Comparison of NAEFS SPP and EKDMOS

Bo Cui and Yuejian Zhu Environmental Modeling Center NCEP/NWS/NOAA

August 26 2014

Acknowledgement: John Wagner (MDL)

Background

- NAEFS SPP was implemented since 2007
 - Last implementation April 8 2014
 - Still 5km resolution for CONUS
 - Add additional variables
- EKDMOS (Ensemble Kernel Density MOS) was implemented since 2012
 - Uses output from NAEFS (NCEP and CMC) to produce probability distributions of sensible weather elements
 - Last implementation May 29 2012
 - 2.5km NDGD resolution for CONUS
 - And other domains
- Comparing two daily operational products
 - Period: Jan July 2014
 - Variables: T2m and T2d (only 3 months, May-July 2014)
 - Against RTMA (5km and 2.5km NDGD resolution)
 - Against observations (Based on CONUS BUFR data ~7000 obs)

NAEFS SPP Milestones

- Implementations
 - First NAEFS implementation bias correction
 - NAEFS follow up implementation CONUS downscaling
 - Alaska implementation Alaska downscaling
 - Implementation for CONUS/Alaska expansion
- Applications:
 - NCEP/GEFS and NAEFS at NWS
 - CMC/GEFS and NAEFS at MSC
 - FNMOC/GEFS at NAVY
 - NCEP/SREF at NWS
- Publications (or references):
 - Cui, B., Z. Toth, Y. Zhu, and D. Hou, D. Unger, and S. Beauregard, 2004: <u>*"The Trade-off in Bias Correction between Using the Latest Analysis/Modeling System with a Short, versus an Older System with a Long Archive"* The First THORPEX International Science Symposium. December 6-10, 2004, Montréal, Canada, World Meteorological Organization, P281-284.
 </u>
 - Zhu, Y., and B. Cui, 2006: <u>"GFS bias correction"</u> [Document is available online]
 - Zhu, Y., B. Cui, and Z. Toth, 2007: <u>"December 2007 upgrade of the NCEP Global Ensemble Forecast System (NAEFS)"</u>
 [Document is available online]
 - Cui, B., Z. Toth, Y. Zhu and D. Hou, 2012: <u>"Bias Correction For Global Ensemble Forecast"</u> Weather and Forecasting, Vol. 27 396-410
 - Cui, B., Y. Zhu, Z. Toth and D. Hou, 2013: <u>"Development of Statistical Post-processor for NAEFS"</u> Weather and Forecasting (In process)
 - Zhu, Y., and B. Cui, 2007: <u>"December 2007 upgrade of the NCEP Global Ensemble Forecast System (NAEFS)</u>" [Document is available online]
 - Zhu, Y, and Y. Luo, 2013: <u>"Precipitation Calibration Based on Frequency Matching Method (FMM)"</u>. Weather and Forecasting (in process)
 - Glahn, B., 2013: "A Comparison of Two Methods of Bias Correcting MOS Temperature and Dewpoint Forecasts" MDL office note, 13-1
 - Guan, H, B. Cui and Y. Zhu, 2013: "Improvement of NAEFS SPP", (plan to submit to Weather and Forecasting)

Version 1.00 - May 30 2006 Version 2.00 - December 4 2007 Version 3.00 - December 7 2010 Version 4.00 - April 8 2014

NAEFS Statistical Post-Processing System

Bias correction:

- Bias corrected NCEP/CMC GEFS and NCEP/GFS forecast (up to 180 hrs)
- Combine bias corrected NCEP/GFS and NCEP/GEFS ensemble forecasts
- Dual resolution ensemble approach for short lead time
- NCEP/GFS has higher weights at short lead time
- NAEFS products (global) and downstream applications
 - Combine NCEP/GEFS (20m) and CMC/GEFS (20m)
 - Produce Ensemble mean, spread, mode, 10% 50% (median) and 90% probability forecast at 1*1 degree resolution
 - Climate anomaly (percentile) forecasts
 - Wave ensemble forecast system
 - Hydrological ensemble forecast system
 - Statistical downscaling
 - Use RTMA as reference NDGD resolution (5km/6km), CONUS and Alaska
 - Generate mean, mode, 10%, 50% (median) and 90% probability forecasts

NAEFS bias corrected variables

Last upgrade: April 8th 2014 - (bias correction)

Variables	pgrba_bc file	Total 51
GHT	10, 50, 100, 200, 250, 500, 700, 850, 925, 1000hPa	10
ТМР	2m, 2mMax, 2mMin, 10, 50, 100, 200, 250, 500, 700, 850, 925, 1000hPa	13
UGRD	10m, 10, 50, 100, 200, 250, 500, 700, 850, 925, 1000hPa	11
VGRD	10m, 10, 50, 100, 200, 250, 500, 700, 850, 925, 1000hPa	11
VVEL	850hPa	1
PRES	Surface, PRMSL	2
FLUX (top)	ULWRF (toa - OLR)	1
Td and RH	2m	2
Notes	CMC and FNMOC do not apply last upgrade yet	

NAEFS downscaling parameters and products

Last Upgrade: April 8 2014 (NDGD resolution)

Variables	Domains	Resolutions	Total 10/10
Surface Pressure	CONUS/Alaska	5km/6km	1/1
2-m temperature	CONUS/Alaska	5km/6km	1/1
10-m U component	CONUS/Alaska	5km/6km	1/1
10-m V component	CONUS/Alaska	5km/6km	1/1
2-m maximum T	CONUS/Alaska	5km/6km	1/1
2-m minimum T	CONUS/Alaska	5km/6km	1/1
10-m wind speed	CONUS/Alaska	5km/6km	1/1
10-m wind direction	CONUS/Alaska	5km/6km	1/1
2-m dew-point T	CONUS/Alaska	5km/6km	1/1
2-m relative humidity	CONUS/Alaska	5km/6km	1/1

All downscaled products are generated from 1*1 degree bias corrected fcst. globally Products include ensemble mean, spread, 10%, 50%, 90% and mode

T2m Evaluation Against RTMA (CONUS)

Based on NWS products: January - July, 2014

CONUS GEFS Bias Corrected Downscaled Ens. Mean Absolute Error w.r.t RTMA 2m Temperature (shaded, K) Averaged From: 2014011600 to 2014073100 (24 h)

CONUS EKDMOS Ens. Mean Absolute Error w.r.t RTMA 2m Temperature (shaded, K) Averaged From: 2014011600 to 2014073100 (24 h)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 4.5

56

Π.

T2m MAE (against RTMA) Period: 20140116 – 20140731 **24 hours forecast**

> Top left \rightarrow NAEFS Top right \rightarrow NCEP GEFS Bottom left \rightarrow EKDMOS

NAEFS is 11% better than GEFS NAEFS is 23% better than EKDMOS

CONUS NAEFS Downscaled Ens. Mean Absolute Error w.r.t RTMA 2m Temperature (shaded, K) Averaged From: 2014011600 to 2014073100 (24 h) CONUS GEFS Bias Corrected 2m Temperature (shaded, K) Averaged From: 2014011600 to 2014073100 (24 h)

CONUS EKDMOS Ens. Mean Forecast Error w.r.t RTMA 2m Temperature (shaded, K) Averaged From: 2014011600 to 2014073100 (24 h)

T2m ME (against RTMA) Period: 20140116-20140731 24 hours forecast

> Top left: NAEFS Top right: NCEP GEFS Bottom left: EKDMOS

-8 -5 -3 -2 -1.5 -1 -0.75-0.5-0.250.25 0.5 0.75 1 1.5 2 3 5

CONUS GEFS Bias Corrected Downscaled Ens. Mean Absolute Error w.r.t RTMA 2m Temperature (shaded, K) Averaged From: 2014011600 to 2014073100 (48 h)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 4.5 5 6 8

CONUS EKDMOS Ens. Mean Absolute Error w.r.t RTMA 2m Temperature (shaded, K) Averaged From: 2014011600 to 2014073100 (48 h)

1.2 1.4 1.6 1.8 2 2.5 3 3.5

4 4 5 5 6

0.2 0.4 0.6 0.8

Π.

T2m MAE (against RTMA) Period: 20140116 – 20140731 **48 hours forecast**

> Top left \rightarrow NAEFS Top right \rightarrow NCEP GEFS Bottom left \rightarrow EKDMOS

NAEFS is 10% better than GEFS NAEFS is 14.5% better than EKDMOS

CONUS GEFS Bias Corrected Downscaled Ens. Mean Forecast Error w.r.t RTMA 2m Temperature (shaded, K) Averaged From: 2014011600 to 2014073100 (48 h)

CONUS EKDMOS Ens. Mean Forecast Error w.r.t RTMA 2m Temperature (shaded, K) Averaged From: 2014011600 to 2014073100 (48 h)

-3 -2 -1.5 -1 -0.75-0.5-0.250.25 0.5 0.75 1

1.5 2 3 5

-5

T2m ME (against RTMA) Period: 20140116-20140731 48 hours forecast

> Top left: NAEFS Top right: NCEP GEFS Bottom left: EKDMOS

T2m Evaluation Against Observations (CONUS)

Based on NWS products: January - July, 2014

T2m forecast against observation (CONUS)

RMS error for ensemble mean

Verification period: 20140117 – 20140731 Against all observations of CONUS (~7000)

T2m forecast against observation (CONUS)

Td Evaluation Against RTMA (CONUS)

Based NWS products: May - July, 2014

CONUS GEFS Bias Corrected Downscaled Ens. Mean Absolute Error w.r.t RTMA 2m Dew Point Temp (shaded, K) Averaged From: 2014050100 to 2014073100 (24 h)

CONUS EKDMOS Ens. Mean Absolute Error w.r.t RTMA 2m Dew Point Temp (shaded, K) Averaged From: 2014050100 to 2014073100 (24 h)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 4.5

5 6

ō

Td MAE (against RTMA) Period: 20140501 – 20140731 **24 hours forecast**

> Top left \rightarrow NAEFS Top right \rightarrow NCEP GEFS Bottom left \rightarrow EKDMOS

CONUS GEFS Bias Corrected Downscaled Ens. Mean Forecast Error w.r.t RTMA 2m Dew Point Temp (shaded, K) Averaged From: 2014050100 to 2014073100 (24 h)

CONUS EKDMOS Ens. Mean Forecast Error w.r.t RTMA 2m Dew Point Temp (shaded, K) Averaged From: 2014050100 to 2014073100 (24 h)

Td ME (against RTMA) Period: 20140501-20140731 24 hours forecast

> Top left: NAEFS Top right: NCEP GEFS Bottom left: EKDMOS

-5 -3 -2 -1.5 -1 -0.75-0.5-0.250.25 0.5 0.75 1 1.5 2 3 5

CONUS GEFS Bias Corrected Downscaled Ens. Mean Absolute Error w.r.t RTMA 2m Dew Point Temp (shaded, K) Averaged From: 2014050100 to 2014073100 (48 h)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 4.5 5 6 8

CONUS EKDMOS Ens. Mean Absolute Error w.r.t RTMA 2m Dew Point Temp (shaded, K) Averaged From: 2014050100 to 2014073100 (48 h)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 4.5 5

6

Td MAE (against RTMA) Period: 20140501 – 20140731 **48 hours forecast**

> Top left \rightarrow NAEFS Top right \rightarrow NCEP GEFS Bottom left \rightarrow EKDMOS

CONUS GEFS Bias Corrected Downscaled Ens. Mean Forecast Error w.r.t RTMA 2m Dew Point Temp (shaded, K) Averaged From: 2014050100 to 2014073100 (48 h)

-8 -5 -3 -2 -1.5 -1 -0.75 -0.5 -0.250.25 0.5 0.75 1 1.5 2 3 5 8

CONUS EKDMOS Ens. Mean Forecast Error w.r.t RTMA 2m Dew Point Temp (shaded, K) Averaged From: 2014050100 to 2014073100 (48 h)

-8 -5

-3 -2 -1.5 -1 -0.75-0.5-0.250.25 0.5 0.75 1 1.5 2 3 5

Td ME (against RTMA) Period: 20140501-20140731 48 hours forecast

> Top left: NAEFS Top right: NCEP GEFS Bottom left: EKDMOS

Td Evaluation Against Observations(CONUS)

Based on NWS products: May - July, 2014

Td forecast against observation (CONUS)

RMS error for ensemble mean

Verification period: 20140501 – 20140630 Against all observations of CONUS

Conclusion and plan

- Based on 6+ months evaluation of T2m, 2+ months evaluation of Td2m.
- NAEFS SPP demonstrates very valuable benefit in terms of computation efficiency, less errors for first week.
- Will test 2.5km NAEFS SPP with other improved methodologies (variable decaying weights, possible to hybrid with limited reforecast, RBMP, and smartini)