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LFM 1988: A DOCUMENTATION

This paper is a description of the Limited Area Fine
Mesh (LFM) model as it existed in the National
Meteorological Center's job suite in August 1988. The LFM
computer codes have not been moditied since the Nested Grid
Model (NGM) became operational in March 1985 at which time
the NGM became the primary numerical model for regional
guidance. There are no modifications or improvements
planned for the current version of the LFM because the
Technique Development Laboratory's Model Qutput Statistics
(MOS) are based upon the current "frozen" version of the
model. Since 1985 the LFM has provided the early first-look
at regional guidance to field forecasters and is integrated
twice daily out to 48 hours with a start time of about one
hour and twenty minutes after data cutoff time.

MODEL COORDINATE SYSTEM

The LFM is a grid point model calculated on a limited
domain covering North America and portions of the adjacent
oceans. The horizontal grid is a square mesh superimposed
on a polar-stereographic map projection true at 60 degrees
north latitude. Distance on the projection at latitude

is related to earth distance through a map factor, m, given
by

m(¢) = 1 + sin 60°
1 + sin ¢

The horizontal grid length is 190.5 km at 60 North with the

domain extending 53 grid points in the x-direction and 45 in
the y-direction.

The vertical coordinate used by the LFM is a sigma-p
terrain-following coordinate defined separately in each of

three vertical domains. The general form for sigma is given
by - :
9; = P; - PT
P — Pr

1

where Pi is the pressure at a point within the ith vertical
domain, and Pt and Pb are the pressures at the top and
bottom, respectively, of the ith vertical domain. Thus,
sigma takes on a value of 1 at the bottom and 0 at the top
of a given domain. The lowest of the three vertical domains
is the boundary-layer domain. It contains a single sigma-
layer which is held at a constant pressure thickness of 50
mb. The tropospheric domain occupies the remainder of the
troposphere and is divided into three layers of equal
pressure thickness extending from the top of the boundary
layer to a material surface tropopause. The remaining




domain is the stratospheric domain which is also divided
into three equal layers. The "top" of the model is a
material surface located at 50 mb.

MODEL EQUATIONS

Within this polar stereographic, sigma-p framework, the
LFM is a hydrostatic, primitive equation model based on the
six-layer primitive equation model described in Shuman and
Hovermale (1968). Predicted quantities include the u and v
components of wind, potential temperature, precipitable
water, and the pressure thickness ot the sigma layers.

The u and v wind components are oriented in the x and y
directions defined for the polar stereographic grid. These
components are converted from earth oriented west-east,
south-north components by

u = —u_sink - v cosh
v = u_cosk -~ v ,cosk ,

where the s subscript refers to earth oriented wind
components in spherical coordinates and lamda represents

longitude. In the LFM, the momentum equations are
formulated as

KRR R
'at[ ] = —(§+f)u - :3 - ¢ ean - &2 [ ] ; v2];

where { is the vertical conponent of relgtlve vorticity,

detined as
¢ = m2pd [l] =2 [2]
Ax | m dylm

f is the Coriolis parameter, d> is the geopotential gz, and
Cp is the specific heat of dry air at constant pressure, 7]
is the Exner function, defined by

K

HEE___B__——-]’

1000 mb

X is R/Cp, R 1s the gas constant for dry air, and (¢~ |is
the vertical motion in sigma coordinates

5 = do
dt

Frictional effects are parameterized and added later in the
forecast sequence.




Potential temperature is predicted isentropically and
subsequently modified by parameterization of various

diabatic effects. The isentropic thermodynamic equation is
given by

6_9_=—m'[‘%_§_+1 6]—669
Yol m

The moisture tield is detined in terms of precipitable
water W, which is given by

02
w=l_j qél)—do' ’

where q is specitic humidity. The moisture tendency is
calculated from

) Y2

AW = -m?2 [uW] o) [VW]] - gu(fﬂJ) ,

and modiftied to reflect the addition of moisture at the
lower boundary by sea surface moisture flux and the removal
ot moisture by precipitation. Moisture is allowed only in
the lowest three model layers, with saturation occurring at

a seasonally varying value of relative humidity ranging from
80 percent to 96 percent.

The remaining predictive variable is the pressure

thickness of sigma layers, JP/Jda . This quantity is
determined from the continuity equation,

-m2 [b u 3dp) + b v bp]] [pr]

bt [ ] S>x |m @0 m o0 30| oS¢

Two additional quantities must be determined
diagnostically in_order to close this set of equations,
namely qb and ¢~ . The geopotential ¢ is calculated in
mid layers by integrating the hydrostatic equation given by

ﬁ. = _cpe_bﬂ ’

o0 dc
which can be rewritten as

¢ = —c. 6

ST P

where 77 is the mass weighted Exner Function as documented
in TPB #267. The vertical motion G- 1is found on sigma




()
levels by differentiating (ggﬁwi with respect to o ,
noting that &2 /¢ within each vertical domain is constant
with respect to ¢ .

This yields

dp 22§ = -m?r3d [2p 2 ful} + 6_.[92 6_[_!”} .
30 30?2 dx |20 do|m oy |20 dam :

The vertical motion in the boundary layer is somewhat
easier to tind since the boundary layer thickness is held at

a constant value of 50 mb. Thus the time derivative of ¥2/&y¢
is equal to zero resulting in

]
26 = —m*ro_[u] + 5_[1]] :
oc Ox|m dylm

The vertical motion 0 is assumed to be zero at the
surface of the earth, the trobopause, and the constant 50 mb’
upper boundary. The vertical motion at the bottom of the
tropospheric domain is matched to that at the top of the

boundary layer, assuming continuity of vertical mass
transport,

PHYSICAL PARAMETERIZATION

The fields predicted by the previous closed set of
equations are modified to reflect the influences of several
physical processes. Most of these processes occur on a
scale not resolvable by the model and so must be

parameterized in terms of the previously defined grid scale
model variables.

Radiative heating and cooling in the LFM are calculated
once per model hour and then applied at each time step.
Heating due to solar radiation by water vapor is allowed
using a six-line approximation of the absorption curve.
Reflection of solar radiation from the surface is
accomplished using an albedo of 1.0 if the surface is snow
or water and 0.9 if land, modified by cloud albedos of 1.00,
0.75, or 0.5 if clouds exist in layers 1 through 3,
respectively. Clouds are defined to exist if 60 per cent of
saturation is exceeded. Radiative cooling occurs in all
layers above any diagnosed cloud (in all layers if no cloud
is diagnosed) at the rate of 0.06 K/hr. .This rate is

increased by 0.1 K/hr in the boundary layer over snow cover
on cloudless nights.

Sensible heating of the boundary layer occurs when the
ground is warmed by non-reflected solar radiation. The
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assigned albedo values imply that sensible heating is

allowed only over land without snow cover and only if clouds
are not detected in the boundary layer. Sea surface heat
and moisture fluxes into the boundary layer are also
included in the LFM using bulk formulations. The heat flux
is proportional to the difference between the boundary layer
temperature and the sea surface temperature, the latter ot
which is held constant at its initialized values. No heat
flux is allowed if the boundary layer is warmer than the sea
surface. A similar formula is used for the sea surface
moisture flux, with the addition of moisture to the boundary
layer occurring only if sea surface heat flux is also
occurring, if the boundary layer is at or below 70 per cent

of saturation, and if the moisture flux is directed from the
sea into the atmosphere.

Grid scale precipitation is calculated depending upon
the saturation surplus or deficit in each grid box. If a
saturation surplus exists in a layer, then the excess is
removed as precipitation, releasing a commensurate amount of
latent heat in that layer. If a saturation deticit occurs,
then precipitation falling into the layer is evaporated
until saturation is achieved, with evaporative cooling
occurring as well. The calculation progresses downward from
layer 3 which is the topmost layer containing moisture. The
latent heating/cooling is divided by two and applied to the
temperature field at both the predicted and current time
levels causing temporal smoothing of the heat release.

The subgrid scale precipitation is calculated using a
moist convective adjustment. Convection is assumed to occur
in each layer if the following criteria are met:

1) grid scale precipitable water is increasing with
time, indicative of moisture convergence;

2) grid scale molsture is greater than 75 per cent of
its saturation value

3) lifted condensation level for the layer in question
is below the midpoint of the next layer above; and

4) parcel temperature is warmer by more than 0.1 K
than the layer temperature of the next layer above,
after an initial impulse ot 1.5 K.
Convective precipitation )2 is calculated as

r. = A6 ¢, p (k+1l) T(k+1)
g L

where AEG is the difference between the parcel potential
temperature (the potential temperature a parcel would attain
if lifted first dry then moist adiabatically from the
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midpoint of layer k to the midpoint of layer k+1) and the
grid scale potential temperature, and L is the latent heat
of condensation. The calculation proceeds from the boundary
layer upwards with any released latent heat calculated tfor
layer "K" assigned to layer “k+1%, to simulate upward
convective transport of latent heat. No evaporation is
pernitted during the convective parameterization process.
The latent heat is applied equally to the new and current
time levels. Convection is allowed to occur at each time
step during the tirst four hours of the integration;
however, any resulting precipitation and latent heat are
discarded including the latent heat and precipitation
resulting from large scale precipitation. This procedure
eliminates large spurious values of precipitation which may
occur during the first few model hours as the divergence and
vertical motion are developing. Afterwards, the convective

calculation is done only once per model hour on the first
time step of each hour.

Dry convection eliminates any superadiabatic lapse
rates that might develop. The algorithm uses a layer mass
weighted average of potential temperature conserving
internal and potential energy.

Surtace trictional drag in the LFM affects the lowest
two layers of the model and is parameterized using a bulk
formulation, in which drag is proportional to the square of
the wind speed and is directed opposite the wind vector.

The stress profile is assumed to approach a value of zero at
the top of the second layer. The drag coefficient

(Cressman, 1960) varies from a value of 15x10-4 over water
to 95x10-4 over high terrain.

NUMERICAL APPROXIMATIONS

The LFM uses fourth order horizontal and second order
vertical centered finite differencing in a modified leapfrog
(centered time and space) scheme on an unstaggered grid.

The time integration scheme used is one detailed by Brown
and Campana (1978) is which the time derivative is
approximated by a second order centered difference using a
time step of 400 seconds. Brown and Campana found that the
time step could be lengthened to this value by temporally
averaging the pressure gradient force in the momentum
equations. The form of this average is

b, = a(dL*! + L) + (1 - 20)ét

where the superscripts t+1, t, and t-1 refer to the new
current and preceding time levels, respectively, and d),( is
the pressure gradient. The constant & is related to the
constant in the time smoother which is applied at each time




step to control the linearly amplifying computational modes.
This time smoother is given by

At = b(AL*1 + At-1) + (1 - 2b)AL ,

where A is any forecast variable, b is a constant, and A% is

an unsmoothed value. The optimum value for X was shown
by Brown and Campana to be

a= (b2 + 1) (b+1) /4

The LFM uses 0.075 for b and 0.270 for the value of X .

The fourth order centered finite differences used to
approximate horizontal derivatives utilizes four consecutive
grid point values indicated sequentially as i-1, i, i+1, and

i+2. For an arbitrary variable A, the approximation takes
the form

A :Ax=_21Ai 1 _Ai ___1_Ai+2—Ai—.L .
x| i+% 24[ “Ax ] 24[ Ax 1

The subscript x notation follows the convention of Shuman
and Hovermale (1968), but refers to a fourth order rather
than a second order form. This ylelds an approximated value
which is located midway between grid points i1 and 1+1. A

derivative in the y direction is approximated in an
analogous fashion.

To obtain the value of a given variable midway between
grid points, a second approximation, known as a "bar-x"

operation using the notation of Shuman and Hovermale (1968)
is formulated as

_Ai+§5'=z" = (A4 +Ai):_ (A2 + A;_y)

8 1
16 16
This form is fourth order accurate and is also derived from

the Taylor Series by forming a finite sum rather than a

finite difference. An analogous "bar-y" operator is also
used,.

All calculations in the LFM occur midway between grid
points in both the x and y directions, which will be
referred to as a "grid box" calculation or value.

Therefore, a combination of the previous finite difference
forms is used. For example, a difference in the x direction
ylelds a value centered between grid points in the x
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direction. If the resulting values are then subjected to a
"bar-y" operation, one obtains a grid box estimate of the x
derivative. Similarly, a combination of a y difference and

a bar-x ylelds a grid box estimate of the y derivative. A
grid box estimate of a quantity itself is obtained by
combining the bar-x and bar-y operators, referred to as a
"bar-xy" operator. Each of these combinations of operators
involve 16 grid points centered around the grid box in
question. To see how these operators are used in practice,
two examples will be given using the notation introduced in

and . First, the horizontal advection of an
arbltrary scalar A is calculated from

u% + VBA ~ u* KY + yxv K:
ox by

Second, the flux divergence of A is formed as the sum of its
advective and divergent parts, as

duA + dvA > U AY + Vv Ax + Av(uy + vx)
% by

After the terms in the equation of interest are
calculated, it is necessary to restore the grid box values
to grid points in order to predict grid point values for the
next time step. This is done using a second bar-xy
operation. Whereas the previous operations begin with grid
point values and give their results shifted half a grid
length in both the x and y directions to yield grid box
values, this bar-xy operation begins with grid box values
and gives its result shifted half a grid length in both the
x and the y directions to yield grid point values.

This numerical scheme is used to help damp the smaller
scale varijations which arise for numerical, rather than
physical, reasons. Leapfrog schemes have difficulty with
the shortest resolvable wavelength in the system, namely
twice the grid length. This shortest wavelength results
from the nonlinear interaction of longer wavelengths, but is
itself unable to disperse into shorter wavelengths because
of the discrete nature of the calculation. This is
especially a problem in leapfrog schemes because of their
lack of damping at shorter wavelengths. Therefore,
artificial damping is introduced both through the use of the
previously defined bar operators, and through the addition
of a linear diffusion term in all of the predictive
equations at each time step, of the form

oA = Kk ,V2pat-1
dif

ot




where the diffusion coefficient is set equal to 1.8x10°.
The LaPlacian is calculated using a second order finite

difference approximation with no additional spatial
smoothing.

Vertical derivatives are approximated using second
order centered differences. A bar-xy operation is applied
first to form grid box values, which are then used in the
vertical difference calculations. Finally, a second bar-xy
is used as explained above to shift back to the grid points.

Since it is a limited area model, the LFN requires
lateral boundary values. The time varying boundary
conditions are obtained form the previous NMC run of the
global spectral model at six hour intervals. WValues of the
predicted quantities are interpolated to the LFM grid and

applied to the five outermost rows in the horizontal domain
using

A = k,VEI(ALT1 - At-t)
t bnd

}

where A* is a quantity defined by the LFM, and As is a
quantity defined by the spectral model. The diffusion
coefficient is set equal to 1.4x10° in the boundary region
and is set to zero in the interior part of the domain. The
spectral model values are used unmodified at the outermost
grid points. This procedure is applied to all predicted
variables with the exception of moisture which is held
constant on the lateral boundaries during the integration.




