A Stochastic Perturbation Scheme (SPS) Representing Model Related Uncertainty in NCEP Global Ensemble Forecasting System

Dingchen Hou*, Zoltan Toth, Yuejian Zhu and Weiyu Yang*

Environmental Modeling Center/NCEP/NOAA 5200 Auth Road, Camp Springs, MD 20746, USA * SAIC at EMC/NCEP/NOAA

Acknowledgements:

Mark Iredell, Henry Juang, Stephane Vannitsem, Stephen Lord, Richard Wobus, Bo Cui, Cecile Penland, Prashant Sardeshmukh, James Purser, Mozheng Wei, Mike Young, Joe Sela and Shrinivas Moorthi

Formulation (Hou, Toth and Zhu 2006)

General Expression: $\dot{X}_i = T_i + S_i$ for each ensemble member i
T=Conventional Tendency, S=Stochastic TendencyStrategy:Use $P_i = T_i - T_0$ vectors as the basis for stochastic forcing S
Formulation of S vectors:Solution $S_i \sim \sum_i w_{i,j} P_j$

Generate the S terms from (random) linear combinations of the conventional perturbation tendencies, similar to ET but applied to ensemble perturbation tendencies successively

Generation of combination coefficients:

An orthognormal matrix W, as a function of lead time t, is generated using the methodology and software provided by James Purser. Each coefficient $w_{i,j}$ is a random walk superimposed on a periodic function, and an example is shown.

The Current Version (Hou, Toth, Zhu and Yang, 2008)

Use a finite difference form for the tendency, with 6 hour time interval The Scheme is applied every 6 hours by modifying the model state using

$$X_{i}' = X_{i} + \gamma \sum_{j=1}^{N} W_{i,j}(t) \{ [(X_{j})_{t} - (X_{j})_{t-6h}] - [(X_{0})_{t} - (X_{0})_{t-6h}] \}$$
 For t=6h,12h,....

Where γ is a rescaling factor $\gamma = \gamma_0 \gamma_1$

Global Rescaling γ_0 , a logistic function of lead time t:

$$\gamma_0 = 0.03 + (0.105 - 0.03) \left\{ 1.0 - \frac{1.0}{1.0 + \exp[-0.02(t - 252h)]} \right\}$$

Regional Rescaling γ_1 , a harmonic function of latitude and season:

$$\gamma_1 = 1.0 + A\sin(\theta)\sin\frac{2\pi(d-91)}{364}$$
 $\Theta = 1$
d=J

Θ=Latitude, A=0.2 d=Julian Day of the initial time

Implementation Under ESMF Environment

(ESMF=Earth System Modeling Framework)

Simultaneously integrating all members (Module G) and periodically applying SPS (Module Cpl)

Impact on Ensemble Forecast

- Increase in ensemble spread toward RMSE of ensemble mean;
- Reduction in systematic (domain mean) error
- Improvement in ensemble based probabilistic forecast, especially the reliability related scores;
- Improvement in ensemble pdf, measured by the CRPSS score;
- Additive impact to increase in model resolution;
- Additive impact to (off line) statistical bias correction.

Impact of SPS on Ensemble Mean Forecast ----- Reduced (Negative) Bias and Increased Spread

Impact of SPS on Ensemble Based Probabilistic Forecastand Ensemble pdf

----- Improved verification Scores

Impact of SPS T126L28 vs. T190L28 resolution Additive impacts with increase in resolution

Impact of SPS

Additive Impact with Statistic Bias Correction (PP) For RPSS Score, the positive impact of SPS and PP adds up

