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[1] Results are presented from the multi-institution partnership to develop a real-time and
retrospective North American Land Data Assimilation System (NLDAS). NLDAS
consists of (1) four land models executing in parallel in uncoupled mode, (2) common
hourly surface forcing, and (3) common streamflow routing: all using a 1/8� grid over the
continental United States. The initiative is largely sponsored by the Global Energy and
Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP). As
the overview for nine NLDAS papers, this paper describes and evaluates the 3-year
NLDAS execution of 1 October 1996 to 30 September 1999, a period rich in observations
for validation. The validation emphasizes (1) the land states, fluxes, and input forcing of
four land models, (2) the application of new GCIP-sponsored products, and (3) a
multiscale approach. The validation includes (1) mesoscale observing networks of land
surface forcing, fluxes, and states, (2) regional snowpack measurements, (3) daily
streamflow measurements, and (4) satellite-based retrievals of snow cover, land surface
skin temperature (LST), and surface insolation. The results show substantial intermodel
differences in surface evaporation and runoff (especially over nonsparse vegetation),
soil moisture storage, snowpack, and LST. Owing to surprisingly large intermodel
differences in aerodynamic conductance, intermodel differences in midday summer LST
were unlike those expected from the intermodel differences in Bowen ratio. Last,
anticipating future assimilation of LST, an NLDAS effort unique to this overview paper
assesses geostationary-satellite-derived LST, determines the latter to be of good quality,
and applies the latter to validate modeled LST. INDEX TERMS: 1878 Hydrology: Water/energy

interactions; 1836 Hydrology: Hydrologic budget (1655); 1860 Hydrology: Runoff and streamflow; 1818

Hydrology: Evapotranspiration; 3337 Meteorology and Atmospheric Dynamics: Numerical modeling and data
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1. Introduction

[2] Improving weather and seasonal climate prediction by
dynamical models requires multidisciplinary advances in
providing reliable initial states for the atmosphere, ocean
and land components of the Earth system. For two decades,
advances in providing atmospheric initial states via four-
dimensional data assimilation (4DDA) have paved the way
for emerging 4DDA systems for the ocean and land. The
backbone of any 4DDA system is the geophysical model
whose execution provides temporally and spatially contin-
uous background states, into which generally discontinuous
observations are assimilated from various observing plat-
forms (in situ, satellite, radar). For example, present space-
based microwave estimates of soil moisture sense only the
top 1–5 cm of soil, far short of the root-zone depths needed
for land-state initialization.
[3] Thus a land data assimilation system (LDAS) is

needed to blend sparse land observations with the back-
ground fields of a land surface model (LSM). The accuracy
of the LSM background field (and companion surface and
subsurface water/energy fluxes) is crucial to LDAS viabil-
ity. The chief objective of the North American Land Data
Assimilation System (NLDAS) study here is to generate and
validate, over a 3-year period over the continental U.S.
(CONUS) domain, the background land states and surface
fluxes of four LSMs: Noah, Mosaic, VIC, and Sacramento
(denoted SAC) (hereinafter, all acronyms are defined in the
Notation). Future NLDAS papers will address actual data
assimilation experiments using such methods as adjoint
models and Kalman filtering. As one step to assimilation
of satellite land surface skin temperature (LST), this paper
assesses geostationary-satellite-derived LST and uses it to
validate NLDAS LST.
[4] It is instructive to consider the infancy of real-time

large-scale land 4DDA. Global atmospheric 4DDA has
been a mainstay of operational NWP centers since the
late 1970s. Real-time ocean 4DDA on large-scale ocean
basins followed in the middle to late 1980s [Ji et al.,
1994] on the heels of the TOGA program. Yet until the
mid-1990s, initiatives in real-time continental or global
land 4DDA were virtually nonexistent. The first viable
examples of real-time land 4DDA on continental or
global scales were the coupled land-atmosphere 4DDA
systems at major NWP centers such as NCEP [Kalnay et
al., 1996] and the European Centre for Medium-Range
Weather Forecasts [Gibson et al., 1997]. Such coupled
land-atmosphere 4DDA systems (including global reanal-
ysis) often yield significant errors and drift in soil
moisture/temperature and surface energy/water fluxes,
owing to substantial biases in the surface forcing from
the parent atmospheric models. To constrain such errors
and drift, coupled land-atmosphere 4DDA systems tem-
porally nudge the soil moisture by such means as (1) a
climatology of soil moisture [Kalnay et al., 1996], (2)
differences between the observed and 4DDA background
fields of precipitation [Kanamitsu et al., 2002], or (3)
screen-level air temperature and dew point [Douville et
al., 2000]. Such nudging methods, however, do not
reduce the main error source, namely, large bias in the
land surface forcing (especially precipitation and solar
insolation) of the parent atmospheric model.

[5] Substantial biases in atmospheric model surface
forcing also plague ocean 4DDA. To improve these
surface fluxes, ‘‘flux corrections’’ are applied in ocean
4DDA [Ji et al., 1994]. NLDAS here also applies surface
flux corrections. As a pathfinder for this, the GEWEX
Global Soil Wetness Project (GSWP) [Dirmeyer et al.,
1999] retrospectively demonstrated the viability of using
nonmodel, observation-based precipitation analyses and
nonmodel, satellite-based surface insolation fields (with
all other surface forcing from atmospheric 4DDA) to drive
uncoupled, land surface models over a global domain.
However, the monthly satellite retrievals of precipitation
and insolation used in GSWP are not conducive to the
daily/weekly updates of land states needed to initialize
operational prediction models. Hence the NLDAS project
set and achieved the following key objectives: (1) develop
and execute the first real-time operational prototype of a
continental-scale uncoupled land 4DDA backbone (contin-
uously cycled land-model states) executed daily at NCEP
using real-time streams of hourly to daily data and (2) a
companion retrospective mode for research. The NLDAS
generates hourly surface forcing (using model-indepen-
dent, observation-based precipitation and insolation fields)
that drives four LSMs running in parallel to produce
hourly output on a 1/8� grid over a CONUS domain.
[6] The retrospective NLDAS spans October 1996 to

September 1999 and uses GCIP-supported archives of
NOAA operational data streams. NLDAS thus provides a
land 4DDA counterpart from the GEWEX community to
complement the ocean 4DDA thrusts that followed TOGA.
Moreover, a core objective of GCIP is the infusion of GCIP
research into NOAA operational practice. The NLDAS
partnership of operational and research investigators in both
meteorology and hydrology is a flagship of GCIP success in
such infusion. This paper gives an overview of the meth-
odology and results of the initial development and evalua-
tion of NLDAS, providing an overview of the nine papers
by NLDAS partners given in Table 1 (hereinafter, each
paper is cited with the label given in Table 1, denoting the
last initials of first two authors and N for NLDAS).
[7] These papers and the sections that follow illustrate

that a pillar feature of NLDAS is the integrated application
of a multitude of GCIP-sponsored products, as listed in
Table 2. Section 2 describes the NLDAS configuration,
surface forcing, land models, and streamflow routing.
Sections 3 and 4 evaluate the NLDAS surface water budget
and surface energy budget, respectively. Section 5 presents
conclusions and future plans.

2. NLDAS Configuration

2.1. General Configuration

[8] Pilot studies of ocean 4DDA began on relatively data-
rich subglobal domains [Ji et al., 1994], i.e., the tropical
Pacific Ocean, which included the TOGA observing net-
work. For the NLDAS domain, we also chose a relatively
data-rich subglobal domain, thereby heeding a lesson from
GSWP, namely that uncoupled land surface simulation is
notably less viable over regions lacking moderately dense
precipitation gages to anchor the precipitation forcing [Oki
et al., 1999]. Outside such regions, global precipitation
analyses are dominated by satellite-based precipitation,
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which may be only marginally better (or even worse) then
model-based precipitation, especially in the extratropics and
in winter. Hence we limit the NLDAS domain (shown in
Figure 1) essentially to the CONUS, thereby benefiting
from relatively dense precipitation gages and the CONUS-
oriented GCIP-supported products in Table 2.
[9] On this domain, NLDAS applies the following in

common across the four LSMs: a 1/8� regular latitude/
longitude grid, land mask and terrain elevation, hourly input
surface forcing, soil texture and vegetation classes, stream-
flow network and routing model, and content, frequency
(hourly) and format (GRIB) of model input and output. The
elevation was derived by averaging, in each 1/8� grid cell, the
30 arc-second (�1 km) digital elevation of the GTOPO30
database of Verdin and Greenlee [1996]. Of the four LSMs,
VIC alone also employs subgrid elevation tiles (see
section 3.4). The vegetation classification was derived from
the global, 1-km, AVHRR-based, 13-class vegetation data-
base of UMD [Hansen et al., 2000]. For each 1/8� cell, the
vegetation field includes the percent of each class based on its
1-km frequency. Mosaic and VIC use subgrid vegetation
tiles, whose weights correspond to the percent of the classes.
Noah uses the most predominant vegetation class. SAC omits
explicit treatment of vegetation.
[10] The soil texture database over CONUS was derived

from the 1-km STATSGO database of Miller and White
[1998], which carries 16 texture classes by layer over
11 layers to 2-m depth. For each 1/8� grid cell, the NLDAS
soil database carries the percent of each class by layer,
based on the original 1-km frequency. Noah, Mosaic, and
VIC assume a vertically uniform soil class based on the
predominant soil texture of the top 5-cm layer. The excep-
tion is Mosaic’s soil porosity, derived for each Mosaic soil
layer based on weighted averages from the 11-layer soil
textures. Though SAC uses conceptual soil-water storage
reservoirs rather than explicit soil parameters of an explicit
soil column, many a priori parameters for the NLDAS SAC
were derived using all 11-layer soil types. Outside the
CONUS, the NLDAS soil database applies the same 16 tex-
ture classes, but carries only a single, vertically uniform
class at each cell, derived from the 5-min ARS FAO global
data of Reynolds et al. [2000]. Spatial maps depicting the
NLDAS vegetation and soils databases, as well as tables
defining NLDAS vegetation and soil classes, may be
viewed under the NLDAS tab at http://ldas.gsfc.nasa.gov,
maintained by NASA.
[11] Although NLDAS control runs employ common

fields of vegetation and soil class, the NLDAS partners
chose NOT to impose additional commonality in the veg-
etation and soil properties, such as (1) parameter values,

(2) configuration of a vegetation class (root depth and
density) or the soil column (number and thickness of layers)
and (3) seasonal cycle of vegetation. The desire was to
avoid negating the legacy of calibration or tuning invested
over the past decade in the LSMs. No extra calibration of
LSMs was carried out for the control runs. (Additionally,
the NLDAS project conducted various sensitivity tests,
discussed throughout this overview.)

Table 1. List and Topics of the Nine Companion Papers by NLDAS Partners in the GCIP-3 Special Issue

Label Subject

Cosgrove et al. [2003a] CL-N generation of land surface forcing
Luo et al. [2003] LR-N validation of land surface forcing
Pinker et al. [2003] PT-N production/validation of GOES-based solar insolation
Lohmann et al. [2004] LM-N production/validation of streamflow and water budget
Robock et al. [2003] RL-N validation of energy budget, soil moisture/temperature
Schaake et al. [2004] SD-N evaluation of soil moisture storage and range
Sheffield et al. [2003] SP-N validation of simulated snow cover
Pan et al. [2003] PS-N validation of simulated snowpack content
Cosgrove et al. [2003b] CM-N evaluation and testing of spin-up

Table 2. GCIP-Supported Products Applied by the NLDAS

Project

Product

A: For Producing NLDAS Surface Forcing
1 daily 1/8� gage-only CONUS precipitation analysis by NCEP
2 hourly 4-km radar-dominated (WSR-88D) CONUS

precipitation analysis by NCEP and OHD
3 hourly 1/2� GOES-based CONUS surface insolation

by NESDIS and UMD
4 3-hourly 40-km Eta-based 4DDA analyses of

near-surface meteorology by NCEP

B: For Validating NLDAS Surface Forcing
5 OU Mesonet surface meteorology observations
6 SURFRAD network of surface solar

insolation observations (receives
support from GCIP sister program
in NOAA/OGP)

C: For Validating NLDAS Land Model Output (States/Fluxes)
7 Oklahoma/Kansas ARM/CART surface flux stations (DOE)
8 Oklahoma Mesonet soil moisture/temperature

observations (OU Climate Survey)
9 CONUS-wide GOES-based satellite LST (NESDIS and UMD)
10 Northern Hemisphere 23-km IMS

daily snow cover analysis by NESDIS
11 Illinois Water Survey network of 18 soil

moisture measuring stations
12 western U.S. network of SNOTEL

observations (not GCIP supported)
13 USGS streamflow observations (not GCIP supported)

D: For NLDAS Land Surface Characteristics
14 1-km CONUS soil texture database by

Pennsylvania State University
15 NESDIS 0.144� global monthly NDVI-based

vegetation greenness by NESDIS

E: Improved Land/Hydrology Models (LSMs)
16 Noah LSM improvements (including in coupled EDAS)

by NCEP, OHD and collaborators
17 VIC LSM improvements (Princeton University,

University of Washington and collaborators)
18 SAC LSM improvements by OHD, NCEP and collaborators
19 Mosaic LSM improvements by NASA GSFC and collaborators
20 streamflow connectivity network and routing model by NCEP,

University of Washington, Princeton University and OHD
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[12] For example, NLDAS does not impose a common
treatment for the seasonality of vegetation, as the latter is
central to a given model’s canopy resistance formulation. In
broad terms, Noah, VIC, and Mosaic runs here all use a
satellite-derived, AVHRR-based, monthly seasonality of
vegetation and all interpolate their respective monthly
values to daily. Yet significant nuances exist between LSMs
regarding whether the monthly values are for the given year
(Mosaic) or from a multiyear climatology (Noah and VIC)
and whether the seasonality is carried in LAI (VIC), or in
vegetation fraction (Noah), or both (Mosaic). Noah uses the
global, 0.144� (�15-km), monthly 5-year climatology of the
green vegetation fraction (GVF) derived by Gutman and
Ignatov [1998] of NESDIS from AVHRR-based NDVI.
Figure 1a depicts this GVF climatology for the NLDAS
domain for July, as a reference for later sections. For
Mosaic, NASA obtained monthly 16-km AVHRR-based
green LAI fields from Boston University for each month
of each year (not climatology). NASA then first derived
dead LAI (estimated from the difference in green LAI
between consecutive months, along with vegetation-class-
dependent values of minimum dead LAI) and then derived
monthly total LAI (sum of green and dead LAI), from
which GVF was computed (as green LAI divided by total
LAI). VIC applies a global, AVHRR-based, multiyear
monthly climatology of total LAI, used in conjunction with
a vegetation-class-dependent look-up table of fixed annual-
maximum vegetation fraction (dead and green).
[13] The LSMs of NLDAS provide common hourly

output of about 50 required fields, including all terms
of the surface energy and water budgets, all soil and
snowpack moisture and temperature states, and ancillary
fields. For a given LSM, some outputs are omitted if its
physics omit the relevant process. NLDAS input/output
fields are viewable at the NLDAS tab of http://ldas.gsfc.
nasa.gov. For utility in NCEP operations, the input-output
format of NLDAS is GRIB: a WMO standard at NWP
centers. The NLDAS may be run in a ‘‘reduced-domain’’
mode by reducing the land mask, say to a single or
handful of points (e.g., near flux stations), for purposes of
lower output volume, faster execution, and locally fo-
cused sensitivity studies.

[14] The NLDAS requires initial values of all LSM state
variables for the NLDAS start time of 00 UTC on 1 October
1996. Initial snowpack was set to zero (reasonable for
1 October over the NLDAS domain at 1/8� resolution), as
was canopy interception storage. Initial states of soil mois-
ture and temperature were derived from the soil states of the
NCEP/DOE Global Reanalysis 2 [Kanamitsu et al., 2002]
valid at the start time. The soil moisture was provided to
each LSM as a vertically uniform percent of saturation,
which each LSM converted to its own absolute moisture
state compatible with its parameters. The spin-up from this
cold start was examined in all four LSMs by CM-N, who
concluded that the practical drift in NLDAS land stores
ceased within about one year. CM-N also conducted spin-up
experiments in Mosaic, in which spin-up from the above
initial states was found to be shorter than using saturated or
dry initial states.

2.2. Surface Forcing

[15] The studies by Cosgrove et al. [2003a] (CL-N),
Pinker et al. [2003] (PT-N), and Luo et al. [2003] (LR-N)
summarized below describe the data sources, generation and
validation of NLDAS forcing, produced in real-time and
retrospectively on the NLDAS grid. Of the 16 fields in each
forcing file (Table 3), nine fields required by Noah, Mosaic,
and VIC are primary: U/V 10-m wind components, 2-m air
temperature and specific humidity, surface pressure, down-
ward longwave and shortwave radiation, and convective
and total precipitation. SAC requires only total precipitation
(P), air temperature and potential evaporation (PE). In
NLDAS, SAC uses the PE computed in the Noah LSM.
Mosaic alone requires convective precipitation.
[16] The chief source of NLDAS forcing is NCEP’s Eta-

model-based Data Assimilation System (EDAS) [Rogers et
al., 1995], a continuously cycled North American 4DDA
system. It utilizes 3-hourly analysis-forecast cycles to derive
atmospheric states by assimilating many types of observa-
tions, including station observations of surface pressure and
screen-level atmospheric temperature, humidity and U and
V wind components. EDAS 3-hourly fields of the latter five
variables plus surface downward shortwave and longwave
radiation and total and convective precipitation are provided

Figure 1. Depiction of NLDAS domain, showing (a) July mean green vegetation fraction from Gutman
and Ignatov [1998] and (b) mean annual NLDAS precipitation (mm) for 1 October 1997 to 30 September
1999.
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on a 40-km grid to NLDAS forcing software, which
interpolates the fields spatially to the NLDAS grid and
temporally to one hour. Last, to account for NLDAS versus
EDAS surface-elevation differences, a terrain-height adjust-
ment is applied to the air temperature and surface pressure
using a standard lapse rate (6.5 K km�1), then to specific
humidity (keeping original relative humidity) and down-
ward longwave radiation (for new air temperature, specific
humidity). CL-N details the spatial/temporal interpolations
and terrain-height adjustment.
[17] EDAS precipitation and shortwave radiation serve

only as backup (Table 3). Though Roads et al. [2003] found
EDAS monthly precipitation to have rather smaller errors
than other 4DDA systems, EDAS precipitation errors can be
significant for daily events, as in summer convection
(Figure 4 of CL-N). Thus NLDAS precipitation forcing
over CONUS is anchored instead to NCEP’s 1/4� gage-only
daily precipitation analyses of Higgins et al. [2000] (avail-
able at http://www.cpc.ncep.noaa.gov/research_papers/
ncep_cpc_atlas/7/index.html), which utilize about 6500
(real-time) or 13000 (retrospectively) gage observations of
daily precipitation. In NLDAS, this daily analysis is inter-
polated to 1/8�, then temporally disaggregated to hourly
(details given by CL-N) by applying hourly weights derived
from hourly, 4-km, radar-based (WSR-88D) precipitation
fields. The latter radar-based fields (saved as auxiliary field
in Table 3) are used only to derive disaggregation weights
and do not change the daily total precipitation. Last,
convective precipitation is estimated by multiplying
NLDAS total precipitation by the ratio of EDAS convective
to EDAS total precipitation. Figure 1b shows the annual
mean NLDAS precipitation for the two years of the water
budget analysis done later in section 3.1. CL-N shows
examples of hourly and daily NLDAS precipitation fields,
as well as EDAS and radar-based counterparts.

[18] Downward shortwave radiation (solar insolation) in
the EDAS and Eta model typically show high bias of 10–
20% [Betts et al., 1997], even higher in cloudy winter
conditions. At two SURFRAD sites, Figure 7 of CL-N
illustrates the high bias in EDAS insolation and the far less
bias in GOES-based solar insolation, which provides the
primary insolation forcing for NLDAS. PT-N describes the
retrieval of this 1/2� surface insolation from GOES since
January 1996, via collaboration of UMD, NESDIS/ORA
and NCEP, and its hourly to monthly validation against fifty
CONUS stations over a 1–2 year period. GOES insolation
is not retrieved for zenith angles below 75� and so is
supplemented with EDAS insolation near the day/night
terminator (Figure 5 of CL-N). In validations by PT-N
and LR-N, GOES insolation verifies well against flux
stations, with some deterioration toward high bias at low
sun angles and over snow cover (when cloud detection is
difficult). CL-N shows that even in winter, the high bias of
the GOES insolation is about half that of EDAS. Last from
the GOES-based product suite, downward diffuse radiation,
PAR and LST fields are included in the NLDAS forcing
files (Table 3).
[19] NCEP originally selected the viable real-time NOAA

data sources (Table 2, part A) on which to base NLDAS
surface forcing fields and then developed the algorithms for
their real-time production, which NCEP has sustained since
April 1999. GCIP has supported the archiving back to 1996
of all NOAA data streams needed for this forcing. NASA
GSFC acquired these archives and adapted NCEP software
to produce retrospective forcing for October 1996 through
2002, the first 3 years of which force the NLDAS execu-
tions evaluated here and in the NLDAS papers. The
retrospective forcing was created for purposes of (1) exe-
cuting NLDAS over longer periods, especially those over-
lapping special validating observations (Table 2), such as

Table 3. Content and Data Sources of the Fields in the Hourly Surface Forcing Files of NLDASa

Content EDAS GOES Gage Radar Real-Time Retrospective

Primary forcing
2-m temperature, K X X X
2-m specific humidity, kg/kg X X X
10-m U-wind component, m/s X X X
10-m V-wind component, m/s X X X
Surface pressure, mb X X X
Downward longwave radiation, W/m2 X X X
Downward shortwave radiation, W/m2 X X X
Convective precipitation, kg/m2 X X X
Total precipitation, kg/m2 Xb Xb X X

Backup forcing
Downward shortwave radiation, W/m2 X X X
Total precipitation. kg/m2 X X X

Auxiliary forcing
WSR-88D precipitation, kg/m2 Xc Xc

PAR, W/m2 X X X
Downward diffuse radiation,d W/m2 X X
CAPE X X X

For validation (plus future assimilation)
Land surface temperature (LST),e K X X X
aTo date, retrospective forcing is available from 1 October 1996 through 2002. Real-time forcing is available from 16 April 1999 to present.
bDaily total is gage-only. Radar estimate is used only to temporally partition gage-based daily into hourly.
cWSR-88D precipitation estimate is radar dominated, but some gage data are used.
dDiffuse radiation is present in forcing files since 15 November 1999.
eLST is present in forcing files since 1 May 1997 (LST derivation and application in section 4.3).
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the soil moisture used in RL-N, (2) leveraging the near
doubling of gage observations (about 13000 versus 6500) of
daily precipitation applied in the retrospective versus real-
time CONUS precipitation analyses of Higgins et al.
[2000], and (3) applying added quality control checks to
and (when such checks warrant) reprocessing of the forcing
that is not feasible in real time.
[20] The LR-N study assesses NLDAS retrospective

forcing of January 1998 to September 1999 against hourly
ARM/CART and OU Mesonet stations (yielding indepen-
dent observations, not assimilated in EDAS). Except for
precipitation, differences between NLDAS forcing and
these observations were small at hourly to monthly time-
scales. For precipitation the agreement was marginal at
hourly periods, but better at daily and rather good at 5-day
and monthly periods. In net radiation, a small low bias in
downward longwave partially offset the modest high bias
in solar insolation. To investigate how these differences
impacted NLDAS simulations, LR-N compared control
simulations using standard NLDAS forcing with test
simulations using site-specific, station-observed forcing.
Simulation differences in soil moisture and temperature
for each LSM were small: much smaller than differences
between the LSMs and between LSMs and observations.
Thus NLDAS provides quality forcing for land modeling,
at least over the nonwestern CONUS. In section 3.4, the
study by PS-N uncovers a 50% low bias in NLDAS
precipitation at mountain SNOTEL sites at high elevations
in western CONUS. In the final section, we discuss future
remedies that will apply an adjustment to PRISM [Daly et
al., 1994].

2.3. Land Models

[21] Table 4 compares the attributes of the LSMs in
NLDAS. Of the many LSMs, these four give a good

cross-section of different early legacies, including small
scale versus large scale, coupled versus uncoupled, distrib-
uted versus lumped, with and without explicit vegetation,
tiled and nontiled, and significant versus minimal calibra-
tion. Mosaic and Noah emerged from the surface-vegeta-
tion-atmosphere transfer (SVAT) setting of coupled
atmospheric modeling with little calibration. VIC and
SAC grew from the hydrology community as uncoupled
hydrology models with considerable calibration. Mosaic
was developed for use in the NASA global climate model
[Koster and Suarez, 1994, 1996; Koster et al., 2000]. Noah
was developed for use in the NCEP mesoscale Eta model
[F. Chen et al., 1997; Betts et al., 1997; Ek et al., 2003].
VIC was developed as a macroscale semi-distributed model
[Liang et al., 1994; Wood et al., 1997]. SAC was developed
as a lumped conceptual hydrology model [Burnash et al.,
1973], calibrated for small catchments and used operation-
ally in NWS RFCs.
[22] Subsequent to their early heritage, Mosaic, Noah,

and VIC have been widely executed coupled and uncoupled
from small to large scales. Now all three models can be
considered as both SVATs and semi-distributed hydrological
models. All three have undergone testing on local and
regional scales in the PILPS project [T. H. Chen et al.,
1997; Wood et al., 1998; Schlosser et al., 2000; Bowling et
al., 2003] and on the global scale in GSWP [Dirmeyer et al.,
1999]. We use ‘‘semi’’-distributed to mean applied on a
gridded basis with gridded state variables and gridded
parameters, but no horizontal interaction between model
grid cells, except for routing of gridded runoff into stream-
flow. Seeking SAC suitability over a broad range of scales,
OHD of NWS recently developed a semi-distributed (non-
lumped) version of SAC [Koren et al., 2000] with a priori
uncalibrated parameters. This SAC version is intended for
testing from small basins to entire continents. NLDAS

Table 4. Primary Attributes of the Four NLDAS Land Surface Models (LSMs)

Mosaic Noah VIC SAC

Full domain runs yes yes yes yes
Limited domain runs yes yes yes yes
Input surface forcing seven forcing fieldsa seven forcing fieldsa seven forcing fieldsa precipitation, Noah PE,

2-m air temperature
Energy balance yes yes yes n/a
Water balance yes yes yes yes
Model time step 15 min 15 min 1 hour 1 hour
Model soil layers 3 4 3 2 storages
Model soil layer depths 10, 30, 160 cm 10, 30, 60, 100 cm 10 cm, variable variable
Tiling: Vegetation yes no yes no
Tiling: Elevation no no yes no
Snow model layers 1 1 2 1
Frozen soil: thermal no yes disabled n/a
Frozen soil: hydraulics partial yes disabled n/a
Soil thermodynamics force-restore heat conduction equation heat conduction

equation modified
no

Soil temperature profile no yes yes no
Soil water: drainage yes yes yes yes
Soil water: vertical diffusion yes yes no no
Snow-free albedo vary wrt LAI,

GVF, biome
monthly input

background field
vary wrt LAI and biome n/a

Diurnal albedo yes no no n/a
Explicit vegetation yes yes yes no
Canopy resistance Sellers et al. [1986] Jarvis [1976] Jarvis [1976] n/a
Rooting depth 0.4 m variable (1 or 2 m) variable (1.35–3 m) n/a
Root density profile constant constant exponential n/a
Canopy capacity 0–1.6 mm 0.5 mm 0.1–1.0 mm n/a

aSeven forcing fields: precipitation, downward solar and longwave radiation, 10-m wind speed, surface pressure, 2-m air temperature, 2-m air humidity.
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provides the first tests of the semi-distributed SAC at
continental scales. These are pilot tests, as SAC lacks the
legacy of continental testing of the other LSMs.
[23] The three SVAT models simulate LST, the surface

energy and water balance, snowpack, and soil moisture in
several soil layers, though the number and thickness of the
layers differ. Only Noah simulates soil freeze-thaw and its
impact on soil heating or cooling and transpiration, after
Koren et al. [1999]. The snowpack physics in the LSMs are
described in section 3.4. In all three SVATs, the surface
infiltration schemes account for subgrid variability in soil
moisture and precipitation, but the treatments differ, as do the
drainage approaches. All three SVATs include direct evapo-
ration from soil, transpiration from vegetation, evaporation of
interception, and snow sublimation; and all explicitly model
canopy resistance, though their formulations (see Table 4)
and parameters differ, as does their vegetation phenology
(section 2.1) and root profiles. The aerodynamic conductance
in the SVATS also differs, a focus of section 4.2.
[24] SAC is a conceptual rainfall-runoff, storage-type

model [Burnash et al., 1973]. It treats only the surface
water budget, omitting the surface energy budget, and uses
the snowpack model of Anderson [1973], called SNOW-17.
Hereafter SAC means the SAC-SNOW-17 pair. SAC out-
puts evaporation E and runoff, with E being a fraction of
input PE. SAC uses a ‘‘two-reservoir’’ soil water storage
structure (a shallow upper reservoir and a deeper lower
reservoir) and utilizes 28 parameters, 16 primary and 12 in
SNOW-17. At the RFCs, the parameters are calibrated by
catchment. Calibration was omitted in NLDAS SAC runs.
Rather, the primary parameters are specified a priori, after
Koren et al. [2000], as a function of the STATSGO-based
soils of section 2.1 and other data sets. SNOW-17 param-
eters are prescribed uniformly over the domain.
[25] Mosaic was developed by Koster and Suarez

[1994, 1996] to account for subgrid vegetation variability
with a tile approach. Each vegetation tile carries its own
energy and water balance and soil moisture and temper-
ature. Each tile has three soil layers and the first two are
the root zone. In NLDAS, Mosaic is configured to
support a maximum of 10 tiles per grid cell with a 5%
cutoff that ignores vegetation classes covering less than
5% of the cell. Additionally in NLDAS, all tiles of
Mosaic in a grid cell have the predominant soil type of
section 2.1 and three soil layers with fixed thickness
values of 10, 30, and 160 cm (hence constant rooting
depth of 40 cm and constant total column depth of
200 cm). This Mosaic configuration in NLDAS departs
from the standard Mosaic configuration, for the purpose
of easier comparison in NLDAS [Robock et al., 2003]
with the soil moisture observation levels of the OU
Mesonet and the soil layers of the VIC and Noah models
(e.g., their 10 cm top layer). Although never executed
before with fixed layer thickness, Mosaic performed well
in the PILPS experiments when configured in the stan-
dard way [T. H. Chen et al., 1997; Lohmann et al., 1998;
Wood et al., 1998]. The standard Mosaic configuration
varies the soil type and layer thickness tile by tile by
vegetation type and yields top-down layer thickness
ranges of 1–2 cm, 1–150 cm, and 30–200 cm, total
column depth ranges of 32–350 cm, and root depths of
2–49 cm for nonforest and 150 cm for forests.

[26] The Noah LSM [Chen et al., 1996; Koren et al.,
1999; Ek et al., 2003] is targeted for moderate complexity
and computational efficiency for operational NWP and
climate models. Thus it omits tiling and uses a single-
layer snowpack, plus a linearized (noniterative) solution
to the surface energy balance. Originating from the LSM
of Pan and Mahrt [1987], Noah benefits from improve-
ments arising from year-round assessment in the NCEP
Eta model over North America by NCEP and collabo-
rators [Ek et al., 2003]. The Noah version here in
NLDAS is that implemented in the NCEP Eta/EDAS
suite on 19 June 2002 and includes four layers of fixed
thickness (Table 4), of which the first three (nonforest) or
four (forest) span the root zone. Virtually this same
version of Noah was executed in NCEP’s 24-year Re-
gional Reanalysis. Berbery et al. [2003] examines the
large-scale hydrology of the coupled Eta/Noah model
over the Mississippi Basin for the period June 1995 to
May 2002.
[27] The variable infiltration capacity (VIC) model was

developed at the University of Washington and Princeton
University [Liang et al., 1994, 1996a, 1996b; Cherkauer
and Lettenmaier, 1999]. In NLDAS, VIC executes with
one-hour time step and uses three soil layers, with 10 cm
top layer and varying depth for bottom two layers, partly
determined from calibration. The root zone can span all
three layers, depending on vegetation class. Like Mosaic,
the VIC model carries subgrid vegetation tiles. Addition-
ally, VIC is the only LSM of the four to apply subgrid
elevation bands or tiles (see section 3.4). VIC has been
tested over large river basins, such as the Columbia
[Nijssen et al., 1997] and Arkansas-Red [Abdulla et al.,
1996; Wood et al., 1997], and over continental scales
[Maurer et al., 2002; Roads et al., 2003] and global
scales [Nijssen et al., 2001]. Traditional executions of
VIC [e.g., Maurer et al., 2002] apply a uniform disag-
gregation of total daily precipitation to VIC time steps
(typically 3-hourly). In NLDAS, VIC is executed with
one-hour time steps and nonuniform, radar-based disag-
gregation of daily precipitation (see section 2.2). Impli-
cations of this departure from standard VIC are presented
in section 3.2.

2.4. Streamflow Simulation and Assessment

[28] Lohmann et al. [2004] (LM-N) present the formu-
lation of the streamflow modeling in NLDAS and the
assessment of the control-run simulations of daily stream-
flow by the four LSMs. The latter study assesses model
streamflow for 9 major and 1145 small to medium-sized
CONUS basins (ranging from 23 km2 to 10,000 km2)
using measured daily streamflow from the USGS. LM-N
describes the criteria for choosing the 1145 basins. One
criterion is the absence of obvious regulation signatures
in the observed streamflow record. This yields few basins
for assessment in the arid southwestern CONUS (see
Figure 4).
[29] The streamflow routing requires both a river network

(flow-direction mask) on the NLDAS grid and a routing
model. LM-N derives and displays the river network. The
chosen routing model is linear and identical to that in
PILPS 2c and 2e [Lohmann et al., 1998; Bowling et al.,
2003]. It calculates the timing of the runoff reaching the
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grid-cell outlet, as well as the transport of water through the
river network. It operates in two modes: (1) distributed,
using a-priori grid-cell specific routing parameters common
to all four models and (2) ‘‘lumped’’, in which constant
routing parameters were separately calibrated for each of the
1145 basins for each model to minimize the least squares
difference between modeled and measured daily stream-
flow. The lumped mode thus yielded a separate calibrated
unit hydrograph for each basin for each model.
[30] LM-N shows the streamflow time series of the

Nehalem River in Oregon and associates the derived
lumped routing function for each LSM with the timing of
the runoff produced by each LSM (Figures 10 and 11 of
LM-N). In turn, a major cool season impact on the modeled
runoff is the timing of snowmelt in each LSM. LM-N
quantifies the delay between modeled and measured stream-
flow by means of the maximum of the temporal cross-
correlation between measured and modeled streamflow. In
general for all the LSMs, streamflow performance was
degraded with increasing snowfall amounts (Figure 17 of
LM-N). The worst case of peak streamflow timing occurs in
the snowpack season of the mountain ranges of the north-
west CONUS. There the LSMs vary by up to four months in
the timing of peak streamflow (Figure 18 of LM-N). VIC
showed the most realistic timing in such regions. Mosaic
and SAC melted on the order of weeks too early, and Noah
on the order of months too early. The SM-N and PS-N
studies featured in section 3.4 further examine and elucidate
the snowpack and snow cover simulations and forcing.
[31] In contrast, throughout the eastern half of CONUS,

streamflow simulation skill as measured by the Nash-Sut-
cliffe efficiency (Figure 16 of LM-N) showed that Noah had
the highest scores in general; VIC had the highest scores in
the northeast, and Mosaic and SAC in the southeast Atlantic
coastal states. The higher skill for Noah streamflow reflected
Noah having the smallest bias in evaporation and runoff
when assessed against the observed annual water budget
(next in section 3.1). Finally, the validation of simulated
monthly discharge for the 9 large river basins showed
behavior and bias in each LSM consistent with that expected
from spatial integration of the behavior and effects estab-
lished in the assessment of the smaller basins.

3. Assessment of the NLDAS Water Budget

[32] Sections 3 and 4 assess the water and energy budgets
of the LSMs, respectively, in the three-year NLDAS simula-
tion with retrospective forcing for 1 October 1996 to
30 September 1999. The assessment focuses on the last two
years, termed the ‘‘control’’ simulation, since the first year is
a necessary and (mostly) sufficient spin-up year, as reported
by Cosgrove et al. [2003b] (CM-N). Additionally, compli-
mentary sensitivity tests of the LSMs in NLDAS are
assessed. Altogether, the hallmark of the assessment is its
breadth, addressing continental to local scales, all four
seasons and multiple types of validating observations
(Table 2, part C).

3.1. Annual Water Budget: Partitioning Between
Evaporation and Runoff

[33] Over one or more annual cycles, the surface water
budget is well approximated by mean annual precipitation

being equal to the sum of mean annual evaporation and
mean annual runoff, since mean annual storage change
(in soil moisture, snowpack, etc.) is negligible by com-
parison. Thus analysis of observed mean annual precip-
itation minus observed mean annual runoff (from
observed streamflow) yields crucial observation-based
estimates of mean annual evaporation, as was carried
out for NLDAS by Lohmann et al. [2004] (LM-N) and
summarized here.
[34] Figure 1b depicts the observed mean annual precip-

itation forcing common to each LSM in the NLDAS control
run. Figure 2 depicts the simulated mean annual evaporation
of each control-run LSM. (See Figure 6 of LM-N for
companion map of simulated mean annual runoff.) Last,
Figure 3a shows the partitioning of mean annual NLDAS
precipitation into mean annual evaporation and runoff by
each LSM for the four CONUS quadrants of SW, NW, NE,
and SE depicted in the figure inset. In Figure 3a, each
diagonal denotes the mean-annual area-averaged precipita-
tion of a given quadrant (given by the diagonal’s x or y axis
intercept). On each diagonal, each LSM’s symbol projected
onto the x axis (y axis) yields that LSM’s quadrant-average
mean annual runoff (evaporation). Since each LSM con-
serves water over the annual cycle, the tiny displacement in
Figure 3a of a given LSM symbol from the diagonal
represents the negligible change in that LSM’s total water
storage over the two years.
[35] The disparity in evaporation among LSMs in

Figures 2 and 3a is striking, especially over the well-
vegetated NE and SE (Figure 1a). Disparity is far less over
the arid SW and NW. Over the NE and SE, Noah and VIC
have notably lower evaporation and hence higher runoff
than Mosaic and SAC, which give high evaporation and low
runoff. Mosaic similarity to SAC in Figures 2 and 3 is
surprising, as Mosaic (like Noah and VIC) includes explicit
treatment of vegetation cover and canopy conductance,
while SAC does not. Large disparity among LSMs in
evaporation versus runoff partitioning was noted in PILPS
and GSWP [Wood et al., 1998; Dirmeyer et al., 1999].
[36] The partitioning can be validated over subregions

of the quadrants for which basin-observed streamflow is
available. Figure 3b, which uses observed streamflow
from the 1145 assessment basins of section 2.4, is the
counterpart to Figure 3a obtained by area averaging the
NLDAS observed precipitation and LSM simulated evap-
oration and runoff only over the quadrant subarea
spanned by these basins (Figure 3b inset). For each basin,
observed streamflow (m3s�1) is converted to mean-annual
total discharge (m3), in turn converted (using the basin
area) to area-average mean-annual runoff (mm) for the
basin. The plus symbol in Figure 3b depicts the area-
mean of this observed runoff over the same quadrant
subarea. Projecting the plus symbol onto the y axis yields
the budget-based estimate of the area-average mean
annual evaporation.
[37] The reliability of the observation-based evaporation

estimate depends on the reliability of both the observed
streamflow (high reliability) and the NLDAS precipitation
forcing. Over NE and SE, which manifest relatively flat
terrain and good density of precipitation gages, we trust the
precipitation analysis and the estimates of evaporation there.
For NE and SE, one sees in Figure 3b that evaporation and
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Figure 2. Mean annual evaporation (mm/year) in NLDAS from (a) Noah, (b) VIC, (c) Mosaic, and
(d) SAC for 1 October 1997 to 30 September 1999.

Figure 3. (a) Partitioning of mean annual area-mean precipitation (diagonal, mm/year) into mean
annual area-mean runoff (x axis, mm/year) and evaporation (y axis, mm/year) for the CONUS quadrants
(inset) of NW (black), NE (red), SW (blue), and SE (green) by Noah (N), VIC (V), Mosaic (M), and SAC
(S) for 1 October 1997 to 30 September 1999. Model symbols below diagonal indicate (negligible)
positive storage change. (b) As in Figure 3a, except area-mean is for subarea of basin set depicted in inset
for each quadrant (same basins as in Figure 4) and the plus symbol depicts observed mean annual area-
mean runoff for the same subarea.
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runoff of Noah are close to observed, while Mosaic and
SAC show large biases of high evaporation and low runoff,
with VIC yielding the reverse: large biases of low evapo-
ration and high runoff. Figure 4 shows the variability of
relative runoff bias [(model-observed)/observed] across the
basins. Over NE and SE, Mosaic and SAC show similar
patterns of pervasive underestimates of runoff, exceeding
60% (dark red) in the Appalachians and upper Midwest,
while VIC runoff is highly overestimated (except for a
corridor of near neutral bias west of the Appalachians),
often by more than 60% (dark green) in the southeast and
Midwest. Noah has the least runoff bias over NE and SE,
with a more balanced likelihood of positive or negative bias,
and fewer basins of (dark green) large bias.
[38] In NW, NLDAS precipitation has a large low bias

(see section 3.4), owing to mountainous terrain, sparse
precipitation gages, and lack of an adjustment to PRISM
[Daly et al., 1994] in the NLDAS precipitation analysis.
This low bias thwarts the reliability of the NW budget-based
evaporation estimate in Figure 3b and causes large low bias
in runoff in all the LSMs over NW in Figures 3b and 4. For
example, the LSMs substantially underestimate runoff in the
Northern Rockies (dark red), though VIC yields much
smaller bias there for reasons given in section 3.4. Last,
over SW, in addition to precipitation gages being sparse, the
number of assessment basins there in Figure 4 is small,

casting uncertainty on observation-based SW evaporation
estimates.

3.2. Monthly Water Budget and Soil Moisture Change

[39] In studying nonannual water budgets, storage
changes of soil moisture and snowpack are important. Thus,
on monthly scales, we apply the full surface water budget
equation given by

dS1

dt
þ dS2

dt
þ dSn

dt
¼ P � E � R1 � R2: ð1Þ

Each term is the area average, of storage change (left side)
and accumulations (right side), of water mass per unit area
(kg/m2) per month, or depth of water (mm) per month. S1
and S2 are soil moisture stores of an upper and lower zone
(defined later), respectively, and Sn is snowpack storage. P,
E, R1 and R2 are precipitation, evaporation, surface runoff,
and subsurface runoff, respectively. On monthly scales,
canopy interception storage change is negligible and
omitted in equation (1). Figure 5 gives the time series of
area-average monthly evaporation E for each CONUS
quadrant for the control runs.
[40] We focus here on the eastern quadrants, where

evaporation in section 3.1 showed the most disagreement.
During middle and late summer, Mosaic clearly has the

Figure 4. Relative bias [(model - observed)/observed] of mean annual runoff for selected basins for
1 October 1997 to 30 September 1999 from (a) Noah, (b) VIC, (c) Mosaic, and (d) SAC. Observed runoff
for a given basin is calculated from basin area and observed basin-outlet stream discharge provided by
USGS.
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highest evaporation, while SAC has the highest in winter
and spring. Noah evaporation generally falls between that of
Mosaic and VIC in the warm season. VIC has the lowest
evaporation in virtually every month in the vegetated
eastern quadrants, consistent with the earlier annual results.
Figures 5b and 5d strongly suggest that Mosaic and VIC
manifest rather different canopy conductance. This is most
evident in the SE during 1998, where VIC monthly evap-
oration tops off at 80 mm during May–August while that of
Mosaic sustains 120–150 mm. (Signatures of this middle
and late summer stress over vegetation in VIC compared to
Mosaic and Noah is evident again later in Figure 13b.)
[41] Such large differences in warm season evaporation

imply large warm season differences in soil moisture
storage change. Figure 6 shows the time series of area-
average monthly mean total column soil moisture (S1 + S2)
for all four quadrants. Figure 7 is the companion depiction
for root zone soil moisture for the vegetated eastern
quadrants. (Figure 7 excludes SAC, which has no explicit
root zone.) The emphasis below is on years 2–3 of
Figures 6 and 7, as nontrivial spin-up is evident in year
one of Figure 6, though more so in Noah and VIC. After
year one, spin-up is essentially complete (though small
spin-up may still be occurring in NW in Noah).
[42] Focusing then on years 2 – 3, inspection of

Figures 5–7 reveals the following: (1) very different levels
of time-mean total soil moisture across the models, ranging
in the SE from about 325 mm for VIC and SAC to 550 mm
for Mosaic and 650 mm for Noah; (2) more similarity, yet
important differences, in annual-cycle amplitude (seasonal
change) of total soil moisture among the models, ranging in
the SE from about 100–150 mm for Noah, VIC, and SAC
to a notable high of 230 mm for Mosaic; (3) larger differ-
ences among the models over the wetter eastern quadrants

than the drier western quadrants, in both total soil moisture
and its seasonal change or range; (4) among the three
models with a root zone, the contribution of the subroot
zone to the change in total soil moisture varies widely, e.g.
over the SE it is very large in Mosaic (about 180 of
230 mm), moderate in Noah (about 70 of 140 mm), and
small in VIC (about 10 of 100 mm); (5) the model with the
highest level of total soil moisture is not the model with the
largest seasonal change in soil moisture, nor the model with
the largest monthly/annual evaporation; (6) a model with
high annual evaporation is not necessarily a model having a
high annual range of soil moisture storage (as the counter-
part of SAC illustrates).
[43] Intriguingly in Figure 6, while VIC and Noah have

very different levels of total soil moisture in the SE and NE,
they have more similar magnitudes of soil moisture in the
root zone and seasonal change of soil moisture in the root
zone in Figure 7. Thus the moisture source for the higher
summer evaporation in Noah then VIC is Noah’s subroot
zone, consistent with Noah usually having a deeper total
soil column (maximum storage capacity) than VIC, as
shown in SD-N.
[44] Recalling that Mosaic executions apply a shallow

root depth of 0.4 m, compared to 1–2 m in Noah and
1.35–3 m in VIC, it is a paradox in Figures 5 and 6 that
Mosaic in SE and NE has the highest warm season
evaporation and highest warm season change in total soil
moisture. Comparing Mosaic’s annual cycle amplitude in
Figures 6b and 6d with Figure 7 provides the answer by
revealing that Mosaic’s subroot zone accounts for the
bulk of Mosaic’s annual storage range. Later, we show
that Mosaic develops vigorous upward diffusion of water
to its root zone from its subroot zone during the warm
season. Mosaic’s diffusion is not a dominant process in

Figure 5. Time series of area-averaged monthly evaporation (mm/month) in NLDAS for Noah
(squares), VIC (triangles) Mosaic (circles), and SAC (crosses) over the four CONUS quadrants of (a) NW,
(b) NE, (c) SW, and (d) SE for October 1996 to September 1999.
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the arid west, because root zone and subroot zone there
are both typically dry.
[45] Figure 8 shows the May through September (nominal

soil dry-down season) change in total soil moisture for 1999.
Positive values denote soil drying. As an aside, the soil
moistening (negative change: dark red) of Florida, south
Texas, and Arizona/New Mexico is out of phase with the
dry-down over the bulk of the CONUS, because their ‘‘wet
season’’ is summer. Also, the Atlantic coastal states show
moistening from two coastal hurricanes in September 1999.
The hallmark of Figure 7 is vivid model differences in total
soil moisture depletion over the southern Mississippi basin,
which experienced significantly below normal precipitation
during this period (not shown). Mosaic shows the largest
depletion there and the largest evaporation (Figure 5d),
followed by SAC and then Noah, with VIC showing the

least depletion and lowest evaporation (Figure 5d). Together,
Figures 5d, 6d, 7b, and 8 illustrate that over vegetated areas
with a warm-season precipitation shortage, Mosaic taps
notably more than the other LSMs from its deep (subroot)
soil moisture to sustain evaporation, though too much so (SE
in Figure 3b).
[46] Figure 8 shows large intermodel variation in the east-

west gradient across CONUS of seasonal range in total soil
moisture storage (S1 + S2). The study by Schaake et al.
[2004] (SD-N) depicts this intermodel difference as a
function of basin climatology, in terms of the P/PE ratio
for the 12 CONUS RFCs. As one can infer from east-west
inspection along latitude 37� N in Figure 8, SD-N finds that
VIC’s storage range is relatively invariant with respect to
east-west gradient in P/PE between arid and moist regions,
while SAC and Noah show more variability, and Mosaic the

Figure 6. Time series of area-averaged monthly mean total column soil moisture (mm) in NLDAS for
Noah (squares), VIC (triangles), Mosaic (circles), and SAC (crosses) for the CONUS quadrants of
(a) NW, (b) NE, (c) SW, and (d) SE for October 1996 to September 1999.

Figure 7. Time series of area-averaged monthly mean root zone soil moisture (mm) in NLDAS for
Noah (squares), VIC (triangles), and Mosaic (circles) for the CONUS quadrants of (a) NE and (b) SE for
October 1996 to September 1999.
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most variability. SD-N emphasizes that a given model’s
dynamic storage range in a given region is not reliably
inferred from the model’s maximum water holding capacity,
but is rather the result of more complex interplay between a
region’s climatology and major facets of a model’s physics.
Koster and Milly [1997] show that a model’s dynamic range
of soil moisture is highly controlled by interaction between
the model’s runoff and evaporation formulations and the
functional dependence of these formulations on the model’s
soil moisture state.
[47] We turn now to Figure 9, which depicts the annual

cycle time series of every term in equation (1). Here
storage S1 is defined as the top two soil layers in Mosaic,
Noah, and VIC, and the top storage reservoir in SAC and
S2 represents all remaining soil storage. The difference
between the solid black line (total precipitation P) and
dashed black line (liquid precipitation) is the snowfall. The
red triangle is P-dSn/dt and the red triangle’s departure
below (above) the solid black line (P) equates to the monthly
increase (decrease) in snowpack depth. In the snow season,
the red triangle coincides with P if monthly snowfall is
balanced by the sum of monthly snowmelt and sublimation,
yielding zero net monthly change in snowpack.
[48] In Figure 9 we first examine region SE, which has

negligible snow and rather small month-to-month changes
in precipitation (in percent terms). Thus the annual cycle of

the SE water budget is driven mainly by PE. The model
differences in runoff response are vivid. Mosaic’s domi-
nance in soil moisture depletion in the warm season is
mirrored by Mosaic having the largest soil recharge during
November–February, leaving rather less precipitation avail-
able during cool months for runoff. SAC also has less cool
season runoff than Noah or VIC, though not so much from
high storage recharge as in Mosaic, but rather from SAC
having the highest cool season evaporation. Noah and VIC
have larger total runoff then Mosaic and SAC in most every
month, with VIC having the notably largest runoff (mostly
subsurface) throughout the fall, winter, and spring, as VIC
requires less cool-season soil recharge to replenish its
smaller summer depletion. In NE in Figure 9, the above
tendencies in SE continue to hold in a broad sense, but other
signatures arise from less precipitation in the cool season,
greater monthly variability of precipitation in the warm
season, and nonnegligible snowpack processes. Lower
precipitation in the cool season compared to SE results in
less cool season runoff in all four models, but in general
VIC still produces the most monthly runoff, followed by
Noah, then Mosaic and SAC. The lack of SAC runoff all
year in NE is noteworthy, as is the high SAC evaporation in
spring.
[49] Given that SAC in NLDAS takes its PE forcing from

Noah PE output, the higher March–April evaporation in

Figure 8. Warm season storage change (mm) of total column soil moisture, from difference of total
column soil moisture (mm) of 30 April minus that of 30 September of 1999 at 23 UTC for (a) Noah,
(b) VIC, (c) Mosaic, and (d) SAC. All colors (except dark red) are positive and denote a net drying during
the period.
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SAC versus Noah in NE and NW is instructive, as
vegetation greenness and hence transpiration are low then
in both quadrants in Noah. Noah, Mosaic and VIC draw
soil moisture for direct evaporation only from their first
soil layer (0.1 m). This one layer is likely unable to sustain
as high evaporation rates as SAC, which taps into both of
its top two soil storages in response to PE demand. This
structural difference in direct evaporation between SAC
and the SVATS likely explains SAC’s dominance in cool
season evaporation (especially winter and spring), which
contributes in turn to SAC’s high mean annual evapora-
tion. Thus, while Figures 2 and 3 show SAC and Mosaic
having similar annual evaporation, the monthly water
budget in Figures 5 and 9 (notably for NE and SE) shows
SAC and Mosaic having rather different temporal character
in evaporation, with SAC (Mosaic) having more in spring
(summer).
[50] Moreover in Figure 9, the high precipitation in June

in NE followed by a large drop of precipitation in July
yields another vivid example of Mosaic’s ability to draw
upon its deep soil moisture. In the face of the steep drop in
July precipitation, Mosaic is the only model in NE to yield
July evaporation larger than June evaporation, and it does so
via the largest July soil depletion. Following in August and
September, Mosaic still sustains higher evaporation than the
other models, despite its larger July storage depletion.
Mosaic’s layer 3 (subroot) storage change was dissected
for July 1998 at one grid cell near 45�N latitude and 92�W
longitude. For this month at this point, the Mosaic drainage
(R2) out the bottom of layer 3 ranged from 4 to 10 mm
across its tiles there, while the upward diffusion of water to
layer 2 ranged from 116 to 124 mm, confirming Mosaic’s
vigorous supply of subroot water to the root zone by
diffusion. Though Noah also includes vertical diffusion of
soil water, the magnitude is much larger in Mosaic.
[51] The contrast between models in Figure 9 is rather

less in the western quadrants, wherein the warm-season
water budget of the three SVAT models is quite similar,
though SAC has less warm season evaporation and soil
moisture depletion. The greater model similarity in SW and
NW likely stems from the sparse vegetation (Figure 1a),
whereby canopy conductance and root-zone processes are
not dominant. In the cool season of NW and SW, VIC still
tends to have the most runoff and is still dominated by
subsurface runoff. Interestingly, SAC has virtually no sub-
surface runoff in NW and SW. One cool season contrast
between models in NW (and NE) is the lower snowpack
accumulation in Noah during winter. Comparison of the
NW January water budget components of Noah with the
other LSMs reveals model agreement in monthly snowfall
amount (difference between solid and dashed lines), but
Noah (unlike the accumulating snowpack in VIC, Mosaic
and SAC) is melting and sublimating in the month about as
much snow as it receives in snowfall, a topic revisited in
section 3.4.
[52] We conclude this section with some discussion of the

causes of the systematic biases noted in the models thus far.

The high bias in Mosaic evaporation over CONUS-east is
most likely a result of the vigorous diffusion of water from
the subroot zone to the root zone. The high bias in SAC
evaporation over CONUS-east is likely a consequence of
SAC’s use in NLDAS of (1) uncalibrated a-priori parame-
ters (section 2.3) and (2) PE from Noah. As a counterex-
ample, in NWS operations at the RFCs, SAC inputs a
NOAA monthly climatology of PE, derived from evapora-
tion-pan measurements. This climatological PE is then
scaled during SAC runs by a monthly fractional coefficient.
This coefficient is a key calibration parameter allowed to be
moderately larger or smaller than 1.0, as determined from
SAC calibration runs over a catchment. No such coefficient
had been derived to date for use in SAC large-scale runs
over the CONUS-wide domain, either with Noah PE or
NOAA climatological PE, and hence a universal coefficient
of 1.0 was used SAC control runs in NLDAS. Moreover, the
Noah PE is known to be higher than NOAA PE climatol-
ogy. These two factors contribute to high SAC evaporation
(E) in NLDAS, but not always the highest E, and typically
less than the E in Mosaic in the warm season over nonsparse
vegetation. Hence the SAC results here are not outliers and
they represent important pathfinder runs of SAC executed
over a national domain in semi-distributed mode with
uncalibrated parameters. Since the SAC control runs here
in NLDAS, NWS/OHD has derived a CONUS-wide field of
the PE coefficient from the vegetation greenness database
cited in Figure 1a. SAC experiments of this field in NLDAS
are imminent.
[53] We last address the unexpectedly low bias in VIC

evaporation in the results here over CONUS-east. Two
separate but related VIC modeling efforts have been
conducted over the NLDAS grid and terrain heights;
specifically, the 3-year retrospective runs executed here
with 1-hour time steps, and the 50-year retrospective runs
reported by Maurer et al. [2002], executed with 3-hour
time steps and with different sources for the surface
forcing. The 3-year VIC runs here use essentially the
same parameters as the VIC runs of Maurer et al.
[2002]. Yet two significant differences were hourly tem-
poral disaggregation of the daily precipitation and subgrid
spatial disaggregation within a grid box, both used in the
VIC runs here but not in those of Maurer et al. Not having
the advantage of hourly radar-anchored precipitation analy-
ses, Maurer et al. used uniform distribution of the daily
precipitation throughout the day and within each 3-hour
forcing interval. Maurer et al. [2002, Figure 2] analyzed
the impact of this uniform distribution versus nonuniform
disaggregation to 3-hour time steps and the results showed
that the differences for the subregion analyzed (Lower
Mississippi basin) were modest. Nonetheless, subsequent
comparisons between the retrospective runs of Maurer et
al. and the 3-year retrospective runs of VIC here show that
the combined and interactive impact of the three factors of
temporal disaggregation, spatial disaggregation, and 1-hour
versus 3-hour time steps can be significantly larger than
suggested by the Lower Mississippi tests of the temporal

Figure 9. Monthly water budget in NLDAS for October 1997 to September 1998. In order, columns 1–4 are Noah, VIC,
Mosaic, and SAC, and rows 1–4 are quadrants SE, NE, NW, and SW. Colors depict terms (mm/month) in equation (1): dS1/
dt (orange), dS2/dt (red), R1 (light blue), R2 (dark blue), and E (green). Black solid line is total precipitation P (mm/month);
black dashed line is liquid precipitation (mm/month). See text for definition of red triangles.
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disaggregation alone. The differences (shown for a transect
across the eastern and central United States at http://
www.hydro.washington.edu/Lettenmaier/Models/VIC/
VIChome.html) are evident in portions of the country with
a high fraction of convective precipitation and full canopy
cover (e.g., CONUS-east summer). More study of the
differences, and development of parameter transformations
to account for disaggregation and time step differences
will be addressed in a future paper.

3.3. Regional Validation of Soil Moisture

[54] This section presents validation of NLDAS soil
moisture over (1) Illinois from Schaake et al. [2004] (SD-
N) and (2) Oklahoma from Robock et al. [2003] (RL-N).
SD-N evaluated NLDAS soil moisture at 17 of 18 sites of
the Illinois State Water Survey [Hollinger and Isard, 1994],
which measures soil moisture at 11 levels down to 2 m.
Figure 10 shows the resulting two-year scatterplot (and
best-fit linear line) of model versus observed, state-wide
average, total-column soil moisture over 2-m at bimonthly
intervals. For VIC, two best-fit lines for northwest and
southwest Illinois were required, because past VIC calibra-
tion yielded rather different soil moisture storage capacities
in these regions. In Figure 10, a best-fit line having slope
greater than one indicates a storage range greater than
observed. Mosaic yields a storage range greater than the
other models (as in sections 3.1–3.2) and about 50% more
than observed. Noah and SAC agree with observations in
both storage range and storage magnitude. VIC also shows
good storage range over its two regions, but storage
magnitude lower than observed. In addition to Illinois
validation, SD-N validates NLDAS soil moisture storage
range in the Arkansas-Red River basin (not shown). More
broadly, SD-N intercompares the soil moisture storage
capacity (explicit capacity) and storage range (‘‘active’’
capacity) of the four LSMs across the entire NLDAS
domain, including mean statistical properties and spatial
variation. The findings reveal significant LSM differences
in soil moisture, as did section 3.2. Such differences
challenge modelers using soil moisture from one LSM to
initialize another.
[55] Similar contrasts in soil moisture between LSMs

themselves and between observations and LSMs are found
over Oklahoma by Robock et al. [2003] (RL-N), which
included close scrutiny at individual stations. In-situ
observations of soil moisture have been installed and
calibrated at 72 Oklahoma Mesonet stations by the
Oklahoma Climatological Survey. Figure 9 of RL-N (not
shown) depicts a 21-month time series during 1998–1999
of observed and NLDAS-simulated daily mean, 0–40 cm
total soil moisture averaged over all 72 Mesonet stations.
The time series show substantial differences in soil
moisture magnitude among the LSMs and between the
LSMs and observations, with VIC showing the best
agreement with the observations. Nonetheless, there is
rather good agreement among the models and between
models and observations in the soil moisture changes in
time, a theme cited earlier here with Figure 6. RN-L also
performs and evaluates important sensitivity tests in the
three SVAT models at many of the OU Mesonet soil
moisture measuring stations, wherein model soil type is
set to match the station-reported soil type and the

assigned soil parameters are unified across the models.
This test improved a model’s performance if the param-
eters were not incompatible with previous model calibra-
tion. Since Noah is not substantially calibrated, the
matching with local soil type and use of unified soil
parameters did improve Noah’s soil moisture performance
at the stations. In VIC, which has been regionally cali-
brated to streamflow over several large basins, including
the Arkansas-Red river basin [Abdulla et al., 1996], the
use here over Oklahoma of local station-matching soil
types and unified soil parameters had less consistent
impact on improving model agreement with the soil
moisture measurements, showing more variance of posi-
tive or negative impact depending on station. Thus soil
parameter changes in an LSM to match local site charac-
teristics may degrade LSM performance at those sites,
especially if the changes disturb an LSM’s calibration
legacy.

3.4. Validation of Snow Cover and Snowpack Content

[56] This section presents results from Pan et al. [2003]
(PS-N) and Sheffield et al. [2003] (SP-N), which perform
large-scale assessment of NLDAS snowpack water equiv-
alent (SWE) and snow cover extent (SCE), respectively.
First, we summarize how the four LSMs treat snowpack.
SAC simulates only the snowpack water balance, via the
SNOW17 model [Anderson, 1973], which includes snow-
fall and snowmelt but not sublimation. Snowmelt is
determined empirically via an index-method based on
maximum-minimum daily air temperature. VIC, Noah
and Mosaic also simulate the snowpack water balance,
including sublimation as well as snowfall and snowmelt,
plus the snowpack energy balance (net radiation, sensible,
latent and subsurface heat fluxes, phase-change heat
sources/sinks). The treatments for processes such as snow
cover fraction, snow albedo and retention/refreezing of
snowmelt differ among the models. SAC, VIC, and Noah
explicitly account for retention of liquid water (snowmelt
or rainfall) in the snowpack, but only VIC and Noah
allow refreezing. Mosaic and VIC carry explicit subgrid
vegetation tiles, but only VIC carries added subgrid tiles
for elevation, known as ‘‘elevation banding’’, which is
cited in PILPS studies as a key factor in VIC’s good
snowpack simulations [Bowling et al., 2003; Boone et al.,
2004]. For each subgrid tile, Mosaic and VIC carry
separate water-energy balances and separate soil, vegeta-
tion and snow states. More on the model snow physics is
provided by SP-N, and by Wigmosta et al. [1994], Koster
and Suarez [1996], Koren et al. [1999], and Anderson
[1973] for VIC, Mosaic, Noah, and SAC, respectively.
[57] There is no distinction between rainfall and snow-

fall in NLDAS precipitation forcing. This requires criteria
to infer snowfall. The input precipitation at each model
time step was assumed to be all rainfall for surface air
temperature >0�C and all snowfall otherwise. This crite-
rion does not guarantee identical snowfall in the models
owing to different model time steps and VIC’s elevation
banding. Noah and Mosaic interpolate hourly air temper-
ature to their 15-min time steps, thus allowing rainfall
and snowfall inside one hour, unlike the hourly steps of
VIC and SAC. VIC adjusts the hourly air temperature to
the elevations of its subgrid elevation bands, thus VIC

D07S90 MITCHELL ET AL.: NORTH AMERICAN LAND DATA ASSIMILATION SYSTEM

16 of 32

D07S90



allows both rainfall and snowfall inside a given grid cell
for a given time step.
[58] PS-N validated NLDAS SWE simulations against

NRCS SNOTEL stations west of 104�W. SNOTEL sites
measure SWE, air temperature and precipitation every
15 min. The majority of SNOTEL elevations are above
1000 m, with mean elevation near 2500 m (see PS-N for
references). Since NLDAS terrain resolution is 1/8�, com-
paring model SWE with point-wise SNOTEL is a challenge.
Hence PS-N omitted use of SNOTEL sites whose elevation
differs from that of the nearest NLDAS grid point by more
than 50 m. This retains 110 SNOTEL sites.
[59] Figure 11 shows model versus observed mean-annu-

al maximum SWE for the LSM control runs (and two VIC
tests described later) at the SNOTEL sites by subset in four
mountain ranges: 3 in Sierra Nevada (squares), 17 in
Cascades (diamonds), 29 in southern Rockies (circles), 61
in northern Rockies (triangles). All the LSMs substantially
underestimate maximum SWE in all four regions. Noah has
the largest low bias and the lowest correlation. Mosaic also
shows a rather low correlation. SAC and VIC have notably
better bias and substantially higher correlation. The model
with elevation tiling (VIC) yields the highest correlation, yet
the simplest model (SAC) without elevation tiling or energy
balance treatment is closely competitive.
[60] PS-N found the NLDAS precipitation forcing to be

substantially low when compared to observed precipitation
at all 110 SNOTEL sites. Sites with the highest observed
precipitation are where NLDAS precipitation has the largest
low bias. PS-N determined the linear regression between
SNOTEL and NLDAS precipitation at the 110 sites to be
PSNOTEL = 2.1693 PNLDAS, with an R2 value of 0.64,
revealing a factor-of-2 underestimation by NLDAS precip-

itation at the sites on average. The low precipitation bias is
consistent with that anticipated from the low bias in annual
streamflow in the LSMs in the Northwest in section 3.1
(Figure 4).
[61] PS-N executed two tests in VIC with two methods of

bias-adjusted precipitation. Both tests executed VIC in the
reduced-grid mode (section 2.1) at grid cells nearest the
SNOTEL sites. Test 1 used NLDAS precipitation forcing
scaled upward by a separate regional factor for the four
mountain ranges, based on regional regression fit of the
NLDAS and SNOTEL mean annual precipitation. In test 1
(Figure 11e), the model SWE bias is dramatically less, with
the scatter rather evenly balanced about the 1:1 line. Yet the
scatter remains substantial and the correlation is only
modestly improved, as the regional scaling does not elim-
inate site-specific bias. VIC in test 2 (Figure 11f ) was
forced with site-specific adjusted NLDAS precipitation,
scaled to match the observed annual total precipitation at
each site. Test 2 yields a much smaller bias, substantially
reduced scatter and increased correlation of R2 = 0.82. PS-N
also evaluated NLDAS air temperature bias at SNOTEL
sites, finding it small in the cool season (exceptions at some
stations), contributing much less to model SWE bias than
precipitation. The high bias in NLDAS solar insolation over
snow (section 2.2) also contributes to a low bias in SWE in
the three SVAT models. The impact of this insolation bias
on SWE has not been quantified yet.
[62] SP-N validated NLDAS simulations of areal fraction

of snow cover extent (SCE) against the NESDIS operational,
daily, 23-km, Northern Hemisphere snow cover product
known as the Interactive Multisensor Snow (IMS) [Ramsay,
1998], viewable at http://www.ssd.noaa.gov/PS/SNOW.
NESDIS analysts produce the IMS using an interactive

Figure 10. Comparison of NLDAS versus observed bimonthly total soil moisture (mm) in top 2 m,
averaged over 17 sites throughout Illinois for October 1997 to September 1999 for (a) Noah, (b) VIC,
(c) Mosaic, and (d) SAC. Note different x axis and y axis ranges. See text for discussion of two sets in
Figure 10b.
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workstation to assess snow cover related visible, infrared,
and microwave satellite products, as well as in situ snow
depth observations. Details of mapping the 23-km IMS field
to the NLDAS 1/8� grid and mapping NLDAS snow cover
fraction (0–1 range) to the IMS binary snow cover state (yes/
no) are given in SP-N.
[63] All four LSMs diagnose SCE (0–1 fraction) as an

empirical function of the model simulated SWE, but the
treatments differ significantly, namely, the critical SWE
needed to reach SCE = 1 and the form of the function relating
SCE to SWE. SP-N provides details, but in broad terms SAC
and Noah require relatively deep snowpack for high SCE
values, while Mosaic requires notably less, and VIC very
little. For a nondeep SWE value, VIC will yield the highest
snow cover, followed by Mosaic, then Noah, and finally
SAC. For illustration, assuming a nonforest vegetation type,
a SWE value of 4 mm yields SCE = 1.0, 0.67, and 0.24 in
VIC, Mosaic, and Noah, respectively. Correspondingly
(shown later), VIC, Mosaic, and Noah in order yield the
highest, intermediate, and lowest albedo over snow. (SAC
requires no albedo.) The high SCE fractions in VIC arise in
part because VIC assigns SCE = 1 over any tile with any
nonzero SWE.
[64] SP-N carried out validation of SCE separately over the

8 of 12 CONUS RFCs that exhibit substantial winter snow
cover. In general, all models simulate reasonably well the
regional-scale spatial and seasonal dynamics of snow cover.

Yet systematic biases exist, with (on average over 8 RFCs)
underestimation of SCE by Noah (�22.5%) and MOSAIC
(�19.8%) and overestimation of SCE by VIC (22.3%), with
SAC being essentially unbiased. The level of bias over
individual RFC regions varies (see Figure 4 of SP-N). The
more mountainous RFC regions (Northwest, Colorado, Cal-
ifornia-Nevada) show the largest model differences with IMS
observations and between models. Here VIC further over-
estimates SCE, while Noah further underestimates SCE and
manifests an early bias in spring snowmelt. VIC’s high SCE
bias in the west is surprising at first, since all four LSMs had
notably low bias in SWE at SNOTEL sites in Figure 11,
owing to the low bias in NLDAS precipitation. However, the
number of pixels at SNOTEL sites in any RFC domain is
relatively small, so the effect on the regional mean is difficult
to judge. Yet we surmise that VIC’s high SCE bias stems from
VIC assigning SCE = 1 at any subgrid tile with any nonzero
SWE, however small.
[65] The low bias in Noah SCE appears to result from not

only the high SWE threshold required in Noah for high
SCE, but also the low snow albedo in Noah and its positive
feedback effect on the energetics of snowmelt. For one RFC
domain, Figure 12 shows the time series of monthly
domain-mean (1) snowmelt, (2) snow sublimation and
(3) albedo from the four models (only snowmelt for SAC,
as SAC excludes sublimation and albedo). There are large
differences in snow albedo among the models, with Noah

Figure 11. Comparison of mean annual maximum snow water-equivalent (SWE) during October 1996
to September 1999 between observations (x axis) and model simulations (y axis) at 110 SNOTEL sites for
the control runs of (a) SAC, (b) Noah, (c) VIC, and (d) Mosaic, and two VIC tests runs forced with
(e) regionally adjusted precipitation and (f ) locally adjusted precipitation.
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yielding the lowest (0.2–0.3), Mosaic being intermediate
(0.3–0.5), and VIC yielding the highest (0.5–0.65). Not
surprisingly then in Figure 12, Noah yields notably higher
snowmelt and sublimation in early and midwinter, while
VIC yields very little sublimation, with Mosaic in between.
The larger midwinter snowpack sinks in Noah are consistent
with Noah having the greatest low bias in annual maximum
SWE in Figure 11. By spring, Noah’s snowmelt and
sublimation reduce to almost zero, as much of Noah’s
snowpack has already melted or sublimated earlier in the
winter, while VIC and SAC have the largest spring snow-
melt volumes, in part because they had the smallest subli-
mation sinks during early and midwinter. SAC and Mosaic
tend to have higher melt in the spring than the winter
months while VIC melts at a more quasi-steady rate
throughout the winter and spring.
[66] A low bias in snow albedo is vulnerable to positive

feedback problems in the surface energy balance. A low
bias in albedo contributes to a high bias in net solar
insolation, which melts more snow and reduces the snow
cover, yielding still lower albedo and so on. The feedback is
amplified by the high bias here in the incoming solar
insolation over snow. High albedo and high snow cover,
such as in VIC, is also vulnerable to positive feedback in the
opposite direction, but the high albedo in VIC likely acted
to offset the high bias in NLDAS incoming insolation over
snow. A counterpart to such feedback risk is the simplicity
of snow physics in the SAC/SNOW17 model. Its snowpack
predictions perform rather well when assessed at the large
regional scales of NLDAS. One reason is SAC’s simple
temperature-index approach to snowmelt, which avoids the
feedback loops that can plague energy balance models over
snow. The recent PILPS high latitude modeling experiments
[Bowling et al., 2003] found large differences in snow

ablation and snowmelt among 21 LSMs and also concluded
that differences in model parameterizations of albedo and
SCE have large effects on energy available to the snowpack.

4. Validation of NLDAS Surface Energy Fluxes
and LST

4.1. In Situ Validation of Surface Energy Fluxes Over
the Southern Great Plains (SGP)

[67] This section presents key results from the surface
energy-validation portion of the Robock et al. [2003] study
(RL-N), which validates energy fluxes during January 1998
to September 1999 using the 24 extended facility (EF) flux
stations of the ARM/CART network in Oklahoma and
Kansas. The results include the three SVATS (Noah, Mosaic,
VIC) but not SAC, as SAC omits the physics of surface
energy balance. Multistation spatial averaging and hourly
temporal averaging are used to reduce the influence of scale
differences between NLDAS grid cells (�12 km) and point-
wise flux stations. Radiation fluxes were averaged over the
22 of 24 EF stations using Solar and Infrared Radiation
Station instruments (SIRS). Heat fluxes were averaged over
the 14 of 24 stations using Energy Balance Bowen Ratio
systems (EBBR). Though the energy budget is not exactly
closed in the averaging, discrepancy is less then 20Wm�2 in
most months.
[68] The ARM network spans central and northern Okla-

homa and southern Kansas (see map in RL-N). It is instruc-
tive to consider, a priori, what one would expect to uncover in
the model surface energy budgets in this region based on the
annual water budget validation in section 3.1. This region is a
transition zone between quadrants SE and SW in Figure 3.
Yet over the bulk of this region, Figures 1a and 1b show that
warm-season green vegetation fraction is not sparse, ranging

Figure 12. For the Northwest RFC domain, time series of monthly domain-mean (a) snowmelt (mm/
month), (b) snow sublimation (mm/month), and (c) albedo in NLDAS for Noah (squares), VIC
(triangles), Mosaic (circles), and SAC (crosses) for the time period October 1996 to September 1999.
(Note different y axis range in top two panels.)
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from 0.4–0.8, and the mean annual precipitation exceeds
800 mm during the study period. Hence inspection of Figure
1 leads one to expect the mean surface water and energy
budget of the region to be more similar in nature to that of SE
then SW. Therefore, given that warm-season evaporation
dominates annual evaporation, the following expectation is
warranted: latent heat fluxes of the three SVATS over the
ARM network are likely to reflect the model evaporation
biases established over the SE quadrant in Figure 3b, namely,
that Mosaic, Noah, and VIC will manifest latent heat flux
averages that are substantially higher than observed, close to
observed but somewhat low, and substantially less than
observed, respectively. The validations below in Figures 13
and 14 confirm this expectation.
[69] Figure 13 gives a 21-month time series of monthly

mean observed versus modeled surface energy fluxes of the
NLDAS control runs, including net radiation (R), latent heat
flux (LE), sensible heat flux (H), and ground heat flux (G).
Figure 14 shows corresponding monthly mean diurnal cycles
for the two months of July and April 1999. Columns 1 and 2
of Figure 14 depict only control-run results, while columns 3
and 4 additionally show experiments described later. There is

rather good agreement between observed and simulated R in
all the models. Figure 14 shows some small model phase
errors in R in Noah and VIC, which are further diagnosed in
RL-N.
[70] Of more interest are the several situations of substan-

tial bias in simulated LE, H, and G, examined first in
Figure 13. As correctly anticipated above, in spring and
summer, Mosaic has a substantial high bias in LE and,
correspondingly, a substantial low bias in H. VIC has a
substantial low bias in LE and high bias in H throughout
most of the year (except spring), while Noah shows much
smaller bias in LE (slightly low in warm season) and H
(modestly high in warm season). The LE results here agree
with the sign and relative magnitude of the model evapora-
tion biases inferred in section 3.1. The counterpart to evap-
oration bias in section 3.1 was runoff bias of opposite sign.
Here the analog counterpart to LE bias is H bias of opposite
sign. The warm season LE and H biases of Mosaic, VIC, and
Noah are highlighted further in the July 1999 midday biases
in the diurnal cycles of Figure 14, again showingMosaic with
a significant positive bias in daytime LE and substantial
negative bias in daytimeH, thus very low Bowen ratio (BR =

Figure 13. Time series of monthly mean surface energy fluxes (W m�2) of (a) net radiation R, (b) latent
heat LE, (c) ground heat G, and (d) sensible heat H averaged over the ARM/CART sites during January
1998 to September 1999 from observations (bold line, no symbols) and control runs for Noah (squares),
VIC (triangles), and Mosaic (circles). The y axis range varies among panels. Positive flux is heat sink to
surface, except for G.
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H/LE, not shown), with VIC showing the opposite, and Noah
showing bias similar to VIC in sign but notably smaller in
magnitude. In April, Mosaic retains high LE bias and low H
bias, while VIC and Noah show little bias in LE or H.
[71] Figures 13 and 14 exhibit serious errors in ground

heat flux G in VIC (diurnal cycle), and especially in Mosaic
(both diurnal and annual cycles). Noah shows comparative-
ly little error in G, with virtually no bias in monthly mean
(Figure 13) and rather modest high bias in diurnal daytime
G from phase error. Mosaic has a large bias in monthly
mean G during most months (Figure 13) and most hours
(Figure 14), though the sign changes depending on the time
in the diurnal/annual cycle. VIC has large hourly biases in G
for most hours (Figure 14), but small monthly mean biases
(Figure 13). VIC’s daytime and nighttime biases in G are
rather symmetric and opposite in sign, so they nearly cancel
on a daily or monthly mean basis. Both Mosaic and VIC
show large daytime diurnal high bias and phase error in G in
both July and April of Figure 14, with daytime maximums
2–3 times larger than observed. Finally, the simultaneous
and very high daytime biases in G and LE in Mosaic during
April–July conspire to yield dramatically low sensible heat
flux (H) during these months. Mosaic monthly mean H
values during May–June are less than the annual winter
minimums in observed H.
[72] With NLDAS infrastructure now in place (section 2),

increasing attention is being given to model experiments.
The large biases in G in Mosaic and VIC prompted such
experiments, described in RL-N and presented here briefly.
The VIC and Noah models use a surface energy balance
approach for their surface radiative temperature, calculated
in VIC for a thin but nonvanishing skin layer that has
nontrivial heat storage, while Noah assumes an infinitesi-
mally thin skin layer with negligible (zero) heat storage. As
a test, VIC was re-executed by imposing zero heat storage
in its surface energy balance treatment. The formulation G
in Mosaic [Koster and Suarez, 1996] is based on the
standard force-restore or ‘‘slab’’ treatment. It assumes that
the ‘‘aggregate’’ surface/canopy medium of vegetation and
near-surface soil has nonnegligible heat-storage capacity,
specified by a heat capacity parameter (CH) that strongly
impacts G. In NLDAS, the CH value in Mosaic’s control
run (175,000 J m�2 K�1) was one calibrated in an
earlier, independent temperature data assimilation system
[Radakovich et al., 2001], and not the lower traditional CH

value (70,000 J m�2 K�1) specified by Koster and Suarez
[1996] and used in several Mosaic PILPS experiments. To
gage the impact of CH, a Mosaic test was executed in
NLDAS using the traditional lower value. Columns 3–4 of
Figure 14 give the results of these Mosaic and VIC tests.
(Aside: the Noah test in Figure 14 is presented later in section
4.2 and does not involve a change to surface heat capacity.)
In both Mosaic and VIC, model ground heat flux was
dramatically improved in the tests, both in July and
April, becoming competitive with that in Noah (though

Mosaic manifests an unusual anomaly in G during the early
morning). This improvement in simulated G holds through-
out the year in both models, as shown in RL-N.
[73] However, the improvement in G in the Mosaic and

VIC tests provided no improvement in the large LE biases in
Mosaic or VIC in Figure 14. Rather, the increase in daytime
available energy (R-G) gained by reducing daytime high bias
in G acted only to increase the sensible heat flux H, in both
models, which helped the lowH bias inMosaic andworsened
the highH bias in VIC. The nonresponsiveness of LE and the
high response in H strongly suggests that the canopy resist-
ance is substantially higher than the aerodynamic resistance
in both models in this vegetated region in the warm season.
Sensitivity tests of canopy resistance will be a focus in all
three SVAT models in NLDAS follow-on studies. As a start,
Mosaic tests (not shown) have been run in which the fixed
thicknesses of Mosaic’s soil layers (with fixed 40-cm root
zone) in Mosaic’s control run was replaced with the tradi-
tionalMosaic approach of letting soil layer thickness and root
depth vary tile by tile according to the tile’s vegetation type.
The impact on the warm season latent heat flux of Mosaic
was significant, but the improvement with respect to ARM
flux observations was mixed, being either negative or posi-
tive, depending on which warm season month was examined.
Thus further evaluation is underway.

4.2. In Situ Validation of Land Surface Skin
Temperature Over the SGP

[74] A chief goal of NLDAS is assimilation of satellite
data to improve soil moisture, and in turn, surface fluxes.
One keen interest is the assimilation of satellite-derived
LST. Positive impact from LST assimilation will be greatly
enhanced if errors in modeled LST stem primarily from
errors in the background model’s Bowen ratio that arise
from errors in model soil moisture states. Prospects for
success are much lower if LST errors arise from Bowen
ratio errors caused not by soil moisture, but by errors in the
model’s treatment of (1) vegetation cover and nonsoil
moisture attributes of its canopy conductance, (2) the
surface air layer and its aerodynamic conductance, (3) albe-
do and net solar insolation, or (4) ground heat flux, G, and
its impact on the available energy (R � G). Section 4.1
uncovered substantial errors in G. This section uncovers
significant impact on model LST from intermodel differ-
ences in aerodynamic conductance.
[75] At the top of the hour in NLDAS, all three LSMs

output an instantaneous, grid-cell mean, radiometric surface
temperature, referred to here as the land surface skin
temperature, LST. To obtain LST, each model applies the
Stephan-Boltzmann Law given by L = es(LST)4, in which
e is the surface emissivity (=1 in all three LSMs), s is the
Stephan-Boltzmann constant, LST is the skin temperature
(K), and L is the upwelling longwave radiation (W m�2). In
Noah, which is nontiled, the surface energy budget is solved
once for each grid cell to obtain LST and then L. In Mosaic

Figure 14. Monthly mean diurnal cycle of surface energy fluxes (W m�2) of net radiation R (row 1), latent heat LE
(row 2), sensible heat H (row 3) and ground heat G (row 4) for July (columns 1 and 3) and April (columns 2 and 4) of 1999.
Columns 1 and 2: observed (bold black line, no symbols) and control runs for Noah (open squares, blue), VIC (open
triangles, green), and Mosaic (open circles, red). Columns 3 and 4: same control runs as columns 1 and 2, plus one test each
for Noah (solid squares, blue), VIC (solid triangles, green), and Mosaic (solid circles, red). See text for test features. The
y axis range varies between rows. Positive flux is surface heat sink.
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and VIC, LST and L are obtained for each tile from a tile-
specific energy budget, then the tile-weighted mean L over
the grid cell is obtained, from which the grid-cell mean LST
is derived from L = es(LST)4. Finally, at each SIRS station,
the observed L is time averaged to the top of the hour, and
LST is obtained also from the latter relation using e = 1.
[76] Figure 15a shows the multistation average, monthly

mean diurnal cycle of SIRS-observed and LSM co-located
LST of the control runs, averaged over the SIRS sites, for
July 1999. (The Noah test in Figure 15a is described later.)
Mosaic has a midday cool bias in both months, as
expected, given its high bias in LE and G and low bias
in H in Figure 14 (columns 1 and 2). VIC and Noah have
midday warm biases in July, also as expected, given their
low LE and high H bias in July. While the sign of the
models’ midday LST bias in Figure 15a is as expected, the
comparative magnitude of the bias between the models is
perplexing at first, given the LE and H fluxes in Figure 14.
Specifically, the VIC midday (19–20 UTC) warm bias in
July (about +2 K) is about half as large as Noah (about
+4 K), despite VIC’s Bowen ratio (BR = 2.91) at this time
being much higher than Noah’s (BR = 0.70) and the
observed (BR = 0.38). Thus VIC does not yield the largest
midday warm bias, despite having by far the largest high
bias in Bowen ratio.
[77] The daytime high bias in G in VIC’s control run does

not answer the paradox. Figure 15b shows the LST of the
Mosaic and VIC tests of lower heat capacity (and the later
Noah test) alongside control runs. Figure 15b reveals that
the lower heat capacity (and its lower midday ground heat
flux) in the VIC test does raise VIC’s midday LST as
physically expected, but only slightly, leaving it still well
below the warmer LST of Noah. Figure 15b shows that the
lower heat capacity test in Mosaic does yield a nontrivial
increase in midday LST, reducing Mosaic’s July midday
cool bias by roughly half (though introducing a nighttime
cool bias, because of the reduced nighttime release of stored
ground heat diminished by the reduced heat capacity).
[78] The chief explanation of the paradox of VIC versus

Noah midday summer LST lies in significant intermodel

differences in aerodynamic conductance. In the three mod-
els, the sensible heat flux H (W m�2) is computed from the
typical bulk transfer formulation given by

H ¼ �r cp ChjV j Ta � LSTð Þ ð2Þ

where r is the air density (kg m�3), cp the heat capacity for air
(1004.5 J kg�1 K�1), jVj the wind speed (m s�1), Ta the air
temperature (K), and Ch the surface turbulent exchange
coefficient for heat. The product ChjVj is the aerodynamic
conductance (m s�1), and its reciprocal is the aerodynamic
resistance. Ch manifests a strong diurnal cycle with larger
values during daytime heating. In (2), positiveHmeans a heat
source to the atmosphere and heat sink to the land surface for
daytime LST exceeding Ta. The models get common surface
forcing values of r, jVj, and Ta. Only Ch and LST in (2) are
computed uniquely in each model. Therefore Noah can have
higher midday values of LST than VIC simultaneously with
lower midday values of H than VIC if and only if Noah has
lower values of Ch. Figure 16 depicts the July 1998 monthly
mean diurnal cycle of Ch for each model, averaged across the
14 EBBR stations. The line with solid squares in Figure 16 is
a Noah test, discussed later, using a modified roughness
length for heat. Indeed, the Noah control run has substantially
smaller daytime values of aerodynamic conductance, and
hence Ch, than Mosaic, and far smaller values than VIC.
Follow-on research will seek to derive Ch explicitly from the
EBBR observations.
[79] The smaller Ch values for Noah inferred from

Figure 16 motivated a sensitivity run. The treatment of Ch

in Noah was the subject of the NCEP study by F. Chen et al.
[1997], which examined the impact on Ch of the chosen
formulation for the roughness length for heat, z0t. From a
suite of tests, Chen et al. recommended the z0t formulation of
Zilitinkevich [1995], which is based on the dynamic rough-
ness Reynolds number and includes an adjustable parameter,
denoted here Cz, in the range 0–1. The Noah control run in
NLDAS uses Cz = 0.2. Decreasing Cz increases z0t, which
increases Ch (thus increasing aerodynamic conductance) and
the land/atmosphere coupling, thereby decreasing daytime

Figure 15. Monthly mean diurnal cycle of LST (K) averaged over all ARM/CART SIRS sites for July
1999 from observations (solid line, no symbols), control runs (open symbols) and test runs (solid symbols)
for Noah (squares), VIC (triangles), and Mosaic (circles). (a) All three control runs plus Noah test of
aerodynamic conductance. (b) As in Figure 15a, plus Mosaic and VIC tests of lower surface heat capacity.
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LST. This was investigated by a Noah sensitivity test,
depicted in Figure 16, which used Cz = 0.05 in place of
Cz = 0.2.
[80] The July monthly mean, midday aerodynamic con-

ductance values in the Noah test in Figure 16 exceed the
control values by nearly 70%. The surface fluxes and LST of
this Noah test are depicted in Figure 14 (right columns) and
Figure 15, respectively. Figure 15 shows a pleasing 2–3 K
decrease in Noah’s July peak daytime LST, cutting the
midday warm bias by about half. Inspection of Noah test
versus control surface fluxes in Figure 14 reveals small
midday changes in R (increase) and G (decrease) of about
10–20 W m�2 each, as expected from the lower midday
LST. This slightly improved the already small biases in Noah
R and G and yielded a roughly 20–40 W m�2 increase in
midday ‘‘available energy’’ (R – G) for sensible and latent
heat fluxes. Once again however, very similar to the earlier
response in Mosaic and VIC to increases in (R – G), the LE
change in the Noah test in both July and April was negligible,
especially so in July, with the R – G increase in July once
again being realized almost entirely by an increase in H.
[81] The lack of change in LE in July strongly indicates

that the evaporative resistances to canopy transpiration
(canopy resistance) and bare soil evaporation are much
larger than, and thus dominant over, the aerodynamic
resistance in influencing LE in this situation. Again,
Figure 1a shows that the vegetation cover over the bulk
of the ARM-SGP region in July is of order 40–80%. The
analysis of Vogel et al. [1995] shows that even over an
irrigated midlatitude wheat field in June, the LE change
from a 20% change in aerodynamic resistance yielded only
a 2% change in LE; that is, canopy resistances over non-
sparse vegetation in midlatitude summer are typically much
larger than, and dominant over, aerodynamic resistances,
even when the soil is wet and contributing to a rise in
canopy conductance. These results strongly suggest that the

remaining July bias of +2 K in the Noah test in Figure 15 is
caused by an overly high canopy resistance. Moreover, the
aerodynamic conductance of VIC in Figure 16 may well be
too high, thus acting to preclude a much higher midday
warm bias in LST that would more properly reflect VIC’s
high bias in Bowen ratio (H/LE) in July in Figure 14.
Sensitivity tests of aerodynamic resistance and canopy
resistance will be one focus in follow-on NLDAS studies.

4.3. Satellite-Based Validation of Land Surface
Skin Temperature

[82] The GOES LST fields are produced by the GCIP
partnership of NESDIS and UMD in GOES land surface
products. In this section, after validating GOES LST against
ARM LST as a benchmark, we use GOES LST to assess
NLDASLSTover north central CONUS. The study is limited
to nonmountainous regions, to avoid shadowing effects on
the GOES LST retrievals. The retrievals are obtained from
GOES-East (GOES-8) and provide fields of hourly LST at
0.5� spatial resolution in cloud-free conditions during day-
time. The LST retrieval provides a single aggregate LST for
each 0.5� target scene. We bilinearly interpolate the LST
fields to the 1/8� NLDAS grid. The GOES LST is retrieved
only at 0.5� targets deemed 100% cloud-free. Cloud detection
is based on that of earlier GOES insolation-retrieval studies
such as Tarpley [1979], as refined in later studies such as PT-
N. Despite the 100% cloud-free criteria, clouds may still be
present in the scene owing to (1) optically thin cirrus,
(2) subresolution or ‘‘subpixel’’ cloud (fair weather cumu-
lus), and (3) difficulty of cloud detection over snow cover.
[83] GOES LST is retrieved by the so-called ‘‘split-

window’’ technique of Wu et al. [1999], in which LST is
obtained from a linear regression of the GOES brightness
temperatures in the 11 mm and 12 mm bands. The regression
coefficients were derived assuming a surface emissivity of
e = 1. This assumption is valid over land surfaces of
nonsparse vegetation or snowpack, but less valid over rather
bare soils (wherein e = 0.91–0.97). Uncertainty from
emissivity issues is avoided in this study by staying over
nonsparse vegetation and by our universal application of
e = 1 in (1) the NLDAS models, (2) the in situ ARM/SIRS
sites, and (3) the GOES retrievals.
[84] We assess GOES LST here against the in situ LST

observations of the 22 SIRS sites. We limit the assessment
to nonwinter, as our future assimilation of GOES LST will
generally be confined to the warm season of stronger
coupling between LST and soil moisture. Figure 17 presents
the monthly and multistation mean of the daytime hourly
diurnal cycle of GOES LST and ARM LST for April and
July in 1998 and 1999. The data samples for Figure 17 (and
Figure 18) represent only locations and times when the
GOES cloud screening detected zero cloud. In Figure 17,
the GOES LST demonstrates a remarkable ability to match
the station-observed mean diurnal cycle, though it shows a
small cool bias (likely from undetected clouds) of order 0–
1.5 K before 18 UTC (local noon) and 1–2.5 K thereafter.
The smaller cool bias in the morning is likely from less
prevalent cloud cover then (e.g., subpixel cumulus). In
future data assimilation, one may mitigate this cool bias
by assimilating the 3-hour rise in GOES LST before noon
(about 15–18 UTC here), rather than LST itself. Tarpley
[1994] applied the morning rise of GOES LST to infer

Figure 16. Monthly mean diurnal cycle of aerodynamic
conductance (ms�1) averaged over all ARM/CART SIRS
sites for July 1998 for the control runs of Noah (open
squares), VIC (open triangles), and Mosaic (open circles)
and the Noah test (solid squares) using a modified
formulation for roughness length for heat.
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monthly mean surface-moisture availability. Like the ARM
LST, the 18 UTC GOES LST in Figure 17 is warmer (3–
4 K) and its preceding 3-hour morning rise is larger (by
about 1K) in July 1998 than July 1999. This interannual
LST variability reflects the drought episode over the ARM
region in July 1998, thus conditions were warmer and drier
than in 1999 (and likely less cloudy, hence the smaller
GOES LST afternoon cool bias in July 1998 versus 1999).
[85] Our goal is to use GOES LST retrievals to assess

NLDAS LST over large regions that lack in situ observa-
tions of LST or surface fluxes. As a benchmark for that
goal, Figure 18 illustrates, at the SIRS sites during July
and April 1999 for 18 UTC, a pleasing similarity between
GOES-based and ARM-based site-by-site match-ups with
model LST. Moreover, all three models show good skill in
either the GOES or ARM validation setting by yielding
rather tight clusters close to the diagonal (and hence high
correlations, shown later). In each month, the separate
GOES and ARM match-ups use the same sample of
instances where the GOES deemed the site to be cloud
free. In Figure 18, the sample size of 198 in April (out of
a possible 660 = 30 days x 22 stations) is notably smaller
than that of 334 (out of 682) in July, as the GOES cloud
screening detects cloud more often in the spring. One
would expect this from the natural trend of decreasing
cloud cover from spring to summer and the greater
likelihood in July of shallow, subresolvable cumulus.
Indeed in July, the GOES LST in Figure 18 manifests a
small (but nonnegligible) leftward-pointing ‘‘cold tail’’ of
outlier values that are not present in either the ARM
observations or the models and thus likely represent GOES
cloud detection failures. Similarly, the ARM observations

in April 1999 show several warm outlier values (near
315 K), not present in either the GOES or model LST,
likely representing bad ARM station observations.
[86] Most importantly, as desired, the GOES versus

model match-ups yield the same sense of model midday
LST bias as we derived from ARM data alone in the prior
section. Table 5 compares the GOES-based versus ARM-
based model bias, error standard deviation and correlation
obtained from the Figure 18 match-up and listed top-down
from warmest to coldest model bias. The table shows good
agreement between the sign and magnitude of the GOES-
based and ARM-based model bias. The GOES-based
model bias is order 1 K warmer than the ARM-based
model bias, owing to the aforementioned GOES LST cool
bias of order 1 K versus ARM LST. The GOES-based
model LST bias essentially reproduced the ARM-based
model bias, both in (1) the absolute sense of correct sign
and reasonably good magnitude and (2) the relative sense
between models and between spring and summer season.
Specifically, in agreement with the ARM-based LSM
signatures of control-run midday LST bias presented for
the entire annual cycle in RL-N, the GOES-based model
bias results in Figure 18 show that in summer (1) Noah
has the largest warm bias, which becomes much smaller in
spring, (2) VIC has a smaller and modest warm bias,
which becomes virtually zero in spring, and (3) Mosaic
has a modest cool bias, which becomes larger in spring.
Similarly, the GOES-based and ARM-based standard devi-
ations in Table 5 from Figure 18 are in reasonable
agreement, both in the range of 3–4 K. Finally, the
GOES-based correlations with model LST in Table 5 are
very encouraging, ranging between 0.66 and 0.78, with

Figure 17. Monthly mean diurnal cycle of LST (K) averaged over all ARM/CART SIRS sites for (left)
July and (right) April during (a and b) 1999 and (c and d) 1998 from SIRS observations (solid lines) and
GOES-East retrieval (dashed lines).
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five of six values of 0.70 or more, all without any
screening of the GOES cold LST outliers. The correlations
of model LST with GOES LST are consistently higher
than the ARM-based correlations, likely from better match
of the spatial scale of the GOES footprint and the NLDAS
grid-cell size, versus the point scale of ARM values.
[87] Encouraged by Figures 17 and 18, we evaluated

model LST against GOES LST in Figure 19 across a large
region of the northern Midwest, bounded by latitudes
39�N and 53�N and longitudes 82�W and 98�W (strad-
dling 90�W longitude, representing strict local noon at
18 UTC). This region is chosen for its (1) spatial separa-
tion from SGP, (2) nonsparse green vegetation in summer
(Figure 1a), and (3) vivid model differences in evaporation
in Figure 2. GOES versus model LST over this region
at 18 UTC for July and April 1999 are presented in
Figure 19. The ‘‘screened’’ results therein are described
later. Sample counts in Figure 19 are 70,000–100,000 (2–
3 orders larger than Figure 18, owing to the larger region).
In Figure 19, we binned the data into 1 K intervals (for
display only, kept full precision in statistics) and used
colors to denote 4 orders of data counts: 0–10 (red), 10–
99 (yellow), 100–999 (light green), and 1000–9999 (dark
green). The green shades depict the vast majority of the
sample and they manifest well-behaved, elongated clusters
lying near and parallel to the diagonal, as desired.
[88] Yet the red and yellow ‘‘tails’’ of cold GOES LST

in the unscreened panels of Figure 19 depict a nontrivial
number of points that likely represent cloud detection
failures, similar to the cold tails in the July GOES panels
of Figure 18. Hence we used model simulated LST to
screen the cold GOES LST tails in columns 2 and 4 in
Figure 19. Specifically, we rejected a GOES LST if model-
minus-GOES LST exceeded the unscreened, sample-wide
model-minus-GOES LST bias by more than two times the
model-minus-GOES LST standard deviation of the un-
screened sample. Figure 19 shows that this screening
preserves the high-density core region of the original data
cluster, while eliminating the cold tails. The data counts of
the three panels in any column of Figure 19 are identical
in the unscreened case, but differ slightly (less than 1.2%)
in the screened case, as the screening for each panel uses
the given model’s LST simulation. Last, in Figure 19, we
point out the ‘‘lower lobe’’ of cold model LST in the April
results of Mosaic and VIC. The lower edge of the lobe
ends at freezing, suggesting that Mosaic and VIC have

sustained remnants of melting snowpack too late into the
spring in this region.
[89] Table 6 shows the GOES-based model LST bias, error

standard deviation and correlation obtained from Figure 19.
The screened model-bias results are warmer, as expected, but
by a modest 0.5 to 1.0 K. More notably, the standard
deviation of the model errors are significantly less by around
1.0–1.5 K and the already high correlations increase by
around 0.1 to 0.76 or higher for almost all entries. It is
revealing to compare the unscreened results from the north
central CONUS in Table 6 with the SGP results in Table 5 (all
unscreened). Table 6 preserves the relative nature and order
noted in the biases in Table 5; namely, Noah is warmest and
Mosaic is coolest in July, with Noah notably less warm and
Mosaic notably more cool in April, while VIC falls in-
between in both months. Yet the unscreened biases in Table
6 are consistently 1–3 K warmer than those in Table 5,
reflecting that either the models are warmer in this region
relative to GOES LST than over the ARM SGP region, or the
GOES LST has a larger cool bias (of order 1–3 K) than the
GOES cool bias over the ARM region. We suspect the latter
owing to more cloud contamination in this more humid
region.
[90] We look forward to use of GOES LST in future

assimilation studies and LSM assessments. The validation
and utility of GOES LST in mountainous regions awaits
future study. Efforts continue at UMD and NESDIS to
improve cloud detection and spatial resolution in GOES LST.

5. Summary and Conclusions

[91] A multi-institution partnership under the GCIP pro-
gram has developed and evaluated the backbone for a North
American Land Data Assimilation System (NLDAS). This
paper is the overview of nine NLDAS papers (Table 2), which
appear together in the online HTML version of the GCIP3
special section of Journal of Geophysical Research. These
partners assembled a wide set of GCIP-sponsored products
and other data sources into robust forcing data sets and
multiscale validation databases. Validation applied surface
stations measuring energy fluxes, surface meteorology, soil
moisture and temperature, and mountain snowpack, plus
daily streamflow observations and satellite-derived land
surface temperature (LST) and snow cover.
[92] NLDAS features nonmodel sources of precipitation

and solar insolation and the four LSMs of Noah, VIC,

Figure 18. Comparison of model (y axis) versus observed (x axis) LST (K) at 18 UTC over all ARM/CART SIRS sites for
July (columns 1 and 2) and April (columns 3 and 4) 1999 for (top) Mosaic, (middle) Noah, and (bottom) VIC versus SIRS
observations (columns 1 and 3) and GOES-East observations (columns 2 and 4). Match-up point included only if GOES
LST is available (cloud free), yielding sample sizes of 334 in columns 1 and 2 and 198 in columns 3 and 4.

Table 5. Bias, Error Standard Deviation, and Correlation of Model LST Versus Both ARM LST and

Unscreened GOES LST Over the SGP From Figure 18a

Model

July 1999 (GOES/ARM) April 1999 (GOES/ARM)

Bias, K STDE, K Correlation Bias, K STDE, K Correlation

Noah +6.5/+5.4 3.8/3.5 0.70/0.64 +2.4/+1.7 2.9/4.1 0.78/0.61
VIC +2.8/+1.7 3.4/3.3 0.76/0.68 +0.3/�0.5 3.9/4.3 0.66/0.57
Mosaic �1.2/�2.3 3.7/3.0 0.70/0.72 �4.7/�5.4 3.0/4.0 0.77/0.62

aSTDE, error standard deviation.
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Mosaic, and Sacramento (SAC) executing in parallel on a
1/8� CONUS domain to provide land-state background
fields for data assimilation experiments. The infrastructure
of NLDAS includes streamflow routing and provides both
real-time and retrospective execution to support both oper-
ations and research. The hourly NLDAS forcing, now
spanning seven years from October 1996 to present (at time
of writing), represents an important NLDAS by-product.
[93] The NLDAS thrust here was the forerunner to recent

companion initiatives in 50 + year retrospective executions
of VIC on the NLDAS grid by Maurer et al. [2002] and
Noah on the NLDAS grid by H. van den Dool of NCEP
(private communication, 2003). We encourage researchers
to compare our NLDAS water and energy budgets here
with (1) these 50 + year retrospectives, (2) operational
global and regional coupled 4DDA, and (3) global and
regional reanalysis.
[94] A central distinction between the above suites is the

source and bias in the surface forcing. In NLDAS here, the
forcing is anchored by gage-based daily precipitation analy-
ses (with hourly disaggregation using radar-derived precip-
itation) and hourly surface insolation derived from GOES
satellites. All remaining forcing is from NCEP’s mesoscale
4DDA system, known as EDAS. NLDAS surface forcing
compared well against Mesonet observations over the SGP.
In tests that replaced NLDAS forcing with local-station
forcing, the test versus control differences in states and
fluxes were pleasingly small. Yet we continue thrusts to
further improve the forcing. The GOES-based solar insola-
tion shows some high bias at low sun angles and over
snowpack, though less bias then the fallback insolation from
EDAS. At mountain SNOTEL sites in western CONUS,
NLDAS precipitation has a nearly 50% low bias. Thus
NLDAS partners have implemented a PRISM-based tech-
nique [Daly et al., 1994] into the real-time forcing as of
1 February 2002 (with plans to reproduce the retrospective
forcing using PRISM).
[95] Observed precipitation and streamflow applied to

the annual water budget provided observation-based esti-
mates of evaporation and runoff over large regions. This
revealed substantial biases and intermodel differences in
evaporation. The ARM-observed surface energy budget of
the SGP confirmed the same evaporation bias anticipated
from the annual water budget analysis. The three SVAT-
type models, though they treat vegetation cover explicitly,

nevertheless yield strikingly different warm season evap-
oration over vegetation. This canopy conductance dispar-
ity among the models is a foremost issue. Moreover,
evapotranspiration bias can run counter to intuition.
Though Mosaic has the shallowest root zone in NLDAS
of the three SVATs, it has the highest warm season
evaporation rates and hence highest warm season storage
change in soil moisture, as it allows vigorous upward
diffusion of water from the subroot zone.
[96] Aerodynamic conductance (ChjVj) was a second

area of large disparity. Overly large or small midday Ch

values were found to substantially distort the expected
correlation between daytime LST bias and Bowen ratio
bias. Such distortion has crucial implications for the
prospects of successful assimilation of satellite LST. In
summer of the SGP, though Noah had a small high bias
in Bowen ratio while VIC had a large high bias, Noah
had the largest midday LST warm bias and VIC the
smallest. The cause was the substantially lower Ch values
in Noah versus VIC.
[97] Soil moisture storage emerged as a third area of large

disparity, similar to previous PILPS studies. The forward
radiative transfer models that are crucial to modern-era
assimilation of satellite data are sensitive to absolute mois-
ture states. Thus, while one can simulate evaporation and
runoff well from good simulation of temporal change in soil
moisture, land assimilation of satellite data brings a more
stringent need for good absolute states of soil moisture.
[98] NLDAS simulations of snowpack water equivalent

(SWE) at mountain SNOTEL sites showed a substantial low
bias in all four LSMs, with an attendant low bias in runoff,
owing to the cited high insolation bias over snow and low
precipitation bias in mountains in NLDAS. Yet there was
still notable disparity across the models in snow cover
fraction, snow albedo and timing of spring snowmelt. Noah
exhibited particularly low snow albedo, which conspired
with the high insolation bias in the forcing to yield a very
early bias in Noah seasonal snowmelt. The VIC and SAC
models yielded the smallest biases in simulated SWE and
regional snow cover, with VIC yielding the best snowmelt
timing. The elevation tiling unique to VIC in NLDAS
provides an advantage in snow state modeling. SAC snow-
pack simulations also performed well, as SAC’s simple
temperature index-based snow model bypasses surface
energy balance and snow albedo, and thus avoids the

Figure 19. Comparison of model ( y axis) versus GOES-East (x axis) LST (K) at 18 UTC over the northern Midwest
during July (columns 1 and 2) and April (columns 3 and 4) 1999 for (top) Mosaic, (middle) Noah, and (bottom) VIC
versus unscreened (columns 1 and 3) and screened (columns 2 and 4) GOES LST. See text for color scale definition and
latitude/longitude range of region.

Table 6. Bias, Error Standard Deviation, and Correlation of Model LST Versus Screened and Unscreened GOES LST for North Central

CONUS From Figure 19a

Model

July 1999 (GOES: Unscreened/Screened) April 1999 (GOES: Unscreened/Screened)

Bias, K STDE, K Correlation Bias, K STDE, K Correlation

Noah +9.3/+8.8 3.6/2.6 0.73/0.82 +4.5/+3.7 6.5/4.9 0.60/0.63
VIC +3.9/+3.3 4.2/3.0 0.64/0.76 �0.4/�0.7 6.9/5.3 0.65/0.76
Mosaic +1.6/+1.1 3.7/2.4 0.69/0.82 �3.9/�4.7 5.8/3.7 0.73/0.81

aSTDE, error standard deviation.
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positive feedback loops that can plague snowpack simula-
tions in surface energy balance models [Slater et al., 2001;
Bowling et al., 2003].
[99] We emphasize that the Mosaic, VIC, and SAC LSM

configurations in NLDAS differed in important aspects
from their traditional configurations. For example, Mosaic
executed with fixed soil-layer thicknesses and root depth,
rather then vegetation-dependent spatial variability. VIC
executed with one-hour rather than its typical three-hour
time steps and with hourly rather than uniform daily
disaggregation of precipitation. Moreover, the SAC runs,
by design, were the first executions over a continental scale
of the newly developed, semi-distributed version of SAC,
with a priori noncalibrated parameters. Thus NLDAS exe-
cution of SAC provided an essential benchmark for future
CONUS-wide SAC execution in semi-distributed mode.
[100] Indeed, all the model intercomparisons thus far in

NLDAS must be viewed as incomplete and providing only a
benchmark. The models were not calibrated to NLDAS
configuration (e.g., spatial resolution, model time step,
given fields of surface characteristics, temporal character
of precipitation disaggregation). As in PILPS, our purpose
is not to rank the models, but rather to build an enduring test
bed via the NLDAS infrastructure for development of
objective calibration approaches on very large continental
scales that far exceed and complement the regional scales
applied recently in PILPS [Wood et al., 1998; Bowling et al.,
2003; Boone et al., 2004].
[101] Last, this paper concluded with assessments and

application of GOES-based LST at 1/2� hourly resolution.
The diurnal cycle of GOES LST validated well against SGP
flux-stations. Validation of model LST by means of GOES
LST over the SGP gave validation scores similar to those
from ground-based ARM observations. By using GOES
LST to validate model LST over the northern Midwest, we
found model LST biases consistent with those over the SGP.
Hence GOES LST offers a powerful large-scale LSM
validation tool.
[102] We are now assembling the tools to perform actual

land data assimilation experiments. For this purpose, we
will be adding one or two forward radiative transfer models
into our common NLDAS infrastructure. Additionally, we
are pursuing development of adjoint models and ensemble
Kalman filter approaches. Finally, the NLDAS initiative
here represented a pathfinder for a companion extension to a
Global Land Data Assimilation System (GLDAS) by the
NASA and NCEP partners of NLDAS. The GLDAS is
described by Rodell et al. [2003] and is presently being
ported from NASA to NCEP. With NLDAS and GLDAS
together, NCEP and NASA and partners are striving to
provide land state initial conditions for (1) land-memory
predictability studies and (2) operational weather and cli-
mate model forecasts on daily to seasonal timescales.

Notation

4DDA four-dimensional data assimilation
ARM/CART Atmospheric Radiation Measurement/Cloud

and Radiation Testbed (DOE)
ARS FAO Agricultural Research Service Food and

Agriculture Organization

AVHRR Advanced Very High Resolution Radiometer
on NOAA polar satellites

CAPE convective available potential energy
CONUS continental United States

CPC Climate Prediction Center
CL-N NLDAS paper by Cosgrove et al. [2003a]
CM-N NLDAS paper by Cosgrove et al. [2003b]
DMIP Distributed Model Intercomparison Project
DOE Department of Energy

EDAS NCEP Eta-model-based 4-D Data Assimila-
tion System

EMC Environmental Modeling Center of NCEP
EBBR energy balance Bowen ratio flux stations in

ARM/CART network
EF extended facility flux stations in ARM/

CART network
GAPP GEWEX America Prediction Project
GCIP GEWEX Continental-Scale International

Project
GEWEX Global Energy and Water Cycle Experiment
GOES Geosynchronous Operational Environmental

Satellite (USA)
GRIB Gridded Binary data file format (WMO

standard)
GSFC Goddard Space Flight Center (NASA)
GSWP Global Soil Wetness Project

GTOPO30 Global (30 arc seconds) digital elevation
database

GVF green vegetation-cover fraction
IMS Interactive MultiSensor Snow (NESDIS)
LAI leaf area index

LDAS land data assimilation system
LM-N NLDAS paper by Lohmann et al. [2004]
LR-N NLDAS paper by Luo et al. [2003]
LSM land surface model
LST land surface skin temperature

NASA National Aeronautics and Space Adminis-
tration

NCAR National Center for Atmospheric Research
NCDC National Climatic Data Center
NCEP National Centers for Environmental

Prediction
NDVI normalized difference vegetation index

NESDIS National Environmental Satellite, Data, and
Information Service

NLDAS North American LDAS
NOAA National Oceanic and Atmospheric Admin-

istration
NRCS National Resources Conservation Service

(USDA)
NWIS National Water Information System
NWP numerical weather prediction
NWS National Weather Service (NOAA)
OGP Office of Global Programs (NOAA)
OHD Office of Hydrologic Development (NWS,

formerly Office of Hydrology)
ORA Office of Research and Applications of

NESDIS
PAR photosynthetically active radiation

PILPS Project for Intercomparison of Land-Surface
Parameterization Schemes
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PRISM Parameter-Elevation Regressions on Inde-
pendent Slopes Model

PS-N NLDAS paper by Pan et al. [2003]
PT-N NLDAS paper by Pinker et al. [2003]
RFC River Forecast Center (NWS)
RL-N NLDAS paper by Robock et al. [2003]
SAC Sacramento model (Sacramento Soil Water

Accounting Model)
SCE snow cover extent
SD-N NLDAS paper by Schaake et al. [2004]
SGP Southern Great Plains (field program)
SIRS Solar and Infrared Radiation Station

SNOTEL Snowpack Telemetry network of the NRSC
SNOW-17 Snow accumulation and ablation model

(NWS/OHD)
SP-N NLDAS paper by Sheffield et al. [2003]
SST sea surface temperature

STATSGO State Soil Geographic Database
SURFRAD Surface Radiation Budget Network (NOAA/

OAR-ARL, OGP)
SVAT Surface-Vegetation-Atmosphere Transfer

(model)
SWE snowpack water equivalent

TOGA Tropical Ocean Global Atmosphere
UMD University of Maryland
USGS U.S. Geological Survey
VIC Variable Infiltration Capacity LSM

WMO World Meteorological Organization
WSR-88D Weather Service Radar-Doppler
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