FV3-GEFS/Sub-seasonal - Reforecast update

Yuejian Zhu

Environmental Modeling Center NCEP/NWS/NOAA

Status Update: August 16th 2018

Major Milestones

- **Q2FY18** Prepare FV3-GFS for reanalysis project: Develop and test low-resolution version of FV3-GFS and FV3-GDAS, and configure the model for reanalysis project.
- **Q4FY18** Determine ensemble configuration for FV3-GEFS: Configure for optimum ensemble size (# members), resolution, physics, and coupling to Land and Wave models using NEMS/NUOPC mediator; conduct testing for quality assurance and computational efficiency.
- Q3FY19 Produce ~20-year reanalysis datasets: Mainly ESRL/PSD activity. Determine configuration of the reanalysis system; develop observational database for reanalysis; prepare observational inputs; and produce reanalysis suitable for reforecasts and calibration.
- Q4FY19 Produce ~30-year reforecast datasets for FV3-GEFS: Finalize ensemble configuration and produce reforecasts consistent with the reanalysis data; extend the reforecast length to 35 days.
- **Q4FY19** Produce 2-3 year retrospective forecast for FV3-GEFS: Use the same configuration as real-time, and retrospective FV3GFS/EnKF analysis.
- Q2FY20 Transition FV3-GEFS into operations: Conduct pre-implementation T&E; transition the system for operational implementation. Replace GEFSv11 and <u>stop</u> <u>GEFSv10 (legacy run to support NWC) after we finish 30-y reforecast???</u>

FV3GEFS Implementation Plan

Implementation Plan for FV3-GEFS (FY2017-2020)

June 2018

FV3GEFS	FY17			FY18					FY19				FY20					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q	4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	% complete
FV3GEFS Reanalysis Development			Develo FV3GFS it 1	p and tes with FV3 for reana	st low re 3GDAS, c alysis (ES	solution onfigure RL)												100%
FV3GEFS Ensemble Configuration		Configu physics,	re FV3GF , couplinန foreca	S ensem g to ocea sts to we	ible reso in and se eeks 3&4	lution, m a-ice, and (EMC)	embers, d extend											95%
FV3GEFS Reanalysis Production							Produ เ	ice ~ using	20-y FV3	ear rean GFS/GD	alysis da AS (ESRL	tasets .)						15%
FV3GEFS Reforecasts								Fi pro 35	naliz Iuce Iays	e FV3GE 30-year) for calil H	FS V12 c reforeca bration a IEFS/OW	configura asts (exte and valid /P	tion & ended to ation of					0%
FV3GEFS V12 Evaluation											Evalua foreca out f	te FV3GI st perfor to weeks	FS V12 mance 3&4					0%
FV3GEFS V12 mplementation														FV3GEF	S V12 in ation			0%
Advancement of FV3GEFS							То	day	/					Furt FV3GEF ense	her adva S (GFS/G emble ba mode	incemen GEFS unif ased cou eling)	ts of ication, pled	
	* Prop Q2FY19 FV3GF	osed cl 9 FV3G FS Refe	nanges FS (ESR precasts	for GEF L); 2) R extend	S V12: eforeca	1) Prod asts will 35 days	uce FV3 be bas to inclu	B bas ed c ude	sed on F	reanal V3GEFS	ysis in I S config L guida	FY18 us gured w nce.	ing the vith 2-T	same c ier SST	onfigui approa	ration a ich; and	is I 3)	

FV3-GEFS reforecast configuration

- Model configurations
 - The same as real-time GEFSv12 (C384L64)
- Period of retrospective
 - 30 years (1989 2018)
 - 1989 1999 (11 years) CFS analysis
 - 2000 2018 (19 years) Hybrid FV3 GFS/EnKF reanalysis (ESRL/PSD)
 - Caution Initial analyses and perturbations of 30 years are in-consistent
- Frequency and ensemble size
 - Configuration: 30 years, initialized at 00UTC for every day; runs 5 members out to 16 days, except for 11 members out to 35 days every 7 days.
 - Cost ~ 715 nodes (Cray) for 9 months (7/24) === project to 1 year to finish (consider 25% extra time)
- Output data
 - Format GRIB2
 - Frequency and resolution
 - 3 hourly out to 10 days at 0.25 degree resolution
 - 6 hourly beyond 10 days at 0.5 degree resolution
 - Will produce 12 new isentropic variables (requested by CPC)
 - Save all variables at above resolution on HPSS for 5-year
 - Save selected variables on disk for CPC, MDL and NWC (depends on HPCRAC approving?)
 - Currently, combined all three centers --- about 77 variables
 - Will produce 6-hourly and 3-hourly precipitation data alternately as current operation
 - Will provide relative humidity instead of specific humidity
 - ESRL/PSD will convert GRIB format data to NetCDF for public access
 - Note: size of C384 master file for one forecast lead-time at 0.25 degree = 345mb

Upper Air Variables (selected #1) – 0.5degree

	U	V	т	RH	Height	VV	O3MR
10hPa	C,E	C,E	C,E		C,E		С
50hPa	C,E	C,E	C,E		E		С
100hPa	Е	Е	Е		Е		С
200hPa	C,M,E	C,M,E	C,M,E	C,M	C,M,E		
250hPa	M,E	M,E	M,E	М	M,E		
500hPa	C,M,E	C,M,E	C,M,E	C,M	C,M,E		
700hPa	C,M,E	C,M,E	C,M,E	C,M	C,M,E		
850hPa	C,M,E	C,M,E	C,M,E	C,M	M,E	Е	
925hPa	M,E	M,E	M,E	М	M,E		
1000hPa	M,E	M,E	M,E	М	M,E		
0.996 (hybrid)	С	С	С	С			

Total: 55 variables to support CPC, MDL and EMC (NAEFS), but not for MDL's BMOS

C – CPC; M – MDL; N – NWC; E - EMC (the same for next slide)

Surface and other variables (Selected #2) – 0.25degree

Variables	Requested	total	Notes
PMSL, Surface Pressure	C,M,N,E	2	
T2m, Tmax, Tmin	C,M,N,E	3	Tmax and Tmin for 6-hr
2m RH	M,N,E	1	Could convert to Td or q
U10m, V10m	C,N,E	2	
QPF	C,M,N,E	1	3-hr accumulation
Precipitation Types	C,M,E	4	Rain, Freezing rain, Ice Pellets, Snow
PWAT	М	1	
CAPE	C,M,E	1	
Helicity at 0-3000m	С	1	
CIN	C,M,E	1	
Total sky cover (TCDC)	M,E	1	
Snow water equivalent	С	1	
OLR	C,E	1	
SDLR	N	1	
SDSR	N	1	

Total 22 variables, the BMOS variables are not counted in this list

Sample data for GEFSv12 reforecast – contributed by Hong Guan

All (CPC, MDL and NWC/OWP);

As we promised before, we will send out a sample data for selected variables to allow all our stakeholders to test/valid. Dr. Hong Guan is our contact (cced), please let us know if there is any question. We'd like to have your confirmation before next reanalysis/reforecast meeting (current schedule - July 17 2018)

We have saved 74 variables (see attached slides - sample for you to verify):

1. Five ensemble members include ensemble control

2. 0.25 degree for 0-10 days every 3 hours

3. 0.5 degree for 10-35 days every 6 hours.

4. We have 2 QPF records in this sample, but will delete duplicate one later.

Notes for CPC: we will add on O3MR for 10hPa, 50hPa and 100hPa later

Notes for MDL: sample has excluded your BMOS request

Notes for NWC/OWP: you need to have WCOSS access soon, ftp sample here for validation/demonstration only. Currently, EMC does not have ftp disk storage for public access, except for future coordination/discussion with ESRL/PSD

To access sample data through website:

0.25 degree data: <u>ftp://ftp.emc.ncep.noaa.gov/gc_wmb/wd20hg/FV3GEFS_rfcst/2017060100/pgrb2ap25</u> 0.5 degree data: <u>ftp://ftp.emc.ncep.noaa.gov/gc_wmb/wd20hg/FV3GEFS_rfcst/2017060100/pgrb2ap50</u>

or anonymous ftp:

ftp <u>ftp.emc.ncep.noaa.gov</u> ID: anonymous PW: your email cd gc_wmb/wd20hg/FV3GEFS_rfcst/2017060100 (you will see two subsets)

To access sample data from WCOSS directly (luna machine):

0.25 degree: /gpfs/hps3/emc/ensemble/noscrub/emc.enspara/FV3GEFS_rfcst/2017060100/pgrb2ap25 0.5 degree: /gpfs/hps3/emc/ensemble/noscrub/emc.enspara/FV3GEFS_rfcst/2017060100/pgrb2ap50

See an inventory of one forecast (lead), and one member: http://www.emc.ncep.noaa.gov/gmb/wd20hg/FV3_anl/rfcst_output_0p25 http://www.emc.ncep.noaa.gov/gmb/wd20hg/FV3_anl/rfcst_output_0p50

Receives confirmation of sample output data

- MDL John Wagner for EKDMOS
 - Hi Yuejian, I believe the sample data will be good for EKDMOS. I have not been able to test everything as the control member is encoded as a low-res control (even though its 0.25 degrees) and my code is expecting the high-res control member. I will need to make some changes to get this data into TDLPACK, which I haven't had time to because of the WCOSS outages. I was able to convert the other members to TDLPACK without error. I see no reason not to proceed with these settings. Thanks. - John
- CPC
 - Face to face meeting in August 2nd between CPC (Arun Kumar, Matthew Rosencrans, Craig Long, Dan Collins, Hui Wang) and EMC (Yuejian Zhu and Hong Guan)
 - CPC has confirmed save samples, EMC agreed to add 12 new isentropical variables for CPC (still waiting for CPC's validation)
- OWP Mark Fresch (future POC: Dr. Kaksu Lee)
 - Yuejian, The sample GEFSv12 reforecast is acceptable to OWP. Thanks, especially for Hong's help. MarkF
- MDL and CPC are agreed to save selected (#1 group) pressure level variables at 0.5degree all the way to 10 days without change frequency – July 31st 2018

1. FV3 EnKF ANL and F06 perturbations

Kate Zhou

Background:

- Current status
 - Based on full-cycle experiments we have done. We have seen some (slightly) difference of initial perturbations for FV3GFS-EnKF.
 - It is necessary to review the difference of EnKF f06 from GSM and FV3
- Vertical profile
 - Look at one case only
 - Ensemble spread (or perturbations) for F06
 - Temperature and U, V
 - NH, SH and Tropical
 - Similar vertical profile of Anl (not shown)

Black – GSM Red – FV3

Prod vs FV3GFS U Spread profile from EnKF 6hr fcst

Red – FV3

Prod vs FV3GFS V Spread profile from EnKF 6hr fcst

Black – GSM Red – FV3

2. Preliminary comparison of surface temperature analyses

Hong Guan

Background:

- Reanalysis/Reforecast generation
 - Mainly for forecast calibration
 - The systematic model error (or bias) may dominate for errors. Especially for longer leads forecast
 - 30 years reforecast will base on 30 years reanalysis and perturbations.
 - Currently: 1989-2000 (CFSR analyses and ETR perturbations); 2001-2018 (FV3 based new reanalysis)
- 2-meter temperature comparison
 - Three systems; CFSR; FV3-retrospective; FV3-reanalysis
 - Winter period: Dec. 1st 2016 Jan. 21 2016
 - Summer period: Jun. 1st Aug. 14th 2015
 - Difference for global and CONUS (maps and time series of domain average)

T2m, FV3 retro, 1516 Winter

T2m, FV3 reanl-FV3 retro, 1516 Winter

T2m, FV3 retro, 2015 Summer

Latest Status Update

- Closed to have final FV3GEFSv12 for starting reforecast
- Waiting for NCO permission to access Dell (WCOSS)
- Waiting for assigning disk storage (400TB) on Dell (WCOSS) for reforecast
- Working with PSD (Jeff and Scott) to have best ensemble initialization