (1 - ﬁ) ) (6.7)

where T, , is a normalizing constant. In order that this integrates to unity, that is,

/domain Fra(lA— Agl)dA; ... dA, =1, (6.8)
we need R
| fnar)Sutry dr =1, (6.9)
where
Sn(r) = P (6.10)

(n/2)

is the surface measure of the sphere of radius r in n dimensions. Thus,

R 2\ /21
Tha [1- =5 - dr = 11
/0 ! ( R2> /2t (6.11)

n-n/2 rl n
n/2)! 0
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But the integral defines a beta function:

a— 1)z - 1)!
(a+5 -1 °

1 R (
/0(1—,2)“ 1227V dz = B(a,n/2) =

Therefore,

_2(n/2)! (a4 21

“ 7 nRran/2 (a—1)1(E - 1)V
1 (a+% -1

Rran/2 (a —1)!

Now consider the radial profile of the Abel transform of f, ,.

R q2 a—1 q
n,a(r) =2Tha /T (1 - ﬁ) (¢2 —r2)1/2 dg.

We solve this integration by the change of variables,

¢ — 12
wo= R2 — 2’
29 dgq
W= o
whereupon,
’1"2 a71/2 1
gna(r) = TheR <1 - ﬁ) /0 (1 —w)* w2 du,
2 a—1/2 N 1 ' _l '
— T.R(1-= w
’ R (G/ — 5)!
L1 erdentonrg 2\
Rr-1n"% (a— 1) R? ’

2 a—1/2
= Tn—l,a+1/2 (1 - ﬁ) ’

= fnfl,a+1/2(r)'

(6.12)

(6.13)

(6.14)

(6.15a)

(6.15b)

(6.16)

Thus the marginalization to a dimension smaller by one changes the radial profile to the sym-

metric beta distribution whose shape parameter (a) is incremented by a half.

The application of the inverse Abel transform allows us to invert the marginalization and
find the radial profile of the kernel in a higher dimension that projects down to a chosen
member of this beta family in a lower dimension. In this way, we can extend the definition
of the symmetric beta function to negative shape parameters a that would not be considered
as valid choices in statistical applications, but which continue to have sensible interpretations
as generalized functions in the present context. Thus, in order for the smoothing to be
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qualitatively consistent with the blending carried out for the triad case, we would choose the
kernel marginalized to one dimension to have the form of the rectangle function, that is,

r< R,

r> R (6.17)

1
_ ) %R
fia(r) { G
Inverting the Abel transform twice, we find that the corresponding kernel profile at the n =3
dimensions at which the numerical quadratures need to be carried out is:

§(r — R), (6.18)

1
f30(r) = Py

where the delta function here describes an impulsive spherical shell. We could apply further
inverse Abel transforms to obtain explicit expressions for the higher dimensional equivalent
kernels, f4 _1/2 and f5,_1, which involve more complicated generalized functions, but there is
no practical need here to do this §.

(e) Numerical quadrature for kernel averaging

It actually turns out to be fortuitous that the chosen kernel profile in three dimensions has
the form it does since, by having its weight confined to a spherical shell, the averaging reduces to
only two-dimensional quadratures. The domain of quadrature required to calculate the centroid
and weight of each kernel fragment associated with one of the 16 sectors of the junction is the
intersection of the spherical shell of radius R with the three-walled corner-sector that constitutes
the three-dimensional projection of the relevant portion of the associated hexad. The 16 sectors
of the configuration shown in Fig. 13 provide the generally correct picture except that, in terms
of the tangent metric and a target aspect point Ay situated off the junction (as is expected in the
generic case) this configuration will appear linearly distorted relative to the most symmetrical
arrangement illustrated in Fig. 13. Nevertheless, the geometry of the intersection of each corner
sector with the spherical shell is reduceable to one of a small number of distinct cases.

Fig. 15 shows configurations that involve intersections of the spherical shell and one or more
of the edges of the corner sector. We label the three edges, 1, 2 and 3, and assign the same
labels to the three planes of the corner sector that are transversal to the respective edges (and
therefore contain the angled interfaces opposite to the same-labeled edges). Where the edge
pierces the sphere passing inwards, we denote the intersection one of type ‘G’, and where it
passes outwards, type ‘H’. Then a notation for the directed arc from, say, G-type intersection
on edge, a, along the plane b to H-type intersection on edge ¢ can be denoted, [G,H_]p. The
panels a—d of Fig. 15 show the standard set of structurally stable (with respect to arbitrary
small perturbations of geometrical parameters) configurations involving respectively two, four,
six and three arcs defining the boundary of the intersected spherical shell that intersects edges.
Naturally, Figs. 15a and 15b may both appear rotated to the two other edge labelings under
cyclic permutation. In addition, Fig. 15a may include a second boundary consisting of a full
circle on the plane opposite edge 1, and other configurations with boundaries composed only of
one, two, or thee such circles are also possible. However, the weight and moment calculations
for the unbroken spherical caps are very easily dealt with; the interesting calculation concerns

§ These profiles characterize the shapes of idealized radially symmetric weak shocks in various dimensions.
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the weight and moments of the portions of the spherical shell bounded by the strings of arcs
shown in Fig. 15 and summarized in our arc notation in Table 5.

TABLE 5. SUMMARY OF THE SET OF CIRCULAR ARCS BOUNDING THE REGIONS OF THE SPHERICAL
SHELL CONTAINED IN A CORNER SECTOR AS DEPICTED IN THE PANELS OF Fi1Gg. 15.

|| No. of arcs || Panel || Bounding arcs, in the notation defined in the text ||
2 Fig. 15a [G1Hi]2, [H1Gi]s
4 Fig. 15b [G1Hi)2, [H1H3ls, [H2G2]1, [G2Gi]s
6 Fig. 15¢ [G1Gs]2, [G2Gils, [GsGali,
[HiH3]3, [H2Hs)i, [H3Hi)2
3 Fig. 15d [HiHsls, [H2Hs)i, [H3Hil»

The key to solving this part of the problem is to use Green’s theorem on stereographic
maps, as we shall now describe. Suppose we stereographically project the spherical surface
using a projection axis normal to one of these planes and scale the map to make the equator
parallel to this projection plane a unit circle. The circular arcs shown in Fig. 15 that form
the boundary of the region of the shell contained in the corner sector project to circular arcs
in this mapping and applications of Green’s theorem enable the integrated weight and the first
moment in the direction of the projection axis to be computed as contour integrals around the
sequence of arcs in the mapping plane. Recall that Green’s theorem states that a vector field
v = (v1,v2)T as a function of two coordinates (x1, z2) in a domain D of boundary D is such
that its directed path integral around 0D is equal to the surface integral within D of the curl
of v. Thus, parameterizing the boundary curve by ¢:

d:v1 dl‘Q 8’1)2 6’01)

— — = — — . 1
7{ (“1 a v dt) dt // <8x1 By ) 171 422 (6.19)
oD D

It is straightforward to show that a rotationally-symmetric and tangentially-oriented vector

field v of magnitude,
r

V= ———
M 2m(1 +r2)’
at map radius r, integrated around the circle at this radius, yields the proportion of the

sphere’s area that maps to the interior of this circle. Similarly, the rotationally-symmetric
and tangentially-oriented vector field v’ of magnitude,

(6.20)

r
2m(1 +r2)2’

V| = (6.21)
at map radius r, integrated around the circle at this radius, yields the proportionate first
moment about the sphere’s center, and in the direction normal to the map-plane, in units of
the sphere’s radius, of the spherical cap that maps to the interior of the circle of integration.
But, by the rotational symmetry of these vector fields, these area-integrating and moment-
integrating properties must extend to arbitrary regions. Based upon these vector fields, and
using stereographic mappings aligned with the normals of each of the three planes of the corner
region in turn, we may therefore integrate the directed components of each vector field along
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the mapped circular arcs bounding the regions depicted in Fig. 15 to find proportional areas
and moments, and, by a little geometry, the desired centroids. While it might be possible,
in principle, to evaluate these path integrals analytically, it is expedient numerically simply
to employ Gauss-Legendre quadratures, which are found to provide efficient evaluations with
truncation errors comparable to double-precision round-off.

(a) (b)

o
2

3

Figure 15. The main configurations of arcs that mark the intersections of a spherical shell with one of the corner
regions of the generic junction of hexads in the propoer interior of the aspect cone. The view in each example is
as it would appear from inside the corner region projected into the three nontrivial co-dimensions of the junction.

(f) Tabulating and retrieving data for the blended hexad method

We have already mentioned how smoothly varying data over a simplex-shaped domain in
n dimensions can be conveniently stored as a regularly gridded simplex table. The smooth
data of relevance here are the 13 smoothing weights associated with the lattice line orientations
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that go into the blend of hexads so that, by applying the line-smoothers sequentially with these
weights in the respective directions, one recovers a smoother with the standardized aspect tensor
that corresponds to this tabulated point of the canonical hexad. The canonical hexad is taken
to be the one of the form (4.3), satisfying the standard relations, (4.2c), and with

T
g1 = [17 Oa O] ’ (622&)

T
g2 = [ 07 17 0 ] ; (622b)

T
g2 = [ 0, 0, 1 ] : (6.22¢)

The basic weights,

w = [w1, wa, w3, wa, ws, we] ", (6.23)

of the tabulated point of the canonical hexad are regarded as the coordinates for locating
positions within the simplex table and the standardization is such that Z?:l w; = 1. In other
words, the weights form the barycentric coordinates of the canonically transformed aspect
tensor, which is also projected onto the corresponding tile of the convex shell bounding the
convex hull of the lattice generator images. The continuous data stored at each of the simplex
table grid points is the vector of 13 blended hezads weights, w’, organized by color:

w' =[wl, ..., wi3]". (6.24)

While every tabulated point’s 13 weights, w', provide the proper amounts of smoothing
associated with the point’s nominated cluster so that line smoothers applied sequentially along
the directions prescribed by the cluster will produce the corresponding standardized aspect
tensor, the nominated cluster for such tabulated points is only one of 16 that are associated
with the whole simplex making up the complete table. Thus, for each point in the table, it
is also necessary to provide an indicator that prescribes precisely which cluster this location
is associated with. The discrete transitions from one cluster to another within the interior of
the table would seem, at first sight, to invalidate any interpolations to standardized aspect
tensors that lie in between the nodes of this canonical simplex tabulation. However, it appears
in practice that, at a place in the interior of the table that corresponds to a transition between
one nominated cluster and another, the pair (or pairs) of line orientations of equivalent color
undergoing the transitions have associated with them weights that conveniently go smoothly
to zero on both sides of the transition. A smooth interpolation of the weights w’ therefore does
make practical sense and truncation errors incurred are acceptably small provided these weights
are recorded color-consistently for all 16 of the clusters associated with the basic canonical hexad
that the complete simplex table is associated with.

Storing the data of a simplex table efficiently requires a non-standard data structure (un-
like the typical tabulation of n-dimensional data where a Cartesian array is most common).
The necessary indirect addressing that is required introduces a very minor inefficiency in the
procedures for looking up tabulated values or interpolating from them. However, since this
is already unavoidable, there is relatively little further inconvenience in exploiting the hexad
symmetries which, as we recall, allow a reduction of data quantity by a factor that approaches
24 asymptotically.
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We can retain that portion of the simplex table that occupies the region determined by the
following inequalities (and verify that the size of this region asymptotically approaches 1/24 of
the total as the resolution index M of the table increases):

min(wi, wg) < min(ws, ws) < min(ws, we), (6.25)
wy < Wy, (6.26)
w9 S ws. (627)

The relabeling symmetries that bring about conformity to the inequalities (6.25) essentially fold
the original simplex into 1/6 of its original volume, and the remaining two, (6.26) and (6.27),
further reduce the non-redundant portions by successive factors of 1/2. [Note: we cannot enforce
what might seem a further natural inequality, ws < ws, in general because, half the time, this
would violate the chirality condition (4.1).]

The symmetry transformations that rotate the standardized aspect point into the non-
redundant part of the simplex must be accompanied by corresponding transformations of the
definitions of the lattice generators and their colors. To enable interpolations to be carried
out, the retained portion of the table must extend a little way beyond the geometrical sym-
metry interfaces by which the canonical simplex is dissected. However, these are all relatively
straightforward technical issues that are easily taken care of.

The interpolation from the tabulated values to some generic target aspect point presents new
problems. It is not appropriate to employ the 5D Cartesian-product of 1D interpolations like the
linear, quadratic, cubic, and so on. For one thing, the expense of applying the aforementioned
schemes to each scalar fields is in proportion, respectively, to 2° =32, 3% =243, 4% = 1024,
operations, which, in each example, is much more expensive than is formally justified by the
order of accuracy achieved. For another thing, the boundaries of the simplex table are not
aligned in the rectilinear Cartesian orientations that make such interpolations natural and
symmetric with respect to interchanges of the the six vertex labels of the table’s simplex.
However, it is possible to chop the simplex into six symmetrical chunks, each of which can, by
a projective transformation, be mapped into a 5D hypercube. In this highly deformed mapping,
Cartesian coordinates are very natural to apply. This geometrical trick is useful for other
numerical operations (such as efficient quadratures), but we will not pursue the subject further
here.

A more natural interpolation, at a given order of accuracy, is to use a local stencil of table
nodes that is itself in the form of a lattice simplex. For the linear interpolations, a sub-simplex
of only six lattice points (much less than 32) is all that is required. If we should wish to achieve
a higher order of formal accuracy, quadratic interpolation in 5D is achieved using a simplex
stencil of 21 points (much less than 243); cubic interpolation requires 56 points (much less than
1024). In each of these interpolations, the number of stencil points is exactly the same as the
number of coefficients of the polynomial, in five coordinate variables, of the required degree.
Thus, these schemes are optimally efficient. However, the dissection of the hexad table’s simplex
into the requisite sub-simplex blocks of sizes appropriate to the chosen order of accuracy is not
a trivial problem in itself. Evenly dividing a simplex in two dimensions, that is, a triangle,
presents no difficulty or ambiguity, but even at three dimensions, one finds that, in order not
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to create new vertices lying in between the original grid points, care must be taken in choosing
the planes along which the sub-simplex blocks are separated.

(b)

(c) (d) (e)

Figure 16. An illustration of the ambiguity inherent in the dissection of a lattice simplex in dimensions of three
or greater. Panel (a) shows a ‘simplex’ (tetrahedron), imagined to be gridded by a lattice whose steps are one
half those of the dimensions of region as a whole, and for which we seek a regular dissection into elementary sub-
simplexes (in this case, eight of them). The four planes of the original simplex comprise the set of orientations of
the mandatory cuts by which the elementary sub-simplexes at the corners are separated to leave an octahedral
core, (b). The subsequent dissection of this core into the remaining four inner elements, in a way that creates no
new vertices that do not belong to the lattice, can be carried out in three distinct ways, illustrated in panels (c),
(d) and (e), requiring two (only) of the available three allowed cuts to be chosen. In a 5D gridded simplex, the
ambiguity involves a more daunting choice among 60 valid combinations of selected discretionary cuts in order
to reduce the gridded simplex table to its 120 distinct varieties of sub-simplex elements.

The simplex in 3D is, of course, a tetrahedron and the following simple example illustrates
the general problem in this case. Suppose we have the tetrahedron gridded with only M =2
intervals along each edge, making a total of 10 grid points in the entire table, and we wish
to partition the tetrahedron containing this grid into 8 =23 sub-simplexes of equal volume.
Obviously, four of the dissecting planes need to be parallel to the sides of the large tetrahedron,
but after applying these cuts, the remaining core is an octahedron [see Fig. 16, panels (a)
and (b)] whose lattice points are all on its surface. Two further cuts are required to reduce
this octahedron into the four inner sub-tetrahedra, but three bisecting planes contend for this
honor. This is shown in the sketches of Figs. 16¢—d. Thus, in the 3D case, we find a three-fold
ambiguity in the choice of orientations of the two discretionary planes (those not including the
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four mandatory ones parallel to the original tetrahedron’s sides). In 4D, five cuts are mandated
by the orientations of the large simplex, and an additional five discretionary cuts must be
selected, for a total of ten; the total pool of lattice planes from which it is feasible to choose
these ten is now 2* — 1 = 15, and the number of combinations that succeed is now 12. Finally,
in the 5D case, six cuts are mandated, nine are discretionary (for a total of 15), and the pool
of feasible planes are 31 in number. Here we find that 60 combinations satisfy the requirement
of dissecting the larger simplex into equal-sized sub-simplexes.

Appendix D describes a general strategy for producing sets of the discretionary dissection
planes for a gridded simplex in any number of dimensions. There, it is shown that, by adopting
the Scheme A or Scheme B hexad orientation conventions of section 4c, based on the symmetries
encapsulated by the GF(8) algebra, we can seek those particularly desirable ways of dissecting
each hexad table that cause the 4D patterns of cuts at the boundaries of the adjacent 5D
simplexes of the honeycomb to match perfectly. Thus, although based on the seven color hexad
classification imposed by GF(8), we could, in principle define 607 different dissection strategies,
the appendix notes that only 360 of these combinations of dissections have this property that
the interpolations remain continuous across hexad boundaries. Moreover, it is noted that just
three of these continuity-preserving combinations enjoy the additional especially convenient
property that, oriented in conformance with their standard tableaux of section 4c, the hexads’
dissection patterns are independent of hexad color. Once again, it is the cyclic multiplicative
property of the elements of GF'(8) that provides the key to establishing this result, as elaborated
in appendix D.

We can now review the steps that occur when the blended hexad scheme is presented with a
new target aspect tensor. The appropriate hexad containing this point, and the associated six
weights w, are found by iterations of the basic hexad algorithm. The aspect point is rescaled
(‘standardized’), by normalizing the six weights so that they sum to one (but recording the
normalization factor that this involves). Next, it is necessary to identify the sub-simplex of
the tabulation that contains this standardized target point. This is done in two stages. We
consider the case where a linear interpolation to the target is sufficient, so that the source points
of the interpolation are the six vertices of one of the multitude of elementary lattice simplexes,
which we must identity. First, regarding the simplex table’s lattice points as forming integer-
valued 5-vectors, a basic unit-sided lattice parallelepiped containing the target point is found.
Second, the location within this particular parallelepiped is refined to determine which of the
120 standard elementaty sub-simplexes that it splits into (via the combination of ‘mandatory’
and ‘discretionary’ cuts chosen for the dissection of the standardized hexad’s simplex) contains
the target. Likewise, if a quadratic order of interpolation is desired, the parallelepiped and
subsequent sub-simplex in the procedure above are both of sides two units instead of one, and
the 21 lattice points of the sub-simplex and associated weights are then found. It is at this
point that the octahedral-group of hexad symmetry operations is invoked to transform each
of the source-nodes to the portion of the table that satisfies the inequalities, (6.25)—(6.27).
The 13 weights w' can now be interpolated, making due allowance for the permutation of the
GF(3?)-based colors that accompanies the octahedral-group symmetry operations alluded to
above. The 13 line-smoothing directions of the blended hexads are interpreted by reference to
their directions expressed as linear combinations of the first three generators (g1, go, g3) of the
basic hexad and the 13 weights w' associated with these blended hexads directions are finally
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un-normalized to make the magnitude of the reconstructed aspect tensor correct.

Once this blended hexads table-look-up has been performed for all the points of the analysis
grid, it becomes possible to construct continuous line segments threading through the analysis
grid, in each of the 13 colors, and, for each color, %, to pass on the weights w} of all the grid points
along such a line so that the recursive filter coefficients for this line segment may be computed
by the methods described in Purser et al. (2003b). Applying the anisotropic smoother is then
a matter of taking each of the 13 colors in turn and performing the appropriate smoothing
operations along all the designated line segments associated with this color. Self-adjointness is
usually a requirement of the complete smoother, so it is normal to follow one set of 13 smoothing
steps with the adjoints of each, but now taken in the reverse order. (Naturally, allowance is
made to adjust the aspect tensor passed to the blended hexads procedure to anticipate the
factor of two scaling of the aspect tensor that this symmetrization implies).

7. FOUR DIMENSIONS

(a) Generalizations in the style of the triad/hexzad approach

The generalization of an anisotropic smoother to four dimensions involves a further order
of magnitude in the complexity of the relevant combinatorial geometry. The number of inde-
pendent elements to a symmetric aspect tensor in four dimensions is 10, suggesting that we
should seek an appropriate decad generalization to the 3D hezad or 2D triad algorithms. As
before, we can standardize the aspect tensors within their cone by a suitable rescaling to put
them on a 9D surface. However, one serious extra complication here is that, if we are projecting
them onto the the 9D polyhedral shell boundary of the convex hull of the aspect vectors (in
10 dimensions) associated with grid generators, we find that the flat pieces that make up this
piece-wise flat surface now come in two kinds. The 10-point form is a simplex whose associ-
ated 10 opposing pairs of 4D generators form the 20 vertices of the polytope formed as the
convolution of a 4D minimal lattice simplex with its invertion, or ‘involution’. This is exactly
analogous to the construction of triads and hexads in the lower dimensions. But the other flat
piece is not a simplex but rather a 12-pointed polytope. This is bounded by 64 sides which are
simplexes (in eight dimensions). These 64 sides are themselves of two types, 48 of one, 16 of
the other. The problem of constructing a systematic and symmetrical decad algorithm is most
simply resolved by artificially introducing an additional pseudo vertex at the exact center of
each of the 12-point objects. These additions will be referred to as the hub points. Symmetry
requires that the hub point is attributed a weight of one twelfth of each of the surrounding true
generator images, but, in a geometrical division of the 9D convex shell, it will be assumed that
each hub acts like a true vertex in most respects. Like slices of a nine-dimensional pie, we can
now divide the 12-point object by linking the hub to each of the 64 simplex-shaped boundary
pieces, so that the slices created by forming the convex hulls of the hub with each boundary
piece are 9D simplexes with the requisite 10 vertices. The true tiles of ten points will be referred
to as type-1 tiles; the 48 similar slices of the 12-point objects will be referred to henceforth as
type-2 tiles; the remaining 16 slices of the 12-point object will be referred to as type-3 tiles.
In this way we have once again tiled a generic section of the aspect cone using only simplexes.

The connectivity is as follows:

(i) Type-1 tiles touch type-2 tiles on all 10 sides.
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(ii) Type-2 tiles touch one type-1 tile (opposite the hub), 6 type-2 tiles and 3 type-3 tiles.

(iii) Type-3 tiles touch one type-3 tile (opposite the hub) and 9 type-2 tiles.

From the connectivity we infer that the numbers of tiles of each type, 1,2,3, within a
sufficiently large ball in aspect space approach the ratio, 3 : 30 : 10. Using a Monte Carlo
method, we find that the probabilities of a randomly chosen aspect tensor falling within the
three types of tile are approximately in the ratio, 0.263 : 0.579 : 0.158. Therefore, the ratios of
the volumes of each type of tile are in the approximate ratio: 1.000 : 0.220 : 0.180, respectively.

We have already remarked that the type-1 tiles map back into the 4D lattice as the con-
volution of a minimal lattice simplex with its involution. The 4D polytope this implies is, in
some ways, a natural generalization of the now familiar cuboctahedron; in the most symmet-
rical linear transformation of the object, we find it to be a 30-sided polytope made up of 10
regular tetrahedra and 20 square-sided triangular prisms. The tetrahedra interface with the
ends of the prisms and a square side of each prism interfaces with another prism with their two
axes orthogonal. The polytope admits five bisecting hyperplanes in which each of the vertices
present are configured as the vertices of the familiar 3D cuboctahedron.

The 12-point object (i.e., the union of the 48 type-2 and 16 type-3 tiles of a co-planar set)
maps back to the 4D lattice to form the vertices of a linearly deformed regular polytope known
as the 24-cell (Coxeter 1973, 1999). This is a self-dual configuration of 24 regular octahedra
meeting at vertices six at a time. The regular 24-cell has a very high degree of symmetry.
Among other things the symmetry of this object makes it natural to group the 12 non-collinear
generators into a tableau of three columns of four:

81 85 89
g2 86 810 ’ (71)
g3 87 811
g4 88 812

where member generators within each column are mutually orthogonal in the form of the regular
polytope, and those of each row are at 120 degrees. With such an arrangement, the 64 sides
of the 12-point polytope in 9D are the 9-point simplexes formed by 3 points from column-1,
3 points from column-2 and 3 points from column-3 of the tableau. The set of 16 are those
for which the associated 3 generators not represented are the linearly dependent ones - the
other 48 do not have this property. We can always adopt the convention that, in the standard
configuration of a type-3 tile, it is the elements g1, g5, and gg (i.e., all the ones on row-1) of
the 12 that are left out, while for a type-2 sub-tile rotated into its standard configuration, we
omit the elements go, gg and g1 (i.e., all on different rows and columns and not on row-1).

The basic decad algorithm proceeds similarly to the hexad except that, when the standard-
ized aspect tensor is found to lie within a type-2 or type-3 tile, the weight attributed to the
artificial hub point must be re-apportioned uniformly over the 12 true generators. Thus, even
without any kind of further blending we might wish to add for cosmetic reasons, the basic algo-
rithm in this most simple and symmetrical form will require one to smooth along 12 generalized
grid orientations in general.

The basic decad algorithm lends itself to a scheduling of the smoothing operations based
on a color coding provided by the Galois field GF(2*). This uses a palette of 15 colors. It is
natural to ask whether it is possible to formulate a practical blended extension, analogous to
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those we have described for the triad and hexad methods. The geometrical complexity involved
would be enormous. For one thing, a tabulation of the weights over a representative portion of
each of the tile types would involve simplex tables of nine dimensions, so storage requirements
would be huge for any moderate resolution of the table. Even for a very modest resolution,
the kernel averaging over the cluster surrounding a generic junction would be a difficult task.
The co-dimension of the generic junction between tiles in the interior of the aspect cone is now
six. Quadratures in dimensions as large as this, over irregular shaped sectors that meet at the
junction, do not seem to be amenable to such nice numerical tricks as those of sections 6d, 6e,
that we were able to use in the hexad case. However, Monte Carlo integration methods, or
some quasi-regular variants, might just be feasible.

As an indication of the kind of geometrical complexity one would need to deal with near
each junction, it seems that 200 type-1 tiles and 104 of the 12-point objects, including at least
some of the type-2 and type-3 sub-tiles they contain, must meet at a generic junction. Also,
the hope that the cluster of tiles possesses only generators that are accommodated by the 40-
color scheme associated with GF(3*) is dampened by the fact that, of the 104 12-point objects,
surrounding the junction associated with the identity aspect tensor in a 4D Cartesian lattice,
32 of them contain generators with a component +2 that would not be contained within the
fundamental cubic array of 3 x 3 x 3 x 3 that this Galois field could distinguish. It might be
possible to divide up the original 12-point tiles in some alternative, more complicated way,
in order to solve this difficulty. Failing that, the use of the next higher-order of Galois field,
GF(5%), while technically possible, would be unappealing owing to the fact that this implies
the huge palette of 156 colors. The number of non-collinear generators involved in the cluster
associated with the junction that we have described is 72. It is not clear whether any adequate
alternative division of the original 12-point tiles could reduce this to the 40 that would fit within
the scope of the GF(3%) scheme, but this is a subject which merits further investigation, since
the ability to apply a blended decads algorithm in 4D assimilations would be of great value.

(b) Generalizations employing ‘Cholesky flow’

An alternative strategy for augmenting an anisotropic quasi-diffusive smoother from its ex-
isting n dimensions to n 4+ 1 dimensions is possible in the form of what we shall refer to as
the Cholesky flows method. It essentially assumes a splitting of the aspect tensor and its
associated simulated diffusion operator into parts residing purely in each of the n-dimensional
lattice’s hyperplanes transversal to the (n + 1)th dimension of the domain, plus a part repre-
senting one-dimensional diffusion along quite generally oblique, but smoothly continuous, flow
lines transversally intersecting all the aforementioned hyperplanes. Here, the flow lines do not
link lattice points from one hyperplane to the next in the way that all our previously discussed
algorithms do, so the most direct numerical implementation of the 1D diffusion along these flow
lines must include n-dimensional interpolation operators as each hyperplane is intersected, in
order to bring the smoothed values back onto the computational lattice. The accuracy of the
interpolations must also be sufficient (essentially third-order or better) to minimize additional
spurious dispersion. The method possesses some features in common with semi-Lagrangian ad-
vection schemes, so, not surprisingly, it can benefit from some of the same numerical techniques,
such as the method of cascade interpolation suggested by Purser and Leslie (1991). Also, since
the method is generic and works in (n 4+ 1) dimensions, there is no reason why it should not
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be recursively extended back to the n-dimensional part of the decomposition, and so on. Thus,
the Cholesky flows method may be used in combination with the triad or hexad approaches to
extend the anisotropic covariances into the time domain, or used in its purest form as a com-
peting alternative to these schemes. While, at the present time, the computational cost and
complexity of the high-order interpolations that the Cholesky flows schemes require make them
unattractive as competitors with the efficient triad and hexad schemes for two or three dimen-
sions, the Cholesky flows combined with the blended hexads method is almost certainly the best
way we have at present for the 4D synthesis of generally anisotropic quasi-Gaussian covariance
operators. This situation may even remain unchanged regardless of future developments in the
blended decads approach owing to the onerous numerical burden that the best possible of these
latter methods must impose associated with their expected 40-orientation smoothing sequence.
Therefore, although a detailed experimental investigation of Cholesky flows methods is beyond
the scope of this article, we provide an abbreviated technical summary of this approach in
appendix E.

8. CONCLUSION

It has not been possible (or desirable) to delve into the complete details of every part of
the algorithms we have described. Rather, it has been the intention to provide a scientific and
geometrical overview of the main techniques that have gone into the construction of them so
that the various major tasks carried out by the computer code itself are no longer particularly
mysterious or cryptic. At the present time, the codes for the basic triad and hexad algorithms
and the new alorithms for the blended triads and blended hexads, are written, tested and
considered to be at a stage of maturity where they can be relied upon. Further developments of
these codes will most likely be in the form of very minor refinements (‘tweaking’) rather than
any major overhauls.

The four-dimensional code is not yet at such a mature stage of development. The algorithm
described for the basic decad method, in which the 12-point objects are split into simplex
pieces through the intervention of artificial hub points, seems to be the simplest way to form a
basic version of the algorithm but, as we have discussed in the previous section, this approach
does not lend itself to an efficient construction of the blended decads extension analogous to
those successfully developed in the much simpler triad and hexad cases. It is anticipated that,
before a mature blended decads algorithm becomes a reality, we will need to replace the pie-
slice dissection of the 12-point aspect space regions by some other reduction to simplexes, or
even by some entirely different geometrical partitioning, in order that the blended algorithm’s
smoothing directions at any generic analysis grid point can all be uniquely colored by the 40
non-null element-pairs of the relatively modest Galois field, GF(3%). The alternative, blending
the decads that involve the central hub points of the 12-point objects, can be done in principle,
but only lends itself to automatic scheduling if we are prepared to tolerate the complexity and
inefficiency implied by using the 156 colors associated with the unwieldy Galois field, GF(5%).
A smooth and reliable anisotropic filtering scheme in four dimensions will become inportant in
the future if weak model constraint ADVAR, such as has been pioneeered by Bennett et al.(1996,
1997), becomes a serious contender for the operational data assimilation schemes of the future.
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While the emphasis of this note has been applications to anisotropic quasi-diffusive smooth-
ing operators on regular grids, we note that there is a complementary family of numerical
operators which could also be constructed according to the principles embodied in the triad
and hexad approaches. These are the self-adjoint second-order elliptic operators, such as occur
in the diffusion equation. Formally, the logarithm of the linear operator representing the effect
of finite-time inhomogeneous and anisotropic diffusion s such an elliptic operator, but the useful
applications of elliptic operators of this form are not confined merely to the diffusion equation
but occur (in the meteorological or oceanic context) in semi-geostrophic theory (Hoskins and
Bretherton 1972, Schubert 1985), for example. For these elliptic operators, the triad and hexad
methods provide a way to synthesize these operators as additive combinations of simple second-
order differential line-operators. Exact numerical self-adjointness is also brought about here by
adding the adjoint of the unadjusted operator (and dividing the result by two, of course). This
approach has the advantage that the differencing stencil is assured not to possess any spurious
negative numbers, which are notoriously problematic in numerical treatments of anisotropic
elliptic operators.
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APPENDIX A

Kurtosis relations

The kurtosis of a distribution described by the function f(z) symmetric about the origin
(f(z) = —=f(—=z)) and which is normalized to unit integral, [ f(z) dz =1, is defined to be the
fourth central moment divided by the square of the second central moment. Thus, defining
o= [ f(z)z?dz and 7 = [ f(z) 2* dz the kurtosis of f is

k=T/0" (A1)

We observe that the kurtosis in unchanged by a change in horizontal scale.

The kurtosis for a pair of equal impulses is clearly 1 and we find that, for more continuous
distributions, x > 1. Informative examples include the square- and triangular hat functions,
fs(x)=1,|z] <1/2 and fi(z) =1—|z|, || <1, where the support in each case is the range
indicated. Their kurtosis is easily verified to be ks =9/5 and k; = 12/5 respectively. An ex-
ample of a less ‘boxy’ distribution is the exponential, fo(z) =1 exp(—|z|) whose kurtosis is
ke = 6. But the standard against which we tend to compare other distributions’ kurtosis is the
Gaussian, f,(z) = (27)~"/? exp(—z?/2), whose kurtosis is £, = 3. The central limit theorem of
classical statistics formalizes the notion that convolving two functions produces another that
is, in well defined ways, more Gaussian than its progenitors. In the context of kurtosis it is
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not surprising that we corroborate this notion; by the use of the moment generating functions
(Fourier transform) of distributions f; and fy, and an application of the convolution theorem
(Bracewell 1965, Champeney 1973) we may expand the product moment generating function
as a series:

folk) = 1— Josk?+ ookt 4. (A.2)
= fi(k).fa(k).

With similar expansions for factors fi(k) and fo(k) and employing the relations coupling &, o
and 7, we find that,

O'%K‘,g = o%m + ogmz + 60109,
= o%k1 + 03ko + (20102) Ky, (A.3)

where, since o3 = 01 + 09,
2 2 2
03 =07 + 05 + 20109.

Thus we see that, since the x3 is a weighted average of k1, k2 and Ky, then the only possible
stable fixed-point for the kurtosis of functions combined under convolution is k = k4, = 3. Note
that the functions f; and f; above are also related by convolution, f; = f * fs, being the first two
of a the series of basis functions on unit grids of the so-called B-splines (de Boor 1978) which
are formed by successive convolution with f; and which all therefore have kurtosis approaching,
but less than that of the Gaussian.

Next, we consider the effect on kurtosis of mizing distributions. Let f3 = w1 f1 + wa fo, with
w1 + wo = 1. First we note that

o3 = w101 + w209,

T3 = WiT| + WaTo. (A.4)
Then insertion of these into the kurtosis definition reveals that
k3 =k(1+g), (A.5)
where k is a generalized average:

wlafm + ’11)20'%/4,2

w1a% + wza%

K=

and g is the non-negative quantity:

_ wiwy(o1 — 03)?

A6
o (A.6)

which becomes strictly positive when the second moments differ. Therefore, when mixing
distributions the resulting kurtosis is never less than a generalized average of the components’
kurtoses and tends to be increased significantly when the components have widely differing
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spreads. It is this result, and its generalization to higher dimensions, that justifies the principle
that low-kurtosis (thin tailed) distributions such as the Gaussian make more reasonable models
of covariances in an adaptive assimilation than in a non-adaptive one.

APPENDIX B
Tiling property of hexads

In the case of the 3D regular lattice we have asserted that the configurations of grid genera-
tors that form linearly deformed cuboctahedrons have corresponding generator images in aspect
space that define, via their convex hulls, the natural tiles covering the interior of the aspect
cone. Here we justify this assertion using an argument based on convezity. The geometry takes
its simplest form when the representative hexad is maximally symmetric, which occurs when
we choose the lattice to be of face-centered cubic (fcc) variety, (as also defined in subsection
6a). For example, the position vectors of the lattice points comprise the integer triples that
sum to an even number. Then the six opposing pairs of generators for the most symmetrical
hexad are + the columns of:

J 03 _]-a 1

1, 1, -1/, (B.1)
1_15 1a 0

0, 1, 1
+11, 0, 1
1, 1, 0

bl

bl

with generator images forming the columns of:

0, 1, 1, 0, 1, 17
1, 0, 1, 1, 0, 1
1, 1, 0, 1, 1, 0
1, 0, 0, -1, O, 0 ’ (B.2)
0, 1, 0, 0, —1, 0
L Oa 07 15 Oa Oa -1 J
when each generator image of g =[g1, g2, g3]” is arranged into the column,
A = [g191, 9292, 9393, 9293, 9391, 9192] " - (B.3)
Let
n=[1,1,1,0,0,0]". (B.4)
Then the dot product
n’-A=2 (B.5)

defines a 5D affine subspace in which all six of the generator images in (B.2) clearly reside. For
any generator, g, with image, A, it is also clear that,

nT.A=gl.g>2, (B.6)

and that strict inequality pertains for all generators of the lattice other than the 12 defined by
(B.1). Thus, while all generator images fall into the half-space (B.6) only the six of (B.2) fall
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onto its boundary. The rank of the matrix (B.2) is five, so these columns define a 5D simplex.
We have already shown how following the hexad transition rules leads to a new analogous hexad
having the five unchanged vertices in common. Thus, by symmetry, this new hexad’s generator
images must also form a 5D simplex in aspect space meeting the old hexad’s image simplex
across the side corresponding to the five generator images the two hexads have in common.
This argument applies to all six of the possible transitions, ensuring that each simplex tile of
aspect space is surrounded on all six sides by another simplex tile just like it. Cuboctahedral
hexads are therefore not arbitrary, but are the uniquely natural geometrical forms associated
with aspect space decompositions related to a regular 3D lattice.

The same general principles are brought to bear in the case of the 4D lattice, where the
convexity arguments confirm that two species of polytopes are implied by the tiling formed by
the boundary elements of the convex hull of all the generator images.

APPENDIX C

Distance from a point to a simplex

A simplex S,, with n 4 1 vertices in n dimensions is the convex hull of these vertices and has
the property that its boundary comprises n 4+ 1 simplexes each of n vertices in n — 1 dimensions.
This principle extends recursively to successively lower dimensions, to triangles, line segments
and points. The affine hull of a set of points is the affine subspace (like a linear subspace,
but not necessarily passing through the origin) of smallest dimension that contains these points

(van Tiel 1984). For an m-dimensional simplex S,, whose m + 1 vertices X;,4=0,...m in an
n-dimensional Cartesian coordinate system are x;, ¢=0,...m, the m vectors, x; —xg, =
1,...m, are independent and lie in the linear space parallel to the affine hull of S,,, A Gram-

Schmidt orthogonalization (e.g. Golub and Van Loan 1989) of these vectors supplies a Cartesian
basis, v;, ¢ =1, m, which we can combine, as mutually orthogonal columns, into a matrix, V,
such that any point X in the affine hull, with coordinates x, is also defined,

x=x0 + Vy, (C.1)

for some m-vector y of alternative Cartesian coordinates associated with the basis V.

In order to calculate the Euclidean distance in n dimensions between a simplex S,, of
dimension m > 0 and a point P represented by the position vector p we proceed as follows.
Drop a perpendicular from P to a point Y in the affine hull of S,, whose coordinates with
respect to the basis V are:

y =V (p - xo). (C.2)

Express y as barycentric coordinates, (w, . .., w.,), with respect to the m + 1 vertices of
Sm, which, with respect to the basis V, we take to be at y;, ¢=0,...,m (with yo=0). If
we collect all but y( of the y; into the matrix Y and all but wqg into the m-vector, w, then w
is found by inverting:

y=Yw, (C.3)
and the missing component recovered using, wo =1 — >_i*; w;. If these barycentric coordinates
are all non-negative, @ lies in (or on) the simplex, Sy, and its distance to P is simply D, where,

D*=(p-=x0)"(p—x%0)—y"y. (C.4)
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Otherwise, the distance to S, is the minimum of the m + 1 distances to the simplexes of di-
mension m — 1 that make up the boundary of S,,. From this fact and the aforementioned
construction of any simplex from simplex parts of lower dimensions, we can recursively deter-
mine the distance between P and the original simplex S, of dimension 7, since the recursions
are bound to terminate with some definite nearest subsimplex (even if this is merely a point)
that contains the perpendicular dropped into its affine hull from P.

APPENDIX D

Simplex grid dissections

The problem we initially address is to find a characterization of all the possible ways to
decompose a gridded simplex by families of parallel and regularly spaced cuts so that the
resulting fragments are ‘minimal simplexes’ possessing only the original grid points as their
vertices and having no other grid points in their interiors. We state a solution to this problem
and sketch an outline of the proof required to demonstrate its correctness. We then show how
an application of these dissections combined with the insights provided by Galois field theory
lead us to a simple and convenient specification of the dissection structure of the generic hexad’s
simplex table that guarantees continuity of interpolated values across the hexad’s boundary.

In 2D the problem is obviously trivial as the simplex (triangle) admits only one decompo-
sition that employs the three families of cuts parallel to the three sides. In higher dimensions,
the decomposition is no longer unique. For example, in three dimensions, where the simplex is
a tetrahedron, in addition to the four mandatory families of cuts parallel to the simplex faces,
two additional families must be specified, but, as we have noted and illustrated in Fig. 16,
there are three ways in which this can be done.

We shall suppose that the original simplex occupies the subset of x € R" defined by the
n + 1 inequalities:

n
dowi < M, (D.1)
=1

z; > 0, (D.2)

where integer M defines the resolution of the simplex table whose grid points here form a piece
of a unit Cartesian grid. Each family of valid cuts must comprise the hyperplanes defined by
constraints of the form:

x - bk =g, q=0,..., M, (D.3)

where b®) is a non-null vector, normal to the planes it constrains, whose components are
all either ones or zeroes (otherwise, fractional grid intervals would be formed along edges of
the original simplex). The set N = {b()} certainly includes each of the vectors with a single
‘one’ and the vector of all ‘ones’, corresponding to planes that are parallel to the sides of the
original simplex. In addition, for there to be no interior points of intersection (vertices of the
minimal simplexes) that are not integer-component vectors, we require that the determinant
of any n x n matrix formed from the vectors b(%) taken n at a time is one of {-1,0,1}, and
not some other integer. It is useful to attribute to a region of a lattice hyperplane a surface
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measure defined by the maximum of the n Euclidean measures of the orthogonal projections
of this region onto the n mutually orthogonal coordinate hyperplanes. The surface measure of
each single (n — 1)-dimensional face of a minimal simplex is always 1/(n — 1)! units, making
the total surface measure of the simplex (n + 1)/(n — 1)! units. Generically, every family of
cuts can be regarded as creating precisely two units (one on either side of the cut) of surface
measure per basic parallelepiped. Since n! minimal simplexes occupy each generic basic grid-
unit hypercube or parallelepiped, it therefore requires K (n) distinct families of parallel cuts to
dissect the simplex table into its minimal simplexes, where:

K(n) = (”;r 1). (D.4)

We assert that we can form the set {b®*)}, k=1,... K(n) with the requisite properties in
the following way. First, define a staircase basis B, to be a square matrix whose n column
vectors are such that, by appropriately permuting the indices labeling the components of these
vectors (i.e., the rows of the matrix), one obtains a B in the standard form:

0 : 1<y,
Bi,j:{ 1. oi>g (D.5)

We may take bgk) = Bjr, k <n and augment such a basis with additional columns to complete

the set N, with the additional columns b(k), k > n, that comprise all the differences bgk) =
B;j — B; j, with j < j'. For the 3D example,

1 0 0 1 0 1
N=<{|1],]1],]l0],|1],]1],]0 (D.6)
1 1 1 0 0 0

In general, this construction produces all the finite n-vectors whose non-vanishing components
form a contiguous string of ‘ones’.

The resulting augmented set of K(n) vectors possesses the determinant properties we re-
quire. To prove this, note that if two of a subset of any n of these vectors chosen to form a
trial matrix have the same largest row index where a ‘one’ appears, then, without changing
the determinant, we can replace the vector with the larger number of ‘ones’ with the vector
formed by subtracting the other vector from this one. An iteration of this process ensures that,
eventually, all the columns of the matrix will have a different row-position for their last ‘one’,
or will contain zero columns. The determinant is therefore one of {—1, 0,1} as asserted.

The standard form of the staircase basis specifies a particular permutation of the vertices
of the original simplex: the vertex occupying the origin followed, in strict order, by the vertices
‘pointed to’ by the successive row labels. However, amongst the columns of N are the n which
also form a staircase basis, sharing the same N, but with the row-index ordering reversed; other
row-index permutations do not lead to a valid staircase basis, so, the total number of distinct
N for n > 2 is n!/2. If we affinely map the large simplex and an associated dissection encoded
by N to the same region defined by (D.1), (D.2), we find that the mapped families of cuts will
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also conform to a pair of staircase basis constructions, in which the new implied permutations
of the vertices are simply the two cyclic permutations of the previous ones that put the new
origin-occupying vertex in first position. Thus, each of the n!/2 schemes of cuts constructed via
staircase bases are associated with one of the n!/2 distinct direction-indifferent circuits through
the n + 1 vertices of the original simplex.

We can now use the identification of a valid simplex dissection with the cyclic pattern of its
vertices to characterize a complete solution to the problem of matching the boundary patterns
of cuts of adjacent hexads color coded by the seven-color GF(8) scheme. The trick is to observe
that the color assignments of vertices and hexads in the GF(8) scheme is exactly what would
be observed if we were to ‘roll’ a 6D (seven cornered) simplex from one neighboring hexad to
another, ‘printing’ the seven different vertex colors and hexad colors as we proceed. There
are 6!/2 =360 different valid ways of dissecting the 6D simplex, which induce corresponding
valid ways of dissecting the seven different colored hexads. If we are prepared to specify a
different way of dissecting the hexad according to its particular color assignment, then each
of the 360 ways of dissecting the 6D simplex leads to a distinct hexad dissection scheme of
this kind. However, an enormous simplification is achieved if we demand that each hexad is
dissected in the same way, once it is oriented by the appropriate standardizing multiplicative
operation amongst the non-null elements of GF(8) in the manner described in section 4c. All
we need to do is to choose the circuit through the seven ‘colors’ that define the dissection
of the 6D simplex to also be a constant-stride circuit around the cycle of the corresponding
multiplicative group of the seven non-null elements of GF(8). Noting that strides one and six
give equivalent direction-indifferent circuits, as do strides two and five, and strides three and
four, then there are precisely these three distinct ways (out of the original 360) which enjoy
this elegant property of requiring only a single standard dissection scheme for all the hexads,
that guarantees a perfect match of the patterns of cuts at hexad boundaries, and that therefore
allow perfect continuity of interpolations from the simplex tables as interpolation targets cross
hexad boundaries.

APPENDIX E
Cholesky flows

Suppose we wish to extend the capability of a given anisotropic quasi-Gaussian smoother in
n dimensions to enable it to work in n + 1 dimensions. The Cholesky flows method we describe
here represents one possible strategy for solving this problem. Let us suppose that an existing
n-dimensional smoother acts in each grid hyperplane transverse to the (n + 1)th dimension,
t, dispersing or diffusing their input data in a way quantitatively compatible with the field of
n-dimensional aspect tensors, A, provided to it on each hyperplane. The additional dimension
we have denoted ’t’, while conveniently spoken of here as ‘time’, need not necessarily by the
actual temporal coordinate in this general abstract approach. Also, threading transversally
to these hyperplanes, suppose we specify a ‘Cholesky flow’ in the form of a smooth field of
n-vectors, u. To the extent that the ‘time’ interpretation is valid, this vector u is an effective
advecting velocity which allows us to split the (n + 1)-dimensional smoothing task into two
parts applied one after the other. First, we may apply the n-dimensional smoother with partial
aspect tensor A at all ‘times’. Second, we apply to the output of the first smoother another that
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acts primarily in the ‘time’ dimension, except in the ‘Lagrangian’ sense of diffusing along the
‘trajectories’ implied by the Cholesky flow vector field u. This second smoother is essentially
one-dimensional so the aspect tensor has just the single component, a. The square-root of a
has the interpretation of being the coherence ‘time’ scale along the Cholesky flow trajectories.

Provided the changes in the tensor field A, the vector field u and the scalar a are not
too abrupt in comparison to the intrinsic dispersion scales throughout the (n + 1)-dimensional
domain that field ¢ and the the components of A imply, the resultant dispersion of the combined
smoothers, quantified by the central second moments of the (n + 1)-dimensional aspect tensor,
which we shall call A will, to an approximation whose validity is as good as the aforementioned
assumption of smoothness, satisfy:

A=U.D.UT, (E.1)
where the structures of the matrices on the right are as follows.
u=| L u] (E.2)
—lof, 1 '
and, ) )
| A O
D= 0. (E.3)

This is formally a modification of the classical block-matrix variant of the Cholesky factorization
of a symmetric matrix into mutually-transpose block-triangular factors. The modification,
which avoids explicit square-root operations, is the intermediate block-diagonal factor, D. The
second row and column ‘blocks’ are actually just the single added dimension, ¢. In practice, of
course, we start with A and factorize it in this fashion in order to obtain the A, the u and the
a that enables the two-stage construction of the complete smoother to proceed.

Practical implementation of a diffusive process along the Cholesky flow lines would in-
volve the constant intervention of n-dimensional interpolations, similar to those used in semi-
Lagrangian advection schemes, at each successive step from one hyperplane (pseudo-time level)
to the next. Probably the most efficient way to carry out the ‘time’ smoothing part of this
procedure is therefore to adopt the double-sweep (forward, then backwards) recursive filter
methods to execute the dispersive component of the problem and to apply the simplest form
of the Cascade interpolation procedure (Purser and Leslie 1991) to regain a foothold on the
computational grid after each grid interval of ‘time’, t.

There is no obstacle, in principle, to chaining a sequence of such Cholesky flows procedures
to build up the smoothed result at successive increments of the problem’s dimensions. Such a
recursive application constitutes an alternative methodology to the use of the triad or hexad
methods. However, the considerable computational burden of the multiple interpolations appear
to make this grand recursion uncompetitive; only when the stage is reached where we need to go
from three dimensions to four does the Cholesky flows approach seem to enjoy the advantage.
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