SAdaptive

COMPUTING

Moab End-User Training

CLI Module

I Agenda

= Job Submission
o Dependencies
0 Monitoring
0 Management

0
©C O O O

0 Scripting

@ﬁ.ﬁaptive
COMPUTING

e

d Job Submission

= A Moab Job: A request for compute resources
needed to perform computational work

= A Job Specifies:

=\What resources are needed
=\When the resources are needed
="For how long are the resources needed

" The most common Moab command is msub

u‘%mﬂaptiwe
COMPUTING

i
e

Job Submission

Common msub Options
= —] Resource List

"nodes
"nodes=X:ppn=X
"Drocs

"walltime

%Aﬁaptiv&
COMPUTING

e

Job Submission

Common msub Options (Cont’d)
" —g Destination Queue (Class)

= —A Account

= -N NAME

= —o Output Path

= —e Error Path

= -h Job Hold

fgiﬁ.ﬁaptiwe
COMPUTING

Job Submission

Common msub Options (Cont’d)
= —m Mail Options

= —M Mail List

= —F Environment Variables

= -V All Variables

= —v Variable List

fgiﬁ.ﬁaptiwe
COMPUTING

msub -1

= Specifies resource requirements for your job
= Establishes limits to resources
= -1 is followed by one or more option

= Options depended upon resource manager

S msub -1 nodes=32,walltime=3600 cmd.sh

> The msub command

The —1 resource switch

—> The list of options

The jop scripttorun <—

u‘%ﬁ.ﬁaptiwe
COMPUTING

i
e

nodes

= |dentifies the number and type of nodes

" The node and properties of the nodes are
separated by a colon (:)

= Request 12 nodes of any type:

S msub -1 nodes=12 cmd.sh

= Request 4 processors on one node:

$ msub -1 nodes=1:ppn=4 cmd.sh

fgiﬁ.ﬁaptiwe
COMPUTING

e

nodes=X:ppn=X

®" Moab uses the concept of tasks to schedule
workload

" Today’s multiple-processor compute nodes can
often support more than one task
simultaneously

= Submit a job requesting 4 nodes with 2
processors per node:

$ msub -1 nodes=4:ppn=2 cmd.sh

Moab interprets this as “On whatever nodes the
job lands on, there needs to be 2 processors
there to handle the tasks” Sadaptive

i
e

nodes=X:ppn=X

= Consider a cluster of 8 quad-core physical
computers:

$ echo sleep 300 | msub -1 nodes=4:ppn=2,walltime=200
Moab.1

S

$ mdiag -n

compute node summary

Name State Procs Memory Opsys

node01l TIdle 4:4 0:0 -

node02 Idle 4:4 0:0 -

node03 Idle 4:4 0:0 -

node04 TIdle 4:4 0:0 -

node05 TIdle 4:4 0:0 -

nodeO6 Idle 4:4 0:0 -

node07 Busy 0:4 0:0 -

node08 Busy 0:4 0:0 gﬁﬂﬂaﬁﬂﬁﬁmr

nodes=X:ppn=X

= To force Moab to distribute the job across all 4
nodes, use nmatchpolicy=exactnode:

$ msub -1 nodes=4:ppn=2,nmatchpolicy=exactnode cmd.sh

@Aﬁaptiv&
COMPUTING

e

nodes=X:ppn=X

= Can be seen as this:

$ mdiag -n

compute node summary

Name State Procs Memory Opsys
node0l Idle 4:4 0:0 -
node02 Idle 4:4 0:0 -
node03 Idle 4:4 0:0 -
node04 Idle 4:4 0:0 =
node05 Busy 2:4 0:0 -
node06 Busy 2:4 0:0 -
node07 Busy 2:4 0:0 -
node08 Busy 2:4 0:0 -

@Aﬁaptiv&

COMPUTING

nodes=X:ppn=X

" The bottom line: If you don’t care how many
nodes are used for your job, use nodes=8 and

let Moab distribute accordingly

fgiﬁ.ﬁaptiwe
COMPUTING

procs

=" The number of total processors to be allocated
to a job

= Can come from one or more nodes (Depending
on system configuration)

" Use only 1 procs declaration per msub job
submission

$ msub -1 procs=8 cmd.sh

éc%miaptiwe
COMPUTING

e

l walltime

" The wall-clock time defines the maximum
amount of time your job will run on the cluster

=" Moab will force the running code to terminate
at the end of the walltime setting

= The value for walltime is DD:HH:MM:SS

$ msub -1 procs=8,walltime=5:00 cmd.sh

= Since Moab is a scheduler, time is crucial

$ echo sleep 200 | msub -1 host=node00,walltime=300

u‘%mﬂaptiwe
COMPUTING

i
e

walltime

= Using checkjob to see how much time is left on
a job’s walltime:

$ checkjob Moab.3
Job Moab.3
State: Running

Required HostList:
[node00:1]

Reservation 'Moab.3' (-00:00:05 -> 00:04:55
Duration: 00:05:00)

%Aﬁaptiv&
COMPUTING

e

d walltime

= Assuming there is space available, you can
adjust walltime using the “Request Adjust
Walltime Duration” (reqawduration) switch to

mjobctl:

$ mjobctl -m regawduration-=10:00 <JOBID>

" Time is converted to seconds, regardless of how
It is input

= Adding walltime must be configured by Admin

= Can only adjust your own jobs

ﬁ%ﬂﬂanﬁwgﬁﬁ
COMPUTING

i
e

d -q Destination Queue/Class

= Queues allow the system administrator to
define resource allocation for jobs

= E.g., can limit the number and/or types of CPUs
users can submit jobs to

= Queues are defined in moab.cfg:

CLASSCFG[lowprocs] MAX .PROC=2

=" When submitting jobs to this queue, only 2
processors will be made available:

$ msub -g lowprocs cmd.sh

)

& :

<DAdaptive —
COMPUTING

—q Destination Queue/Class

= Submit a job requesting more than 2 procs

$ echo sleep 300 | msub -g lowprocs -1 procs=4

$ showqg

active jobs--—————————-——---"--——-

JOBID USERNAME STATE PROCS REMAINING STARTTIME

0 active jobs 0 of 100 processors 1n use by local jobs
(0.0%)

0 of 25 nodes active (0.00%)

eligible jobs-—-—-——————-———=——————-
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-------——77------——-
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
Moab.4 root BatchHold 4 99:23:59:59 Fri Jul 22

@Aﬁaptiv&

COMPUTING

-A Account

" The —A switch allows jobs to be submitted to a
named account

= Accounts can be used to further define limits on
resources

= Accounts are defined in moab.cfg:

ACCOUNTCFG[projectX] MAXJOB=2

_Limits the max number of jobs to 2 for projectX

$ msub -A projectX cmd.sh

éc%miaptiwe
COMPUTING

e

-A Account

= Submit more than allowed:

msub -A projectX
msub -A projectX
msub -A projectX
msub -A projectX

echo sleep 300
echo sleep 300
echo sleep 300
echo sleep 300

Uy Uy U Ur

= \View the results:

S showq

active jobs--—-——————-—----—————-

JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.5 userl Running 1 99:23:59:56 Fri Jul 22
Moab.6 userl Running 1 99:23:59:57 Fri Jul 22
2 active jobs 2 of 100 processors in use by local jobs
1 of 25 nodes active (4.00%)

eligible jobs--——————---"---"-—-——-

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs----—————-——--"-----—-

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
Moab.7 userl Idle 1 99:23:59:56 Fri Jul 22
Moab.8 userl Idle 1 99:23:59:56 Fri Jul 22

(2.0%)

@Aﬁaptiv&

COMPUTING

r

-N NAME

" The -N switch allows you to give a name to a job
when submitting

$ msub -N myjob cmd.sh

= Can use the name with commands such as
checkjob:

$ checkjob myjob
Job Moab.11
AName: myjob
State: Running

@Aﬁaptiv&
COMPUTING

e

I -o Output Path

= Defines the path and name to be used for the
standard output stream of a batch job

" The named file ends up on the compute node’s
file system

" The output file is relative to the where the job
script is being run on the compute node

‘%Aﬂaﬁii?ﬁ
COMPL

TING

-0 Output Path

= Example pingtest.sh:

#!/bin/bash
#PBS -1 nodes=TFEl,walltime=300 -o TFEl/stdout.txt
ping -c¢ 3 localhost

= Submit the job:

$ msub pingtest.sh

= VView the output:

$ cat /home/userl/TFE1l/stdout.txt

PING TFE1l (127.0.0.1) 56(84) bytes of data.

64 bytes from TFE1l (127.0.0.1): icmp seg=1l ttl-=64 time=lms
64 bytes from TFE1l (127.0.0.1): icmp seg=2 ttl-=64 time=lms
64 bytes from TFE1l (127.0.0.1): icmp seg=3 ttl-=64 time=lms
--- mgmtnode ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1s

&2 .
~<Shdaptive

OMPUTING

 —e Error Path

= Similar to the output path, the -e can define the
standard error stream of a batch job

" The named file ends up on the compute node’s
file system

" The output file is relative to the where the job
script is being run on the compute node

u‘%mﬂaptiwe
COMPUTING

| -m Mail Options

" The -m switch sends email to a predetermined

user upon certain conditions:
=abort
=begin
"end

= To send notification of all events:

S msub -m abe cmd.sh

@ﬁ.ﬁaptive
COMPUTING

e

—M Mail List

" This switch overrides the default mailto setting
of for email notifications

$ msub -M fred@rliOnO,barney@rliOnl,wilma@rl1iOn2

%Aﬁaptiv&
COMPUTING

e

—-E Environment Variables

" The —E msub switch only works with SLURM
and TORQUE/PBS resources managers

= When jobs run on compute resources, they
behave according to the defined environmental
shell of that compute node

" Environment variables can be sent with job

submission:

MOAB_ACCOUNT MOAB_BATCH MAOB_CLASS
MOAB_DEPEND MOAB_GROUP MOAB_JOBID
MOAB_JOBNAME MOAB_MACHINE MOAB_NODECOUNT
MOAB_NODELIST MOAB_PARTITION MOAB_PROCCOUNT

MOAB_QOS MOAB_TASKMAP MOAB_USER _
sﬁ@manﬂ;iﬁﬁw

e

—-E Environment Variables

= Edit pingtest.sh:

#!/bin/bash

#PBS -1 nodes=TFEl,walltime=300 -E
echo SMOAB USER

ping —-c¢ 3 localhost

= Submit the job:

$ msub pingtest.sh

= \View the output:

S cat /home/userl/STDIN.ol

userl

PING TFE1l (127.0.0.1) 56(84) bytes of data.

64 bytes from TFE1l (127.0.0.1): icmp seg=1l ttl-=64 time=lms

64 bytes from TFE1l (127.0.0.1): icmp seg=2 ttl-=64 time=lms

64 bytes from TFE1l (127.0.0.1): icmp seg=3 ttl-=64 time=lms

--- mgmtnode ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time s
~<Shdaptive

OMPUTING

-V All Variables

" The -V switch declares that all environment
variables in the msub environment be exported

to the batch job

" Once declared, they can be used with the env
command

u‘%ﬁ.ﬁaptiwe
COMPUTING

i
e

—v Variable List

" The —v switch allows the user to define one or

more variables to be exported into the job
environment

= Does not export all environment variables like
the -V switch

u‘%ﬁ.ﬁaptiwe
COMPUTING

i
e

-h Hold

" The —h switch allows the user to submit a job
to Moab and immediately place the job on hold

= Allows users to “Stack” jobs in the job queue
until their data are ready to submit

S msub -h -1 walltime=30:00 cmdl.sh

Moab.1
S msub -h -1 walltime=30:00 cmd2?2.sh

Moab. 2
S msub -h -1 walltime=30:00 cmd3.sh

Moab. 3

u‘%ﬁ.ﬁaptiwe
COMPUTING

i
e

-h Hold
= Show the hold:

S showq

blocked jobs—-—-—-———————————————————

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
Moab.1 student UserHold 1 00:30:00 Mon Dec 12 12:24:00
Moab.?2 student UserHold 1 00:30:00 Mon Dec 12 12:24:30
Moab. 3 student UserHold 1 00:30:00 Mon Dec 12 12:24:45

= Un-hold (release) by using mjobctl -u

$ mjobctl -u Moab.l
$ mjobctl -u Moab.?2
$ mjobctl -u Moab.3

@Aﬁaptw&

COMPUTING

d Job Dependencies

= A job’s completion or failure can be used to step
through job workflow

" Job dependencies are active by default

=" Dependent jobs are only supported through a
resource manager

= Syntax is specific to the resource manager

‘%Aﬂaﬁii?ﬁ
COMPLN

TING

Job Dependencies

= Job Submission Example:

$ msub myjobl.sh
Moab.1

$ msub -W x=depend:afterok:Moab.l myjob2.sh
Moab. 2

$ checkjob Moab.?2

NOTE: job cannot run (dependency Moab.1
jobsuccessfulcomplete not met)

@Aﬂaptiv&

COMPUTING

Job Dependency Syntax

Dependency Description

after after:<job>[:<job>]... Job may start at any time after specified
jobs have started execution.

afterany afterany:<job>[:<job>]... Job may start at any time after all specified
jobs have completed regardless of
completion status.

afterok afterok:<job>[:<job>]... Job may be start at any time after all
specified jobs have successfully completed.

afternotok afternotok:<job>[:<job>]... Job may start at any time after all specified
jobs have completed unsuccessfully.

@Aﬁaptiw&
COMPUTING

Job Dependency Syntax

Dependency

Description

before

beforeany

beforeok

beforenotok

on

before:<job>[:<job>]...

beforeany:<job>[:<job>]...

beforeok:<job>[:<job>]...

beforenotok:<job>[:<job>]...

on:<count>

Job may start at any time before specified
jobs have started execution.

Job may start at any time before all
specified jobs have completed regardless
of completion status.

Job may start at any time before all
specified jobs have successfully
completed.

Job may start at any time before any
specified jobs have completed
unsuccessfully.

Job may start after <count> dependencies
on other jobs have been satisfied.

ﬁ.ﬁaptive
COMPUTING

Job Dependencies

" Moab Cluster Manager View:

lain Configure Create Window ~cions View Reporiing Help
mmary O X Workﬂowsl:lx]

8/25/11 1.50 PM - 5/29(11 2.03 F
[| | 1 - 1 | | |
I T 1 T | T 1 1 1
01:55:30 02:00:00 02:00:30 02:01:00 02:01:30 02:02:00 02:02:30 02:02:00

Saict o 240 | Dapt: o2 Color Key: [EUEEEEE] (FSHGRE] [Active] [1eic] [BIGEREA] tive
0% Sadaptive | COMPUTING

Refresh System

Job Monitoring

= checkjob
= showhist
" shoq

= showbf

" showstart

%Aﬁaptiv&
COMPUTING

i checkijob

= Displays detailed job state information
= Used to view diagnostic output for a specific job

" Individual users can run checkjob on their
own jobs

= Using the —v switch get verbose output

= Using the —v —v switch get very verbose
output

u‘%mﬂaptiwe
COMPUTING

i
e

| showhist

" showhist is an executable perl script that
gueries the history of jobs submitted in the past

= Run by itself, will show all jobs submitted

" Run against a specific job ID, shows information
about that specific job

u‘%mﬂaptiwe
COMPUTING

| showqg

= Shows information about active, eligible,
blocked, and/or recently completed jobs

= Shows the actual job ordering of the Moab
scheduler

= Can be used to see if the scheduler is running,
stopped, or paused

= Can be run by any user
" ——-loglevel=0-9 shows more details

%Maﬁiiﬁﬁ

TING

showq

= Sample output:

$ showg

active jobs---—-————--—-----——-—-

JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.b student Running 1 99:23:59:56 Fri Jul 22
Moab. 6 student Running 1 99:23:59:56 Fri Jul 22

2 active jobs 2 of 100 processors in use by local jobs (2.0%)
1 of 25 nodes active (4.00%)

showbf

= Shows how many processors are immediately
available for use on the cluster

= Can be run by any user

$ showbf

Partition Tasks Nodes Duration StartOffset StartDate

ALL 20 5 INFINITY 00:00:00 O7:OO:48_O7/27
torque 4 1 INFINITY 00:00:00 07:00:48 07/27
nativerm 16 4 INFINITY 00:00:00 07:00:48 07/27

@Aﬁaptiv&
COMPUTING

e

showstart

= Displays the estimated start time of a job based
on a number of analysis types:

=Historical usage
sEarliest available reserveable resources
"Priority based backlog analysis
" [f a job is running, showstart displays the
time the job started
" |f a job has a reservation, showstart displays
the start time of the reservation

= Can be run by any user

e

showstart

= Example output:

S echo sleep 300 | msub -1 nodes=16,walltime=300
Moab .10

$ showstart -e all Moab.10
job Moab.10 requires 16 procs for 00:05:00

Estimated Rsv based start in 00:04:09 on Wed Jul 27 07:25

Estimated Rsv based completion in 00:04:09 on Wed Jul 27:07:30
Estimated Priority based start in 00:04:09 on Wed Jul 27 07:25
Estimated Priority based completion in 00:04:09 on Wed Jul 27:07:30
Estimated Historical based start in 00:04:09 on Wed Jul 27 07:25
Estimated Historical based completion in 00:04:09 on Wed Jul 27:07:30

Best Partition: nativerm

@Aﬁaptw&

PUTING

Job Management

" canceljob
" mjobctl

@Aﬁaptiv&
COMPUTING

canceljob

= Once a job has been submitted to the queue, it
can be canceled any time by canceljob

= Users can only cancel their own jobs
" Moab Administrators can cancel any jobs
= Can cancel based on joblID or job name

$ echo sleep 300 | msub -1 nodes=16,walltime=300
Moab.11

$ canceljob Moab.1l1

jJjob '"Moab.1ll' cancelled

ﬂ@ﬁﬁﬁﬁﬁ?é__

OMPUTING

mjobctl

= Controls various aspects of job
= Can be used to:

=submit

=cancel

mexecute

scheckpoint

@Aﬁaptiv&
COMPUTING

e

8 Job Scripting
= A job script allows you to send a sequence of
commands all at once
= A job script is a simple text file, and can contain:
sShell script environment (hashpling)
"Environment variables

"Comments

"Job executables
" msub statements begin with #PBS

u%ﬁ.ﬂap;tiwg .
COMPUTING

i
e

Job Scripting

#!/bin/bash

This script is called test.sh
Moab environment

#PBS -1 nodes=TFE1l

#PBS -1 walltime=300

#PBS -N pingjob

Shell commands

ping -c 3 localhost

cd /home/userl

touch output

date > output

echo “The JOBID of this job is $PBS JOBID” >> output
echo “Job submitted by $PBS O LOGNAME” >> output
echo “The exit status of this job is $? >> output
echo “Done” >> output

S musb test.sh

@Aﬁaptw&

COMPUTING

Demo

ﬁ.ﬁaptive
COMPUTING

§ Questions

\ ‘!l -.
NAdaptive

COMPUTINIE

