
Moab End-User Training

CLI Module

Agenda

 Job Submission

 Job Dependencies

 Job Monitoring

 Job Management

 Job Scripting

Job Submission

 A Moab Job: A request for compute resources
needed to perform computational work

 A Job Specifies:
What resources are needed

When the resources are needed

For how long are the resources needed

 The most common Moab command is msub

Job Submission

Common msub Options

 -l Resource List
nodes

nodes=X:ppn=X

procs

walltime

Job Submission

Common msub Options (Cont’d)

 -q Destination Queue (Class)

 -A Account

 -N NAME

 -o Output Path

 -e Error Path

 -h Job Hold

Job Submission

Common msub Options (Cont’d)

 -m Mail Options

 -M Mail List

 -E Environment Variables

 -V All Variables

 -v Variable List

msub -l

 Specifies resource requirements for your job

 Establishes limits to resources

 -l is followed by one or more option

 Options depended upon resource manager

$ msub –l nodes=32,walltime=3600 cmd.sh

The msub command

The –l resource switch

The list of options

The jop script to run

nodes

 Identifies the number and type of nodes

 The node and properties of the nodes are
separated by a colon (:)

 Request 12 nodes of any type:

 Request 4 processors on one node:

$ msub -l nodes=12 cmd.sh

$ msub –l nodes=1:ppn=4 cmd.sh

nodes=X:ppn=X

 Moab uses the concept of tasks to schedule
workload

 Today’s multiple-processor compute nodes can
often support more than one task
simultaneously

 Submit a job requesting 4 nodes with 2
processors per node:

Moab interprets this as “On whatever nodes the
job lands on, there needs to be 2 processors
there to handle the tasks”

$ msub –l nodes=4:ppn=2 cmd.sh

nodes=X:ppn=X

 Consider a cluster of 8 quad-core physical
computers:

$ echo sleep 300 | msub -l nodes=4:ppn=2,walltime=200

Moab.1

$

$ mdiag -n

compute node summary

Name State Procs Memory Opsys

node01 Idle 4:4 0:0 -

node02 Idle 4:4 0:0 -

node03 Idle 4:4 0:0 -

node04 Idle 4:4 0:0 -

node05 Idle 4:4 0:0 -

node06 Idle 4:4 0:0 -

node07 Busy 0:4 0:0 -

node08 Busy 0:4 0:0 -

nodes=X:ppn=X

 To force Moab to distribute the job across all 4
nodes, use nmatchpolicy=exactnode:

$ msub –l nodes=4:ppn=2,nmatchpolicy=exactnode cmd.sh

nodes=X:ppn=X

 Can be seen as this:

$ mdiag -n

compute node summary

Name State Procs Memory Opsys

node01 Idle 4:4 0:0 -

node02 Idle 4:4 0:0 -

node03 Idle 4:4 0:0 -

node04 Idle 4:4 0:0 -

node05 Busy 2:4 0:0 -

node06 Busy 2:4 0:0 -

node07 Busy 2:4 0:0 -

node08 Busy 2:4 0:0 -

nodes=X:ppn=X

 The bottom line: If you don’t care how many
nodes are used for your job, use nodes=8 and
let Moab distribute accordingly

procs

 The number of total processors to be allocated
to a job

 Can come from one or more nodes (Depending
on system configuration)

 Use only 1 procs declaration per msub job
submission

$ msub –l procs=8 cmd.sh

walltime

 The wall-clock time defines the maximum
amount of time your job will run on the cluster

 Moab will force the running code to terminate
at the end of the walltime setting

 The value for walltime is DD:HH:MM:SS

 Since Moab is a scheduler, time is crucial

$ msub –l procs=8,walltime=5:00 cmd.sh

$ echo sleep 200 | msub -l host=node00,walltime=300

walltime

 Using checkjob to see how much time is left on
a job’s walltime:

$ checkjob Moab.3

job Moab.3

State: Running

...

Required HostList:

[node00:1]

...

Reservation 'Moab.3' (-00:00:05 -> 00:04:55

Duration: 00:05:00)

walltime

 Assuming there is space available, you can
adjust walltime using the “Request Adjust
Walltime Duration” (reqawduration) switch to
mjobctl:

 Time is converted to seconds, regardless of how
it is input

 Adding walltime must be configured by Admin

 Can only adjust your own jobs

$ mjobctl -m reqawduration-=10:00 <JOBID>

-q Destination Queue/Class

 Queues allow the system administrator to
define resource allocation for jobs

 E.g., can limit the number and/or types of CPUs
users can submit jobs to

 Queues are defined in moab.cfg:

 When submitting jobs to this queue, only 2
processors will be made available:

CLASSCFG[lowprocs] MAX.PROC=2

$ msub -q lowprocs cmd.sh

-q Destination Queue/Class

 Submit a job requesting more than 2 procs

$ echo sleep 300 | msub -q lowprocs -l procs=4

$ showq

active jobs--------------------

JOBID USERNAME STATE PROCS REMAINING STARTTIME

0 active jobs 0 of 100 processors in use by local jobs

(0.0%)

0 of 25 nodes active (0.00%)

eligible jobs------------------

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs--------------------

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.4 root BatchHold 4 99:23:59:59 Fri Jul 22

-A Account

 The -A switch allows jobs to be submitted to a
named account

 Accounts can be used to further define limits on
resources

 Accounts are defined in moab.cfg:

Limits the max number of jobs to 2 for projectX

ACCOUNTCFG[projectX] MAXJOB=2

$ msub -A projectX cmd.sh

-A Account

 Submit more than allowed:

 View the results:

$ echo sleep 300 | msub -A projectX

$ echo sleep 300 | msub -A projectX

$ echo sleep 300 | msub -A projectX

$ echo sleep 300 | msub -A projectX

$ showq

active jobs--------------------

JOBID USERNAME STATE PROCS REMAINING STARTTIME

Moab.5 user1 Running 1 99:23:59:56 Fri Jul 22

Moab.6 user1 Running 1 99:23:59:57 Fri Jul 22

2 active jobs 2 of 100 processors in use by local jobs (2.0%)

1 of 25 nodes active (4.00%)

eligible jobs------------------

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs--------------------

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.7 user1 Idle 1 99:23:59:56 Fri Jul 22

Moab.8 user1 Idle 1 99:23:59:56 Fri Jul 22

-N NAME

 The -N switch allows you to give a name to a job
when submitting

 Can use the name with commands such as
checkjob:

$ msub -N myjob cmd.sh

$ checkjob myjob

job Moab.11

AName: myjob

State: Running

...

-o Output Path

 Defines the path and name to be used for the
standard output stream of a batch job

 The named file ends up on the compute node’s
file system

 The output file is relative to the where the job
script is being run on the compute node

-o Output Path

 Example pingtest.sh:

 Submit the job:

 View the output:

#!/bin/bash

#PBS -l nodes=TFE1,walltime=300 -o TFE1/stdout.txt

ping -c 3 localhost

$ msub pingtest.sh

$ cat /home/user1/TFE1/stdout.txt

PING TFE1 (127.0.0.1) 56(84) bytes of data.

64 bytes from TFE1 (127.0.0.1): icmp_seq=1 ttl-=64 time=1ms

64 bytes from TFE1 (127.0.0.1): icmp_seq=2 ttl-=64 time=1ms

64 bytes from TFE1 (127.0.0.1): icmp_seq=3 ttl-=64 time=1ms

--- mgmtnode ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1s

-e Error Path

 Similar to the output path, the -e can define the
standard error stream of a batch job

 The named file ends up on the compute node’s
file system

 The output file is relative to the where the job
script is being run on the compute node

-m Mail Options

 The -m switch sends email to a predetermined
user upon certain conditions:
abort

begin

end

 To send notification of all events:

$ msub -m abe cmd.sh

-M Mail List

 This switch overrides the default mailto setting
of for email notifications

$ msub -M fred@r1i0n0,barney@r1i0n1,wilma@r1i0n2

-E Environment Variables

 The -E msub switch only works with SLURM
and TORQUE/PBS resources managers

 When jobs run on compute resources, they
behave according to the defined environmental
shell of that compute node

 Environment variables can be sent with job
submission:

MOAB_ACCOUNT MOAB_BATCH MAOB_CLASS
MOAB_DEPEND MOAB_GROUP MOAB_JOBID
MOAB_JOBNAME MOAB_MACHINE MOAB_NODECOUNT
MOAB_NODELIST MOAB_PARTITION MOAB_PROCCOUNT
MOAB_QOS MOAB_TASKMAP MOAB_USER

-E Environment Variables

 Edit pingtest.sh:

 Submit the job:

 View the output:

#!/bin/bash

#PBS -l nodes=TFE1,walltime=300 -E

echo $MOAB_USER

ping -c 3 localhost

$ msub pingtest.sh

$ cat /home/user1/STDIN.o1

user1

PING TFE1 (127.0.0.1) 56(84) bytes of data.

64 bytes from TFE1 (127.0.0.1): icmp_seq=1 ttl-=64 time=1ms

64 bytes from TFE1 (127.0.0.1): icmp_seq=2 ttl-=64 time=1ms

64 bytes from TFE1 (127.0.0.1): icmp_seq=3 ttl-=64 time=1ms

--- mgmtnode ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1s

-V All Variables

 The -V switch declares that all environment
variables in the msub environment be exported
to the batch job

 Once declared, they can be used with the env
command

-v Variable List

 The -v switch allows the user to define one or
more variables to be exported into the job
environment

 Does not export all environment variables like
the -V switch

-h Hold

 The -h switch allows the user to submit a job
to Moab and immediately place the job on hold

 Allows users to “Stack” jobs in the job queue
until their data are ready to submit

$ msub -h -l walltime=30:00 cmd1.sh

Moab.1

$ msub -h -l walltime=30:00 cmd2.sh

Moab.2

$ msub -h -l walltime=30:00 cmd3.sh

Moab.3

-h Hold

 Show the hold:

 Un-hold (release) by using mjobctl -u:
$ mjobctl -u Moab.1

$ mjobctl -u Moab.2

$ mjobctl -u Moab.3

$ showq

...

blocked jobs-----------------------

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.1 student UserHold 1 00:30:00 Mon Dec 12 12:24:00

Moab.2 student UserHold 1 00:30:00 Mon Dec 12 12:24:30

Moab.3 student UserHold 1 00:30:00 Mon Dec 12 12:24:45

Job Dependencies

 A job’s completion or failure can be used to step
through job workflow

 Job dependencies are active by default

 Dependent jobs are only supported through a
resource manager

 Syntax is specific to the resource manager

Job Dependencies

 Job Submission Example:
$ msub myjob1.sh

Moab.1

$ msub -W x=depend:afterok:Moab.1 myjob2.sh

Moab.2

$ checkjob Moab.2

...

NOTE: job cannot run (dependency Moab.1

jobsuccessfulcomplete not met)

Job Dependency Syntax
Dependency Format Description

after after:<job>[:<job>]... Job may start at any time after specified
jobs have started execution.

afterany afterany:<job>[:<job>]... Job may start at any time after all specified
jobs have completed regardless of
completion status.

afterok afterok:<job>[:<job>]... Job may be start at any time after all
specified jobs have successfully completed.

afternotok afternotok:<job>[:<job>]... Job may start at any time after all specified
jobs have completed unsuccessfully.

Job Dependency Syntax
Dependency Format Description

before before:<job>[:<job>]... Job may start at any time before specified
jobs have started execution.

beforeany beforeany:<job>[:<job>]... Job may start at any time before all
specified jobs have completed regardless
of completion status.

beforeok beforeok:<job>[:<job>]... Job may start at any time before all
specified jobs have successfully
completed.

beforenotok beforenotok:<job>[:<job>]... Job may start at any time before any
specified jobs have completed
unsuccessfully.

on on:<count> Job may start after <count> dependencies
on other jobs have been satisfied.

Job Dependencies

 Moab Cluster Manager View:

Job Monitoring

 checkjob

 showhist

 shoq

 showbf

 showstart

checkjob

 Displays detailed job state information

 Used to view diagnostic output for a specific job

 Individual users can run checkjob on their
own jobs

 Using the -v switch get verbose output

 Using the -v -v switch get very verbose
output

showhist

 showhist is an executable perl script that
queries the history of jobs submitted in the past

 Run by itself, will show all jobs submitted

 Run against a specific job ID, shows information
about that specific job

showq

 Shows information about active, eligible,
blocked, and/or recently completed jobs

 Shows the actual job ordering of the Moab
scheduler

 Can be used to see if the scheduler is running,
stopped, or paused

 Can be run by any user

 --loglevel=0-9 shows more details

showq

 Sample output:

$ showq

active jobs--------------------

JOBID USERNAME STATE PROCS REMAINING STARTTIME

Moab.5 student Running 1 99:23:59:56 Fri Jul 22

Moab.6 student Running 1 99:23:59:56 Fri Jul 22

2 active jobs 2 of 100 processors in use by local jobs (2.0%)

 1 of 25 nodes active (4.00%)

showbf

 Shows how many processors are immediately
available for use on the cluster

 Can be run by any user

$ showbf

Partition Tasks Nodes Duration StartOffset StartDate

--------- ----- ----- -------- ----------- ---------

ALL 20 5 INFINITY 00:00:00 07:00:48_07/27

torque 4 1 INFINITY 00:00:00 07:00:48_07/27

nativerm 16 4 INFINITY 00:00:00 07:00:48_07/27

showstart

 Displays the estimated start time of a job based
on a number of analysis types:

Historical usage

Earliest available reserveable resources

Priority based backlog analysis

 If a job is running, showstart displays the
time the job started

 If a job has a reservation, showstart displays
the start time of the reservation

 Can be run by any user

showstart

 Example output:
$ echo sleep 300 | msub -l nodes=16,walltime=300

Moab.10

$ showstart -e all Moab.10

job Moab.10 requires 16 procs for 00:05:00

Estimated Rsv based start in 00:04:09 on Wed Jul 27 07:25

Estimated Rsv based completion in 00:04:09 on Wed Jul 27:07:30

Estimated Priority based start in 00:04:09 on Wed Jul 27 07:25

Estimated Priority based completion in 00:04:09 on Wed Jul 27:07:30

Estimated Historical based start in 00:04:09 on Wed Jul 27 07:25

Estimated Historical based completion in 00:04:09 on Wed Jul 27:07:30

Best Partition: nativerm

Job Management

 canceljob

 mjobctl

canceljob

 Once a job has been submitted to the queue, it
can be canceled any time by canceljob

 Users can only cancel their own jobs

 Moab Administrators can cancel any jobs

 Can cancel based on jobID or job name

$ echo sleep 300 | msub -l nodes=16,walltime=300

Moab.11

$ canceljob Moab.11

job 'Moab.11' cancelled

mjobctl

 Controls various aspects of job

 Can be used to:

submit

cancel

execute

checkpoint

Job Scripting

 A job script allows you to send a sequence of
commands all at once

 A job script is a simple text file, and can contain:

Shell script environment (hashpling)

Environment variables

Comments

Job executables

 msub statements begin with #PBS

Job Scripting

#!/bin/bash

This script is called test.sh

Moab environment

#PBS -l nodes=TFE1

#PBS -l walltime=300

#PBS -N pingjob

Shell commands

ping -c 3 localhost

cd /home/user1

touch output

date > output

echo “The JOBID of this job is $PBS_JOBID” >> output

echo “Job submitted by $PBS_O_LOGNAME” >> output

echo “The exit status of this job is $? >> output

echo “Done” >> output

 $ musb test.sh

Demo

Questions

9/16/
2009

Moab Cluster Suite Tutorial

54

