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ABSTRACT

A detailed discretization of a hydrostatic primitive equation global atmospheric model on
spherical and generalized hybrid vertical coordinates is described. The discretization in the
horizontal using a spectral method with spherical transformation is not the major theme and is
not described in this manuscript. Only the vertical discretization is described in detail up to the
level of readiness for programming.

Energy and angular momentum conservation are used as constraints to discretize the
vertical integration by finite difference scheme. The entire atmosphere is divided into several
layers; only pressure and vertical flux are specified at the interfaces, and other variables such as
horizontal wind, temperature, specific humidity and specific amount of tracers are specified at
each layer. Conservation is a constraint that requires the pressure at each layer to be averaged by
the pressures at the immediate neighbor interfaces (the one above and one below a given layer).
Since pressures are not combined from a pressure gradient and density in a logarithmic form, the
relationship for pressure between layers and interfaces becomes simple, and with pressure
equation not in logarithmic form, it provides mass conservation as an extra.

Due to the generalized vertical coordinate, vertical flux is solved by applying local
changes in the pressure and virtual temperature equations to the definition of the vertical
coordinate. It solves vertical fluxes at all interfaces by a simple algebraic equation through
matrix inversion. For the sake of time splitting between dynamics and physics, the vertical flux
obtained in the dynamics is without local changes from model physics, and then the vertical
advection is required in the model physics. The semi-implicit time integration scheme is also
given by this finite difference scheme in generalized vertical coordinates. The details of the
matrixes are described so as to be ready for programming.

A specific definition of a generalized hybrid coordinate, including pressure and isentropic
surfaces, is introduced. Due to this definition, pressure is given by surface pressure and virtual
temperature. These modifications of the generalized form are necessary to save computational
resources. Instead of solving for the pressure at all interfaces, only the surface pressure equation
is needed. Though the elements in the matrixes for semi-implicit computations become more
complicated than those in the generalized pressure equation at all levels, the computing time is
not increased because the matrixes are of the same degree; even two matrixes reduce to vector
computation only because the surface pressure is solved instead of pressure at all the interfaces.



1. Introduction

It has become a trend to use generalized vertical coordinates in atmospheric modeling
(Simmons and Burridge 1981; Zhu et al 1992; Konor and Arakawa 1997; Johnson and Yuan
1998; Benjamin et al 2004). With generalized coordinates, the atmospheric model can be
integrated along different types of coordinate surfaces. The coordinates near the surface and
lower atmosphere still use terrain-following sigma coordinates, but over the upper atmosphere
better results come from computations on quasi-horizontal coordinates, such as pressure surfaces
or isentropic surfaces, that reduce the numerical errors due to miscalculated vertical motions.
The combination of these coordinates into a hybrid coordinate system can take advantage of the
strengths of the individual types of coordinate surfaces for numerical purposes. The dynamics
group in EMC has made an effort to move in this direction as well.

Instead of following what others have done, we plan to have our own system with an
incremental implementation. All prognostic variables that we used are included as the prognostic
variables in the hybrid vertical coordinate system. After the selection of prognostic variables, we
keep using spectral computation in the horizontal and finite difference in the vertical in the first
implementation, though we plan to eventually have a semi-Lagrangian, finite or spectral element
in vertical. Due to the fact that the hybrid coordinate equation set is different from what we have,
a new discretization in the vertical is required to satisfy energy and angular momentum
conservation. The matrixes used for the semi-implicit time integration have to be modified due to
the different vertical discretization in hybrid coordinates.

This note describes the discretization of a hydrostatic version of a primitive equation
global model on spherical and generalized hybrid coordinates. We will still keep a spectral
computation in the horizontal, as mentioned, and use finite differencing in the vertical. For
backward compatibility, we will use virtual temperature as a model prognostic variable. Section
2 lists the completed set of all continuous equations, and introduces a map factor to rewrite the
equation set on spherical coordinates to a regular latitude/longitude pseudo spherical coordinate.
Section 3 discusses the vertical constraints in continuous forms that are ready for detailed
discretization in Section 4. Section 5 illustrates the process to solve the vertical flux for vertical
advections. Section 6 describes the semi-implicit method with the help of linearized equations of
divergence, virtual temperature and pressure. A specific definition of the hybrid coordinate is
introduced in Section 7, and a discussion of it is in Section 8.

2. Hydrostatic system on spherical and generalized hybrid coordinates
A primitive hydrostatic system on spherical coordinates in the horizontal and a

generalized hybrid coordinate in the vertical can be obtained from a textbook, such as Haltiner
and Williams (1979) (with a general vertical coordinate transform) and it can be written as
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for connecting between the vertical pressure gradient and height changes with coordinates,
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includes the contribution of moist air as used in ECMWF model (Untch and Hortel, 2003); u and

v are horizontal winds, ¢ is vertical coordinate velocity, Tv is virtual temperature, p is pressure,
q with index i are tracers including specific humidity. The F with related suffix, the last term in
each equation, is the parameterization of model physics. The horizontal coordinates A and ¢ are
spherical longitude and latitude. The rest are traditionally used, for examples g as gravitational
force, a as earth radius, fs as sine component of Coriolis force, and z as height from surface.

In order to provide easy reading and easier coding, the concept of a mapping factor to
map spherical coordinates in a Gaussian grid to equal latitude and longitude grids is introduced
here. Thus, the equation set above can be re-written into a different form of derivative in the
horizontal as
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In this case, true spherical A and ¢, longitude and latitude, coordinates are mapped into pseudo-
spherical coordinates by A and ¢. Thus, the derivatives in the spherical coordinate grid become
as simple as
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It can be viewed as a Cartesian grid system with mapping factor m. Then pseudo winds are used
to simplify the equation with a mapping factor as
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Note that there is no curvature term in Eq. (2.4a) as compared to Eq. (2.1a), and there is a
different form of curvature term shown in Eq. (2.4b) as compared to Eq. (2.1b). Those curvature
terms in Eq. (2.1) are combined with horizontal advection with pseudo wind to form the results

in Eq. (2.4).
Furthermore, Eq. (2.1) will be used to derive energy conservation in Section 3 because it
is a straightforward derivation, and Eq. (2.4) will be used for discretization, so it can be used to

code the model directly. Note that this equation set can be solved as a closed system, except for
hybrid vertical velocity, which will be discussed later in Section 5.

3. Constraints for Vertical Discretization

In this section, we will describe the continuous form of constraints proposed by Arakawa
and Lamb (1977) in designing a vertical differencing scheme. Two constraints are followed:

(1) Vertical integrated pressure gradient force generates no circulation along a contour of
surface topography.

We can express this condition by the following derivation:
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where the suffixes s and T denote the surface and top of the model atmosphere. If we
assume the top of atmosphere to be a material surface of constant pressure (it is zero in
our current model), then the second term on the right hand side of the final form of Eq.
(3.1) is zero. Then we apply horizontal integration over the globe above the surface
topography, making the first term zero; the third term is also zero along the surface
globally, in the final form of Eq. (3.1). This condition is angular momentum
conservation, which is used by Simmon and Burridge (1981), Konor and Arakawa
(1997), and others.

(2) The energy conservation terms in the thermodynamics and kinetic energy equations have
the same form with opposite signs, so that total energy is conserved under adiabatic
frictionless conditions.

We can express this condition with thermodynamic energy and kinetic energy.
Let’s start from thermodynamic equation and continuity equation as
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combining Eqgs. (3.2) and (3.3), we have
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where the last term in Eq. (3.4) is called the energy conversion term. Next, let’s derive
from horizontal momentum equation and continuity equation the following:
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where K is kinetic energy as (u’+v?)/2 and Eq. (3.8) can be expanded, by applying the
continuity equation and total derivative equation, as
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Combining Eqgs. (3.4) and (3.8) with the expanded of Eq. (3.8) in the final form of Eq.
(3.9), we obtain total energy as
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where E=CpTv+K. All terms on the right hand side of Eq. (3.10) will be zero upon global
integration in the horizontal and in vertical. Thus, it implies that total energy is
conserved. The last term in Eqs (3.4) and (3.9), called the energy conversion term, as
mentioned above, is the same but of opposite sign between the thermodynamic and
kinetic energy. If the discretization used in Eq. (3.9) is used for Eq. (3.4), in other words,
if the discretization used for the energy conversion term is the same between the
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momentum equation and thermodynamic equation, then the total energy will be
conserved.

4. Vertical Discretization

This section uses the constraints described in Section 3 to resolve the discretization for
all equations. First, we decide the vertical grid structure, then use the grid structure and the
constraints in the previous section to do the discretization. The vertical grid structure is shown in
Fig.1. Only pressure and vertical flux are located at the interfaces (or levels), all other variables
are located with layers. Hereafter, a variable with a hat indicates that it is located at the
interfaces, otherwise the variables are located with layers.

From the vertical grid structure in Fig. 1, we can start to derive the first constraint from a

discretization of the first form in Eq. (3.1) and end up with a discretization of the last form in Eq.
(3.1) as the following:
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The immediate problem, seen in the third form in Eq. (4.1), is the pressure at a layer, since we
provide pressure at levels as shown in Fig. 1. To represent p at layers by p at levels, let
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for k=1,K. Substitute Eq. (4.2) into the third form in Eq. (4.1), which equals to the last form in
Eq. (4.1), then regrouping in terms of pressure gradient at different levels, we obtain
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After expanding the above equation in the following:
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we have following conditions to satisfy Eq. (4.4) above by
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without knowing the values of pressure gradients at all layers. Re-arrange Eq. (4.5), and we have
the hydrostatic relation between layers as
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for k=1,K-1. Add and subtract the height at level k+1 on the left hand side of Eq. (4.7), regroup
it, and rearrange the index, and we have hydrostatic relation between layer and levels as

D, - (i)k = _(ﬁln-l Pk)( ) Z’;k (4.8a)
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for k=1,K, which also satisfies the relations in Eq. (4.6) for the surface and top of the
atmosphere. But the function of p for the layers has not been solved, which can be done by
applying the second constraint.



Next, let’s use the second and the last version of Eq. (3.9) to determine the energy
conversion term from the kinetic equation, then use it for the thermodynamic equation later.
Thus, the conversion term can be discretized from the second and last forms of Eq. (3.9) as
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for k=1,K. Next, substitute the hydrostatic relation between layers and levels, Eq. (4.8), into Eq.
(4.9) and use the discretization of vertical pressure gradient as follows:
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for k=1,K, which is the same form as used in Eq. (2.4) with a map factor, and it can be
discretized from the above equation by using pressure at layers, as

a\ B it - P
(dt)k_ s, Vpk+(CaC)k (4.14)

for k=1,K. Observing the equations above, Eqs. (4.13) and (4.14), we can give a simple solution
to the function of p at layers as
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for k=1,K. Therefore, from Eqgs. (4.15) and (4.2), we get
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for k=1,K, and the hydrostatic relation in Eq. (4.8) becomes
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for k=1,K, so all pressures use pressures at all levels. Expanding Eq. (4.17) from the surface to
given layer k, and summing them all, we have
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for k=1,K, thus, the pressure gradient force can be written as
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Next, let’s discretize the continuity equation by using Eqs (2.4d) and (4.10); we have
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for k=1,K, then, list the above equation for layers from k to K, the top of the atmosphere
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then sum them together, after eliminating the same local pressure change, we then obtain the
pressure equation for all levels, including surface pressure, as
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for k=1,K+1, under the following boundary conditions:
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Note that the top of the atmosphere at model level is treated as a material surface at zero
pressure, and not only its value but also it derivative are zero, thus we obtain Eq. (4.21) with the
pressure tendency at the top level.

Next let’s discretize the thermodynamic equation. First, by substituting Eq. (4.15) into
Eq. (4.13), then applying it to the thermodynamic equation, we have

di KTk (apk dpk 1) 2 y }p : :7p
= = . Ll+m V Vip, + —| +|C— 4.23
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for k=1,K. Next, by substituting Eq. (4.21) for levels k and k+1 into Eq. (4.23), the final form of
thermodynamic equation, for k=1,K, becomes

11



dl,, __xI,, dp

dt ﬁk+ﬁk+1 dt

ﬂ * -~ ~
=—%—m*(V; ¢ V(P, + .., (4.24a)
Pyt P

K K
‘2 ((i’, - f’m)D: + ‘/i* ¢ V(IA’: - f’iu)) - 2(6’: - IA’M)D: + V: ¢ V(ﬁi - ﬁi+l))>
imk

imk+l
therefore, the omega equation can be written as
K K
W= mz[Vk * V(P + Pr) - 2((171' = P.)D; +V; oV (p, - Pi+1)) - 2((1’.‘ = Pi)D; +V; *V(p, - Pm))] (4.24b)
imk imk+1

Note that the summation is zero while the starting index of the lower limit is larger than the
index of the upper limit. For example, in the above equation, a portion of the summation is zero
when k=K because the lower limit is K+1 and the upper limit is K. This applies to all
summations in this note.

The last discretization is the vertical flux, which can be derived as
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where k=1,K with boundary conditions indicated by the double underbar and/or double overbar.
From here on, the double underbar in the equation indicates that those terms are zero for the
bottom boundary, and the double overbar indicates zero terms for the top boundary condition.
For example, in Eq. (4.25) the bottom boundary condition term with the double underbar is zero
when k=1, and when k=K the top boundary condition term with the double overbar is zero; for
all other k’s these two terms are both used. Therefore, the completed set of equations can be
discretized as in the following, for all k with boundary conditions at k=1 and k=K:
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ot ot

These equations can be closed as the vertical fluxes for all interfaces are given. The vertical
fluxes will be given in a general method described in the next section.

5. Vertical coordinate velocity

The last undetermined variable from the previous sections is hybrid coordinate velocity.
It can be determined specifically due to the definition of the hybrid coordinate, but here we start
to provide a general solution to it. We have a o=(p/p,.) coordinate in the operational model, o-p
hybrid coordinate in the parallel model, and an isentropic hybrid coordinate as a future goal.
Thus, let’s consider the hybrid coordinate as a function of surface pressure Ps, pressure P, and
virtual temperature Tv, because they are used as prognostic variables in the model as

E=F(p,py.T) 6.1

then the coordinate velocity can be obtained from the derivative of equation (5.1) with respect to
time at levels from 1 to K+1; since the coordinate is not a function of time, the time derivation of
Eq. (5.1) should be zero with expansion as in the following:

aF
ot

Py,

p 5.2)

_(9F) ., (9F
p,), o \dp),

. oI, ) ot

The contribution of local time changes can be separated into vertical flux and non-vertical flux
terms, so let’s start from Eqgs. (4.21) and (4.24), which can be written as

By 2((2 pm)(‘”‘ m, )+u.~‘ #bi= i) - 0(ﬁ;-f’;+lﬁ))_(é@)

pay " adp adi adp ac/, (5.32)
() ()
ot /i €/,
where the superscript H is for non-vertical-flux term,
B\ __ 2N L), B Bu) - 9B = Bu)
(_L) = _m22 (P, le) i ]+ ui" P~ Py + vi* Di— Piy (5.3b)
ot /, par 0A ady adA aop

14



and for k=2,K since k=1 and K+1, vertical fluxes are zero. In the same way, from Eq. (4.26c), we
define

H
(‘971) =—m2u;ﬂ—m2v* T, +_KT m <V V(Dy + Prn)

at J, adh adp P+ Piy (5.4a)

K K
'2((13, - I;m)D: + Vi* V(ﬁi - ﬁm)) - 2((i’; - ﬁm )D: + Vi‘ V(ﬁ,’ - ﬁi+l))> + F

imk im k]

which can also be separated into adiabatic and diabatic heating terms as

H
(6’11) =-m’u, L -mv, - 91, +__’ST_m <V V(Pk*‘Pm)
ot /p, “ ada aﬁ(p Pi* Dra (5.4b)
K K
_E((i’z - i’m)D,- + V, V(i’i - i’i+1)) - 2((i’, "IA’M)D,' t Vx V(i’i - i’i+l))>
jmk jmk+1
H
(éTv) -F, (5.4¢)
ot Jp, *
so that
H " "
3Tvk=(%) LA R PN P ) (5.5)
ot ot ), 2 ot \ Py — Pis o » Pk Pin

for k=1,K with boundary conditions for k=1and k=K as indicated by the double underbar and
double overbar, respectively. Thus, the temperature tendency at an interface

o, =1(3T L 1) (5.6)
ot 2\ ot ot

can be expressed as

é’_ﬁ_k:l(ﬁ_n)ﬂ_'_(éﬂ)li lT Tvm[cpr _l(Tl’k_l_T;k_'_TVk_]_T;k) é@
a2\ ot ), ot /i 4 Pk Pea | 9€ 4 i)k_i’lul i’k-l_i’k o
k 5.7
lTk T Cﬁp]
4 p-p | 9 9

for interfaces of k=2,K with the boundary equations for k=2 and K as indicated. Next we put
Egs. (5.3) and (5.7) into Eq. (5.2). With some manipulation, we obtain
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17,-T,, E) ;9 +1(T—T+T—T)(§£) +(QF_) )
4 Py~ P \ 9T, P 5Ckl 4\ Di=Pra Pra— P \IT, . \9p), 0Ck

IT___T_(_aﬁ) ;o (5.8)

4 Pia— D ag
%) (5.
e
dat J, Ot /i

k-1

oF ., oF (gp_)” . o)1

0pSkdt 6pko7tk daT, ) 2
for k=2,K with boundary equations at k=2 and K as indicated. This can be solved by matrix
inversion. The method to obtain vertical flux is (1) to compute the surface pressure equation and
pressure equation (continuity equation) without vertical flux, then (2) to compute the
thermodynamic equation without vertical advection, then (3) to substitute pressure and
temperature tendencies without vertical flux into the right-hand-side of Eq. (5.8); then vertical
flux can be solved, as mentioned above, by matrix inversion.

Vik

In the case of time-splitting for the dynamics and physics computations, Eq. (5.8), which
requires diabatic heating as shown in Eq. (5.4), can be rewritten into following form by
separating the total vertical flux into adiabatic vertical flux and diabatic vertical flux as well as
the heating terms into adiabatic and diabatic terms

":>

1T, Tm.(aF) gl i@ +1(T:k-.-AT"+T:k-.-§k)(f£) +(0F) il
4 D= P \ T, ‘7C ag , A Pi=Piw Pia— P N9, P ‘;C

A A (59)
+LLFL:_T:$L(£) <(g_0£] Ji® >
4 p,-b \T, P o€ ag

HEH HE R R )
= —| =+|—||=]| + = + = + S
o) o \opj\at) \dT,j 2\\ & /5 \ot]s \6t/)p, \0t/p,

during adiabatic computation in dynamics, the contribution of diabatic heating can be removed

2
Ca;

as

lgk—{vh.(aF) ) +1(TT+TT)(2F_) +(ﬁ) ;o

4 p, - Piu \ 9T, A9 , 4\ Pi=Pin  Pia— P \IT, . \op/, e 5
1Tv_kz__Tv~H(£) i (5.10)
4 p-p \dL,), aCD

A{2) () ) e )
ap,), o \dp)\dt), \dL,) 2\\ét )y, \ot)p,




and after physics, we have to re-compute vertical flux with diabatic forcing only, and add the
vertical advection to all prognostic equations as the same as in the dynamics

_l_Tvk_Tvkn(iﬁ;) Zi + l(Tvk—l_Tvk_}_Tvk—l—Tvk)(i) +(3F) Cdp
4 ﬁk_ﬁkn a7, X - o , 4 ﬁk—ﬁhl ﬁk—l_ﬁk JT, X X ‘9C

k4l

AT, Tvk-l(ﬂ) éili 5.11)
4 D= b \9T, t 0CP
a5, 3
dT 2 it Jp \ot),

6. Semi-implicit time integration and semi-implicit adjustment

After total tendency is computed by the above descritization, let’s consider a semi-
implicit time scheme (Robert 1969; Robert et al 1972; Hoskins and Simmons 1975, Simmons et
al 1978). It is easier to describe the time scheme with divergence equations, so the momentum
tendencies can be converted into divergence and vorticity tendencies before computing the semi-
implicit integration. From the equation system, it can be seen that we need not only the reference
field of temperature but we also need pressure in order to have linear terms for the semi-implicit
scheme. Let’s define reference pressure and temperature as p, and T;. Then the equations of
divergence, temperature and continuity can be linearized as

aD* R T < ‘* ~ ﬁ i—ﬁ i+
*ik=" 2 pk+pk+l E pi- i+l)" e lVz( +p|+l)
ot ot pom -t Poi t+ pom Poi ¥ P
k - .
R,T, PN e PN 6.1a
_E ~ 4 i) Vz(p,“pm)_e_“—egvz(pi"'pm) ( )
=1 Poi ¥ Poivi Poi T Poin
k=l A
Po; pom po; P0;+1 2 '
-R T———V ( -R, Y =y ( ) +X
’ E 1 Poi t Point ; Poi *+ Doiu
aTk (Rd /Cﬂd) 0"(
oo (Bos = Pois)+ 3, (Pos = o) D} + Y’ (6.1b)
ot Poi + Pokas ;-Ek ’ o ;-Zfl ’ o
By N A :
o E (Poi = Pois)D; +Z' (6.1¢)
-k

where X°, Y’ and Z’ are all nonlinear forcings, the total tendency minus the linear terms. When
linearized, the computation can then be done in spectral space, thus the Laplacian operator can

be replaced by
VIT] = —”—(’;—;i)m 62)
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where n is the wave number and [T] is the spectral coefficient for T. For simplicity, [ | is
removed from now on in this section, but all variables are in coefficient form for the spectral

space computation. Thus, Eq. (6.1) can be transformed into spectral coefficients and computed in
spectral space in a simplified form with some vectors as

oD,

7 =H,p,+ AT, + Xk’ (6.3a)
a7,

=-B.D + Y 6.3b
ot ki™i ( )
i‘?;_=_skp: +7, (6:30)

where A, B, H and S are vectors in index i for a given k as

H,‘Ap=n(n+l)Rd< T (pk+p )+§A Ty ‘[(i"’i’ )_i}()i_ﬁOiH(I;_*_ﬁ )
iP; e+l i~ Pi) % - i T Pin
a* Po * Poga <! Poi + Poin Poi + Poiv (6.4a)
! Poi—P
+ - ()1’\ (p, _ p,‘+|) Aﬂt Qi+l (p, + i)iﬂ)
m1 Poi t Poin Poi + Pois
-1 A
AT, = n(n +21)Rd <E Poi = Poin {T ) 2 Poi ~ Poin (71)> (6.4b)
a il Do + p()m : part po. + p()z+1 l
* R /C ()k
B.D, =( E(p()l po:+1)+ E(poz po;+1) (6.4¢)
p()k + p0k+l ik imk+l
SIqu 2(1’0; p()1+l)D (6.4d)

i

or they can matrix in all indexes i and k if all prognostic variables are represented as vectors for

all k (see Appendix A for an example with 4 layers) which can be easily expanded to any number
of layers.

Next, let’s turn the linear terms into a semi-implicit scheme by

070"

n+l n-1 (65)
a() = () - () = L(()_ ()n—l)
ot 2At At

thus Eq. (6.3) becomes

D, =D+ At(H,“.p,. +AT, + Xk')

' 6.6a

wn—| _ — ( )
=D, + At(Hkipi + AT, + X, -Hyp/ - AkiTv',l)
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T, =T, "' - At(B D! -Y’)
k k k k (6.6b)
= Tvk"-l - At(Bkilv)i* - Yk _BkiDiM)

— n-1 * f
Pi=D —At(S,.D,.—Z )

k k k k (6.6¢)
- p" - M{8,D] -2, -5,D")

where X, Y, Z are total tendencies and k=1,K. To solve this, we put Egs. (6.6b) and (6.6¢) into
Eq. (6.6a), after some manipulations, we get

ki~ ij ki~ if

D; =(1+A2(H,S, +AB,)) (6.7)

{D:"_l + AI(X,( + Hki<pin_l - Pi" + At(zi + SijD;n )> + Aki<Tvin_l - Tv,'n + AI(Y; +B.D" )>)}

v

then we put the resolved divergence from Eq. (6.7) back into Egs. (6.6b) and (6.6¢), and we can
solve T and p. It can be simplified and made computationally more efficient as

7,,=T,"' + &Y, +B,D]") (6.8)

P, = pk"—l + At(Zk + SkiDiM) (6.8b)

then we solve the mean values

D] - (1+Ar(H,S, + AB,)) DI + (X, H,(p,- )+ AT, - 7)) (6.92)
Tvk = Tvk - AtBkiD-i* (6.9b)
Pi=Dy - AtSkil_)i* (6.9¢)

Next, let’s consider a semi-implicit adjustment after physics. We can start from the same
equation set as in Eq. (6.2), but with an adjustment between the values after dynamics at n+1 and

adjusted values with physics forcing at n+1. The notation for the semi-implicit adjustment are as
follows:

040" s
-—=0

{9_() ) ()n+1 _()(n+l)d ) /\O

ot 2At 2At

AO) =0 -0

(6.10)

where (n+1), denotes the value after dynamics, n+1 denotes the value after physics and
adjustment. The nonlinear terms in Eq. (6.3) are
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X'=(oD"1or)  —Hp"" — AT < X ~Hp"De - AT (6.11a)
physics

Y'=(dT/or), . +BD" =y +BD"" (6.11b)

Z'=(aplor), . +SD"D =Z + SD" (6.11¢)

and when Eqgs. (6.10) and (6.11) are put into Eq. (6.3), we obtain

AD; = At(H,Ap, + A, AT, )+ 281X, = A{H,Ap, + A AT, )+ (AD;)M“ (6.12a)
AT, =~AB,AD; +2AtY, = -AB AD; +(AT,) (6.12b)
Ap, = -AtS,AD; +2A1Z, = -MSAD; +(Ap,) , . (6.12¢)

where the last terms represented are changed from physics computation, and the others are the
differences between the adjusted and after-dynamics cases. Again, after using the same reduction
by substituting Eqs. (6.12b) and (6.12¢) into Eq. (6.12a), we obtain

AD; = (1+ AP (H,S, + Akl_Bij))-l[A,(Hk,.(Ap,.)phym + Ak,.(AT,.)phym) + (AD;)MM] (6.13)

then when we substitute Eq. (6.13) into Eqs. (6.12b) and (6.12c), we can obtain T and p.

In practicality, we can have only one routine to do semi-implicit adjustments for both
dynamics and physics. The routine can be designed in such a way to pass in the total tendency
and all three-time-level prognostic variables for divergence, temperature and pressure. After
dynamics, the total tendencies and prognostic variables for time level n-1 and n are passed into
the routine, and the third time-level prognostic values at (n+1), are returned. After physics, the
changes due to physics and the (n+1), prognostic variables after dynamics are passed into the n-1
and n time-level variables, and n+1 time level is returned. However, physics adjustments can be
done with less computation by not using the same routine as dynamics adjustment, as seen in a
comparison of Eq. (6.13) to Eq. (6.7).

7. Specific hybrid coordinates

Until the previous section, the finite difference equation sets, Egs. (4.26), (5.8), (6.7) and
(6.13), are for generalized hybrid coordinates, which can be used for sigma, sigma-pressure,
sigma-theta, and sigma-theta-pressure, etc. When a specific coordinate is used, these finite
difference equations can be used with some modification. the following is a specific one that
generally covers sigma, pressure and/or isentropic as

R ~ A A fAa a~ \C,IRy
Be= A+ Bp,+ C(T, 1T, (7.1)

where A, B and C are specified and constant during integration with the following known
boundary conditions for pressure at the top of the atmosphere and at the surface, as
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AK+1 = BK+1 = CK+I =0

>
>

=G =0 (7.2)
B =1
The pressure and gradient of pressure for k=2,K at the interfaces can be written as
T T C, /R,
P, =A +B.,p + Ck(_vkif._%_) (7.3a)
Tory + Ty
R ~ C C,/Ry , . i
i’l = Bk (9ps + Ck _p Tvk—l t Tvk (dTvk-l + ézgk_) (73b)
aos asgs T, +T, R\T, +T, ads  aods

where s can be either latitude and longitude, and all of which are zero when k=K+1. For k=1,
they are

ﬁl = ps
P _ps (7.4
ads ads

because A=C=0 and B=1 at level k=1. After pressure and its derivatives are computed for all
interfaces by Eq. (7.3), Eq. (4.26) can be used, but the continuity equation in (4.26d) will be used
to solve Ps and vertical flux later. The surface pressure equation, as k=1 in Eq. (4.26d), and is as
follows:

@) 2 . A A au-* &V-* % a(ﬁ —ﬁ l) £ a(ﬁ _ﬁ l)
~f=rm ;= i+)_’+_l_ + 1, i i+ +v, i i+ 75
ot ; (P = P adk adg aon adg (7.3)

and the vertical flux can be solved starting from the following

A A C, /R,

@_"_ - Bk ap, + Ck .(_:P_ Tyt Tvk (Or’Tvk—l + &) (7.63)
ot dt T, ,+T, R\Ty +T, ot ot

for k=2,K with boundary conditions

éﬁ] Y

— =B 7.6b
o or (7.6b)
WPy -0 (7.60)

ot

then follow the process in Section 5, separating the vertical flux and non-vertical flux forcings by
substituting prognostic equations of surface pressure, pressure, and temperature, we have
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N A Cp/Rd
(_ﬂﬁ)” _ (é é}l) = ék ﬂps + Ck _C‘_P( Tvk—l + Tvk )
k

at ), 74 ot T,,+T, R\Ty,~Ty
H - ) a L] ) -
() 3] Tt [r] L), o
ot ), 2 98| Dy~ Piu ag ) Pi = Prsi
k +1
H A A
(5Tv) _ l Ca_P Tvk-2 -1 + C@ T,.-T,

ot k-1 2 5@ i)k—l - i’k 5@ ’ P — f’k

k=1

for k=2,K with boundary conditions at k=2 and K indicated by the double underbar and double
overbar, which are zero at these respective boundary conditions. After a rearrangement, we have

A C,/R, "
¢, C, (Tk—l + T, ) T, — T, Cﬂ’_

Tvk—] + Tvk 2Rd TOk-l + TOk i)k = i)k+1 G \
+1

A

A C,IR, .
+ Ck CP (Tvk-l +T, ) [Tvk-l - Tvk + Tvk—l - Tvk}_l (C@)
T+ T, 2R \Ty + Ty, Piei= Py P~ Prn dc),

N C, IR, .
C, Cp (Tk—l +T, ) T,,-T,, F dp

+ v v,lf—2 ~ o
T, +T, 2R \Ty, + T, Ry ag
k=

(7.8a)

1

— n {?ps_(@)ﬁ.{- ék & Tvk—|+TVk o (ﬂ)}l +(aTv)H
“o \or), T, ,+T,R\T, +T, ot ), \dt)

v 0

for dynamics while the heating is adiabatic, and the following for physics while heating is
diabatic only and no changes made in terms of pressure

Tk—l + Tvk 2Rd i)k - i)k+l dIC

A C C, IR, ~
¢ P (Tk—l + T, ) T, ~T,., Cfp_
v Toro + Ty,
Pk+1

A

i ~ \C, IR, ..
+ ¢ C, (Tvk-l + Ty ) [Tvk—l -7, + Ty~ Tvk}_l (C Q)
T, +T, 2R \Ty, + Ty Pea— D Py~ DPiu I ) py

(7.8b)

A

~ C C, IR, .
+ Ck p ( Tvk-l + Tvk ) Tvk—z _ Tvk-l Cé’i
Tk—l + Tvk 2Rd 7:)k-l + T;)k ﬁk-l - ﬁk 5@

v

Pk-1

__G C(T+T)

Tvk—l + Tvk Rd TOk-I + TOk

(5.5
o
O ) piy ot Pk |
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where k=2,K with boundary computations at k=2 and K indicated by the double underbar and
double overbar. This can be solved by matrix inversion.

For a semi-implicit scheme, we start from the linearized horizontal Laplacian of pressure
for Eq. (7.3) as

¢, : 2
v, ,+VT,
KTyt + TOk)( - k) (7.9)

= ékvzps + éOk (VZTvH + Vvak)

Vzi)k = Bkvzps +

for k=1,K+1 with k=1 and K+1 as boundary conditions. From Eq. (6.1), we know we need the
following

Vz(lsk * 13k+1) = (ék * ék+l)V ps+ COkvavk 1+ (COk x Com)v T,= C0k+1V2Tvk+1 (7.10)

for k=1,K with boundary conditions at k=1 and K as indicated. Then we put Eq. (7.10) into Eq.
(6.1a) and obtain

. k-1 k
ﬂ = ,\—Rd@—“ B, +B, )+ 2R 7:)' (B iPois = Bnlﬁ()i) + 2%(3,-50“1 - Bi+lﬁ0i) Vzps
o Por + Popu = (Do + Pom) = (Poi+ Pom)
Rlu & vt +(é T, + Copu V2
- CorY Ly |l t C0k+l VT4 + Cort VT
Poy +P. Poyy (7.11)
k-l
2R,T, A A A - A A
- —Olz[c 0:+1V T (Cinom - C0i+1p0i)V2Tvi = CoinPoiV Tml]
i=1 (p()l p0:+1)
k
2R T, A N ~ - A& A
‘ET—"L:O”—[CO.POMV T+ (C()ip0i+l - Compo,')Vsz' = CoinPoi¥Y Tml]
i1 (p()i + pom)
k=1 A

ﬁo.’ ~ Poist pOz Point '
-R - oLy -R, Y2 "VAYT ) + X
’ w1 Poi * Poini ( g pm + pom ( )l

for k=1,K with boundary conditions at k=1 and K as indicated. Thus, Eq. (7.11) will modify the
matrix H in Eq. (6.3a) into a vector, and will modify the matrix A in Eq. (6.3a) into a different

matrix, Eq. (6.3b) will not be changed, and matrix S in Eq. (6.3¢) will become a vector. Finally,
we have

o"D
(91‘ Hklps + Aklj-;l + X (712a)
JT,,
% - _B D +Y, .
o i (7.12b)
P _
=S D + Z .
g (7.12c)
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for k=1,K. The matrixes and vectors will be given in detail in Appendix B, with an example
using 4 layers, which can be expended to any number of layers. Then the same process described
in Section 6 will be used to solve the equation in a semi-implicit method. After applying Eq.
(6.7) to make a semi-implicit integration, Eq. (7.12) will be written as

D; =D;"" + A(H;p, + A{T, + X, - Hyp - AT;) (7.13a)
Tvk = Tan-l - At(Bkil_)i* -Y. - BkiD:") (7.13b)
p.=p" - At(SIiEi‘ -Z- S];D:") (7.13c)

and the reduction of these algebra equations can be simplified to solve

D; = (1+ A%(H; S, + A{B,)) (7.14)

1™ g

{D;"_l + At(Xk + H;1<Psn-l -p+ At(Zl +5,,D} )> + A;i<Tvin—l -1+ At(Y, +B,D} )>)}

first, then Eqgs. (7.13b) and (7.13c) are solved by the solution of Eq. (7.14). It is the same for the
semi-implicit scheme after physics computation, from Egs. (6.12) and (6.13), as

*

AD; = At(H;Ap, + AAT, )+ 2A1X, = A{H;Ap, + AAT, )+ (AD; )M“ (7.152)
AT, =-A1B,AD] +2AtY, =-AB AD; + (AT,) (7.15b)
Ap, = -AtS,AD; +2M1Z, = -AtS,AD; +(8p,) , (7.15c¢)

where the last terms represented are changed from the physics computation and other terms are
the differences between the adjusted and after-dynamics cases. Again, after the same reduction
by substituting Egs. (6.12b) and (6.12c¢) into Eq. (6.12a), we obtain

AD, = (1 + A12<HZ, S+ A,:,.BU>)“[AI(H;,(Ap,.)Wm +A] (AT})WM) + (AD;)MW] (7.16)

then we substitute Eq. (7.16) into Egs. (7.15b) and (7.15c) to obtain T and p.

8. Conclusion

A detailed description of the equation set for a finite difference scheme in the vertical
was provided here to show easy to do model programming. This set of finite difference equations
conserves mass, energy and angular momentum. The simple relations to satisfy conservation
were chosen so that the pressure at a layer is averaged by the neighboring pressures at interfaces,
one from the interface immediately above and another from the interface immediately below. All
other equations are derived by using this relation.
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The generalized hybrid vertical coordinates in the finite difference scheme are derived,
including the processes to solve vertical fluxes at all levels (or interfaces), using semi-implicit
integration after the dynamical and physical computations for time splitting. This generalized
finite difference equation set, including semi-implicit matrixes, can be used for implememting
coordinates used in the RUC (Benjamin et al 2004) or University of Wisconsin model (Johnson
et al 2003).

A generalized hybrid coordinate from a linear combination of surface pressure and
isentropic quantity in terms of virtual temperature is given. Due to the definition of the
coordinate, the pressure equation as continuity equation for all interfaces is reduced to a surface
pressure equation, thus, the finite difference form of the equation set derived for generalized
hybrid coordinates has to be modified in order to take the advantage of the computational saving.
The matrixes for pressure are reduced as vectors for surface pressure.

Acknowledgment: Thanks to Dr. Joe Sela for correcting derivation of equations and
suggestions, and thanks to Drs. J. Sela, M. Iredell, S. Moorthi, S. Kar, J. Purser, and D. Sheinin
for detailed discussion. Thanks also to Mary Hart for proofread.
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Appendix A
Matrixes for semi-implicit scheme

From Egs. (6.1) and (6.3), we have following relation for all matrixes as

H

wPi =

n(n + l)R < Ok(Pk + P/m) + < 27;):(130:411’, Polpm + i 2To: Pompx i)Oii)i+l)>

pOk + p0k+l i1 (i’o; + Pom) il pOi + p0i+l)2
< l[ Po»\pz ﬁo;‘i’m)) + 27;)1‘(130“1?’;4 - i’mﬁm) + %k(i’k + i’m) (A.1)
( ;T pom)2 (130k + 130k+1)2 Poi + Pogan

i n(n + l)R

im]

n(n + l)Rd

S l(4 :( PoiDi = i’o;’i’m))_'_ 7;)Ic(;’Ok + 3130k+1) T;)k(pOk P0k+1)
A~ A~ ~ k k+1
(Po; + Pom)z ox p0k+1)2 ( P0k+1)2

. =n(n+l)Rd < § Pu=bua(q) EM(T),>
3
hlS
aaul

e i Poi + Poini i1 Poi T Poin ’ (A2)
_ n(n + l)Rd ) 1::’01 Pom /T ,+ pOk P0k+1 (T) >
w1 Poit Pom Poi + Poxa
x K
B,D, = T2 ¥ (Poi - Pois)+ E(pm pom))
Poc + Pocas imk+1 (A.3)
LYY
~ Pois 2 Po; = Pois ))
Do + p0k+1 Ok l .-Ekn o
K
S.D; = E(pm - 130i+l)Di (A4)

imk

for k=1,K, where Eq. (A.1) is not straightforward when writing all k because the first term in
summation has pressure related to a future index, i+1, which has to expand. We can separate all
terms into sub-matrixes by manipulating all terms, then sum individual elements after expanding
in 4x4 matrixes (as an example).

So, let’s re-write Eq. (A.1) into

Hkipl = ’I(LZI)_R—<HIIU Pi + H:,pz + Hz.pl> (A'S)
where
Hll = 01p01+1 Ai (A-6)
«P 2[ po: + Pom) )
rp01 ol A.7)
lpl 2 i+ (
‘ 2[ Pm + Pom) l]
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HZP; - nk(ﬁOk +A3ﬁ0k+l) b,

- 2
Pox T P0k+1)

a -

_ %k(ﬁm - i’otm) A
(pOk + Poia

)2 k+1

so, for 4x4 as an example, we have

[ 0 0 0 0]
Moy 0 0o 0
(P0| + {’02) )
H' =|_4T0Pe ATy, 0 0
- ~ \2 A ~ \2
(Por+ Do) (P + Pos)
4T, Py 4T, Py 4T3 Dy
=~ A\ /= ~ v A ~ 3 0
_(p01 +p02) (poz +p03) (P03+P04)
0 0 0 0
0 - A472)11:01 . 0 0
(pm + {’02) A
H? = 0 4T, Py 4Ty, Py, 0
~ A \2 = -~ \2
(p01+{’02) (p02+{’03) R
0 4T, Po; — 4T, Dy, __ Ay
~ - N ~ 2 - - \2
(Por + ) (Poz + Pos) (Pos + Pos) ]

-IZJI( A01 + 31302) 7;)1(;701 - i’o:) 0 0
~ A \2 T A A \2
( 01+P02) (P01+P02)
0 Toz(i’g; + 3i703) _ T(rz(i’oz - i’os) 0
- (ba+ba)  (pu+bu) A
0 0 Tm(pos + 31304) _ Tos(ﬁos - Po4)
(i’os + i’m)z (i’m + Dy, )2
0 0 0 TM(i’04 + 3i’os)
(Pos + i’os)2

Then, we can sum them together by each element as

H= n(n :- 1) R,
a
Tln(i’ol + 3i702) _Tln(ﬁm - i’oz) 0 0
N ~ 12 A PEREY
(Pm + Pm) (pol + poz)
47:)11’\702 —4TOIﬁOI + T(’Z(ﬁOZ + 3I’\703) _Tm(iJOZ - ﬁOS) 0
~ ~ \2 - " 22 . 2 - <2
(pol + Pm) (pol + poz) (poz + pos) (Poz + pos)
4T, P, ‘47611‘701 + 4T, Pgs ‘4Tmi702 Tm(i’os + 3i’o4) _Tm(ﬁos - i’m)
- ~ \2 - ~ 2T ~ 12 - ~ \2 A - 12 - ~ 2
(Pol + poz) (pol + Pm) (poz + P03) (poz + p(n) (p03 + P04) (p03 + P04)
4T011302 _471)11‘701 + 4Tmi703 _471)2502 + 4Tmi704 _4Tmﬁos + T04(p04 + 3i705)
- ~ \2 - .~ 2 T ~ 2 - NEVIFR ~ 2 - ~ \2 A ~ 2
L (Pol + poz) (Pm + poz) (Pnz + Po:;) (p02 + pm) (pos + po4) (p03 + Pm) (Pm + Pos.) |
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Other matrixes A, B and S can be easily figured out from Eqs (A.2), (A.3) and (A.4) as in

the following
pOI p02 0 0 0
Pm + Poz ) )
2 Pm Poz Py~ Pos 0 0
A=n(n+l)R pox"'poz p02+p03 .
a ¢ ) Dor = Doy ) Pp=DPs DPu=Du 0
Pm + Poz Poz + P03 P03 + Po4 . R
) Doy = Do ) Do~ D3 ) P = Pos  Pos = Pos
Pm + poz Poz + poa Poa + Po4 Posa t+ DPos |
T, {’0, - {’oz 2T, P po3 2T, 1303 - Ifo4 2T, 1304 - {’05
Po, + Do, pol + po2 Po, + Do, Do, t Py,
0 T, 602 603 2T, 603 - 604 2T, 604 = ?05
B=x Po, * Po, Po, * Po, Po, * Po,
=K, G S
0 0 T, ,703 Po, 2T, {’04 {’05
Po, * p04 Po, * Po,
0 0 0 1, Lo " Pos
Do, * Po, |
130, - f’oz ,502 - 1303 1303 - 1‘504 i’m - 1305
S = 0 ﬁoz - 1303 1303 - 1‘504 f’04 - f’os
0 0 ﬁoa - ﬁ04 ﬁ04 - ﬁos
0 0 0 ﬁ04 - ﬁos

(A.13)

(A.14)

(A.15)

The semi-implicit scheme is computed in spectral space because it is linear, where n in Eqgs.

(A.12) and (A.13) is the wave number. The above matrixes are indexed by following way

Mll M12 M13 Ml4

M= M21 M22 M23 M24
M3l M32 M33 M34
M4l M42 M43 M44
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Appendix B
Matrixes for a semi-implicit scheme for specific hybrid coordinates

From Egs. (7.11) and (7.12), the matrixes or vectors can be shown as

Hip, = n(n+1)R, §4T0i(3ii’0i+1 - Bmi’m) N T;)k((i’ok + 3ﬁ0k+l)Bk - (ﬁOk - i70k+1)Bk+1) P (B])
K¥s = ~ - 2 ~ ~ 2 s
a’ iml (POi + Pom) (POk + Pom)
AT, = nin +21)Rd < P E)k;\ [C Lo + (COk + COIu-l)Tvk + CoknTml]
a Por * Popa (B2)
P .
4T, A . " LN
+2 A ;(\) 2 [COiPOI-o-lT:’l- + (COiPOiH - COi-o-lPOl)T:' COH-lpOt w+l]
-1 (POi + pom)
2T p I3 1% ﬁ +.
- Ek [COkpomTvk l+(C0kp0k+l _CokuPok)Tvk C0k+|P0k vk+l] 221)0 P T, + Doy = Poge Tk>
(pOk + P0k+1) . Poit pom Pok + p0k+l
" x,T;
B.D; =~ . 2(170; Poin) + 2(!’01 Pois) |D (B.3)
+
Poi + Pocar ik im k41
(B.4)

K
SliD: = E(i)m‘ - i’om)D:

iml

for k=1,K with boundary indicated by the double underbar and double overbar, respectively. As
in Appendix A, K=4 is used for an example. It is easy to see that

H, = Hkiéil (BS)
where H; in Appendix A, and B;, is following
B,
ﬁﬂ - ?2 (B6)
B,
4
so the vector H' can be summarized as the following
Tm(i’m + 31302) - T (Pm I‘;oz) &
- - 2 Bl 2 BZ
(Pm + I’m) ( o + poz)
R . R A (B.7)
Mé _ AT, Py ( + 31’03)}3, _ 752(1’02 'poz)l‘;,
R 3 vz D3
- n(n+ l)R (P0| + Poz) (Pol + Poz) ( Poa) (poz + po;)
@ b | by ATgby |y [ by Tolbu*3bu)ly Talbn-pu) g
PR RS PP PR e I P VL
(pol + poz) (pol + pm)z (poz + po;) (Poz + poa) (p03 + p04) (p03 + an)
M B 47;311301 47;)21303 B Lﬁoz 4Toai7m D 4Tmi’03 Tm(i’m + 31305) D
A - B2 ~ \2  /a - (B PV IR Y] L ~ N2 A —a (B
(Pm + Pm) (pm + Poz) (Poz + pos) (Poz + pm) (Pos + Poa) (ng + pm) (po4 + Pos)
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or we can use Eq. (6.4a) to get sum of each layer by replacing variable p by B. Matrix A is not
easy to figure out, let’s separate it into three matrixes

AT, = n(n+1)R (

vi

where

Ay + AL +AY + AL + AT,

A1+T T;)k

pOk + p0k+|

k-

ALT, = 2

01p01+lTw— +
-1 Po.+p0,+1) -

k-1
. 4T, A a A 2T, A a R,
ALT, = 2 o (Cin0i+l - C0i+1P0i)Tvi - — (COkpom - C0k+1pok)Tvk

il (Po.' + p0i+l)

44+ ~
Alu Tw = 2 0:+1p0iTvi+l T A
-1 PO, + pom)

AZ+T 22 Poi = po.+1T + pOlz Porn T,
it Po: + p0.+1 pOk + Pok+1

ki Lvi —“——[COkTvk-l + (ﬁ + Com)

(pOk + i’o:m)

T:’k + C0k+17‘vk +l]

M, A -
» 7 CorPon Ty

(POk + Pom)

2Ty

N 5 CounPorlin
(pOIz + Pom)

(B.3)

(B.%9a)

(B.9b)

(B.9¢)

(B.9d)

(B.%e)

with boundary conditions k=1 and k=K. Then it is easy to figure out, and B9 is the same as in

Appendix A. Then the 4x4 example matrixes of Eq. (B.9) can be expanded as

T;)IC02 T;)IC

" " 0 0
Poi + P Pm + P02
Ty,Co, T; (C +C ) Tozcoa 0
Al = Py + Do Poz'*'Pos Poz"'Pos
. Tolo TollotCu) 1l
Pos + Dy Pos +AP04 P+ Pos
0 0 ;Tmct? ATMCT
Pos *+ DPos Pos t Dos |
0 0 0
ZeCelo, g 0
(poz 't Poa) R
A% =| 4T,C,D  2T,CisPos 0 0
- Y - ~ 2
(Poz “:\Pas) (Po3 'tpm) A
4T02C02ﬁ03 4TCosPos 2T04C04ﬁ05 0
- ~ \2 " ~ 2 - ~ 22
_(Poz + Po3) (P03 + p04) (Po4 + Pos)

30

(B.10)

(B.11)



27:)1(60:1301 - éo.’.i’m)
(i’on + i’(r.v)2

0

47:)1(601i7m - émi’m) 2Toz(émi7m - émi’m)

(i’m + i’oa)2

(Pea* Pa)’

47;)] (éOIi)(R - émi’ox) 4Tm(émi7m - émi’oz) 2Tm(émi704 - 041303)

(i’m + i’trz)2

(ﬁm + 1’\70'3)2

0 0
0 0
0

(P + Pou)”

4Tm(éoni7m - émi’m) 4Toa(ém.i7m - émi’oa) 4Tm(émi704 - éo:ti’m

) 2To4 (éoaﬁos - éosﬁm)

(Por + Pee)’ (P + Pus)’ (Pos + Pos)’
0 _?T;ncgzﬁo; 0 0
(Pm "’Apoz) A
0 —4T,,Cy, Dy, ‘27:)2C031A’02 0
- ~ 2 - ~ 2
A% = (Pm "’Apoz) (Poz +AP03)
0 _47:)1Cozﬁm _47:)2C03ﬁ02 _27;)3cmﬁo3
- ~ 12 - ~ 12 - .~ \2
(P01 +AP02) (Poz +Apo3) (poa "‘Apm)
0. . —4T,,Co, Do, —A4T,CPy, —4TCoPs
. TA RV - . N2 - 12
(P01 + Poz) (Poz + Po3) (Poa + P04) ]
p01 p02 0 0 0
P01 + Poz ) )
2 P01 Poz P — Py 0 0
AS* = Po1 + Poz Poz + Po3 o
2 P01 Poz 2 Poz P Py — P 0
Pm + Poz Poz + Poa Po+Pu )
2 Pm Pm 2 Pm Py 2 Poa P04 Pos — Pos
I Por + Poa Por + Dos P+ Doy Dos + Pos |

The matrix B is not changed, and can be copied from Appendix A as the following.

T;)IA

A

0

i’ol - i’oz
Do, + Do,

(i’oa + Dos )2

2T, Po2 {703 2T, 1303 - l:o4 2T, 1304 - {’os
Pol Do, Po, T Py, Po, + Po,

Tp oo 2T, 2o toe of, 2u—to
Po, + Do, Po, * Py, Po2 + Po3

0 T, {’o, - 1304 2T, {’o4 {’os

Do, * Do, Do, * Po,

0 0 T, Lo~ Pos

Do, * Po, |
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Then the vector S for surface pressure is the following
S= [i’o, - 1302 .1302 —1303 1303 '.1’\704 130, - 1305] (B.16)

Note that, this matrix has the same sequence as the one in Appendix A.
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Fig. 1 The vertical grid structure with layers and levels. Integers are used to index layers and
levels; variables marked with hats are on levels and without hats are on layers.
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