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Abstract 

 

In the NAEFS framework, a set of statistical post processing techniques has been designed 

and applied for both the NCEP and CMC ensembles. Bias correction and statistical 

downscaling are the two most important approaches among them. The bias correction 

entails the statistical correction of ensemble lead-time-dependent systematic errors. The 

statistical downscaling aims to compensate for the lack of details of model spatial/temporal 

resolution. These are two separate and independent types of processing.   The correction 

method was implemented operationally at both centers (NCEP and CMC) in 2006. The 

statistical downscaling method was implemented at NCEP in 2007. Current post-processor 

produces outputs on 1°x1° latitude/longitude grids for 49 variables and on a 5x5 km grid 

for four fields covering the CONUS: surface pressure, 2-meter temperature, and 10-meter 

wind components (u and v).   

 

This study describes the NAEFS post-processing system with a focus on the downscaling 

method. After applying the statistical post-processing, the quality and value of the 

ensemble forecast undergo a significant increase.  The NAEFS product has reduced mean 

absolute errors by 4+ days and improved probabilistic skills by 8+ days. NAEFS has a 

better global skill than a single NCEP or CMC ensemble. Downscaling contributes more to 

ensemble performance than do bias correction and the multi-model ensemble. 
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1. Introduction 

 

1.1 North American Ensemble Forecast System 

 

The North American Ensemble Forecast System (NAEFS) is a joint project involving the 

US National Weather Service (NWS), the Meteorological Service of Canada (MSC) and 

the National Meteorological Service of Mexico (NMSM).  An agreement of corporation 

between United States-Canada-Mexico, became official in November 2004. The goal of 

NAEFS is to exchange and combine the American and Canadian ensemble forecast outputs 

s in real time, producing probabilistic forecasts from the combined ensemble that are 

consistent over North America.  The NAEFS was established in 2005 at the National 

Centers for Environmental Prediction (NCEP) of US NWS as an operational multi-center 

ensemble forecast system.   In addition to the raw ensemble forecast data exchanges 

between NCEP and MSC, a statistical post-processing system has been established for 

NAEFS that includes bias correction, dual resolution, statistical downscaling techniques, 

etc. This paper presents a study on the post-processing system designed and applied within 

the NAEFS. 

 

1.2 Systematic error (bias) correction 

 

Compared to deterministic Numerical Weather Prediction (NWP), the ensemble approach 

provides more possibilities of extending in lead time for prediction of weather events. 

However, as accurate as they might be, ensemble predictions do not provide absolutely 
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reliable information. In addition to deficiencies in ensemble system design, all ensemble 

forecast systems suffer from systematic errors associated with imperfect numerical forecast 

models and analysis schemes. Some uncertainties inevitably remain and cause inaccurate 

forecasts. The negative effects include (a) lead-time-dependent systematic errors (forecast 

bias) due to imperfect numerical modeling techniques and (b) finite spatial and temporal 

resolution due to limited computational resources.   

 

The first type of error is mainly due to limitation of model physics, causing “model drift”, 

i.e. lead-time-dependent systematic error. The predictions become  substantial drift away 

from the observations (Toth and Pena 2007). In an ensemble system, such “model drift” 

greatly affects ensemble measures of reliability (Atger Frédéric 2003; Zoltan et al. 2006b).  

How can we reduce lead-time-dependent systematic error to improve ensemble statistical 

reliability? The benefits of ensemble calibration have been examined and verified in 

different ways (Atger Frédéric 2003; Cui et al. 2006; Hamill and Whitaker 2007). At 

NCEP, a decaying average bias correction method was adopted. This simple correction 

method was implemented into operations of both centers (NCEP and Canadian 

Meteorological Centre, CMC) in 2006 (Cui et al. 2006, 2011). Verifications show that 

individual ensemble members benefit from this simple de-biasing method particularly in 

the short range. The calibrated operational ensemble has improved probabilistic 

performance for all measures out to day 5.   
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1.3 Statistical downscaling 

 

The second type of forecasting deficiency is associated with imperfect analysis that comes 

from the finite spatial/temporal resolution of the observations. For a better-quality 

ensemble, simply increasing model resolution gives limited benefit to ensemble statistical 

resolution, and its application is constrained by computational resources. However, reliable 

skillful high-resolution ensemble predictions are desired by many forecast users. The 

demand for important surface variables, such as 2-meter temperature is continuously 

increasing due to the development of more and more end-user applications in hydrology, 

agronomy, energy, etc. To bridge the product gap between the low-resolution and high-

resolution ensemble probabilistic predictions, global or low resolution ensemble output can 

be treated with “downscaling” techniques to maximize its utility. There are a variety of 

ways to perform the downscaling process, such as dynamical methods (Leung et al. 2004; 

Wang et al. 2004), physically based methods (Leung and Ghan 1995, 1998), statistical 

methods (Benestad 2004; Maurer and Duffy 2005, Antolik 2006) and combination 

methods. At NCEP, a regime-dependent statistical downscaling method has been adopted. 

It became operational in NAEFS in December 2007. This downscaling process generates 

National Digital Guidance Database (NDGD) 5-km resolution products for the Continental 

United State (CONUS). There are four variables for this application: 2-meter temperature, 

surface pressure, and 10-meter wind (u and v components). The downscaled products 

include probabilistic forecasts (at the 10%, 50%, and 90% levels), ensemble mean, spread 

and mode - twice per day out to 16 days.   
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1.4 Statistical Post-processor for NAEFS   

 

In the NAEFS operational context, bias correction and downscaling are done as two 

separate steps. Both methods statistically adjust ensemble forecasts to improve statistical 

reliability and resolution. However, the objective of and the procedures for the two 

methods are different. According to Toth et al. (2006a), reliability and resolution are the 

two main and independent attributes of forecast systems. In principle, reliability can be 

improved through statistical post-processing techniques so that the calibrated forecasts 

follow the distribution of ensuing verifying observations.  Bias correction is applied on a 

coarser model grid. It improves the reliability of each ensemble prediction system 

component, NCEP/GEFS and CMC/GEFS. Verifications show that it also slightly 

improves the accuracy of the predicted ensembles and thus the probabilistic resolution of 

the forecasts (Zhu and Toth 2008; Candille et al. 2010). 

 

However, unlike reliability, resolution cannot be improved via statistical bias correction.  

Statistical resolution reflects a forecast system’s ability to distinguish between different 

future events in advance. Statistical resolution can be improved only through the 

modification of the forecast scheme with additional knowledge about the temporal 

evolution of the observed system (Toth et al. 2006b). The purpose of statistical 

downscaling is to enhance information missing on coarse spatial scales as an attempt to 

improve statistical resolution. 
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Bias correction is beneficial for getting feedback on systematic errors for model 

development. Its application is inexpensive on the model grid.  Ideally, systematic errors 

are reduced and statistical reliability is enhanced while random errors are not increased to 

maintain statistical resolution. On the other hand, downscaling helps to enhance “spatial” 

resolution but is not dependent on lead time.  Such interpolation can be applied in various 

spaces, in time and across variables. It is needed partly due to computational resource 

limitations. The downscaling process is not directly related to the choice of numerical 

model, is cheap for data transition and easy for model upgrades in operations.   

 

The NAEFS post-processing system consists of a set of techniques, of which bias 

correction and downscaling are the two most important. Other post-processing methods 

include dual resolution, multi-ensemble combination techniques, etc. All these post-

processing methodologies as applied in the operational NAEFS are introduced in section 2. 

Section 3 briefly introduces the verification package used to evaluate NCEP/GEFS and 

NAEFS which chooses tools described in Zhu and Toth (2008). The performances of the 

ensemble post-processing system are then quantitatively compared in section 4. 

Investigations are focused on the effects of the downscaling on each GEFS component 

(NCEP and MSC) and on the multi-ensemble NAEFS. Also, the improvements due to the 

downscaling method and multi-ensemble approach are compared in this section. Finally, 

section 5 contains a discussion and some conclusions. 
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2. Data set and methodology 

 

The ensemble configurations of NCEP/GEFS and CMC/GEFS are different. The 

operational NCEP/GEFS system configuration is described in Toth et al. 2004. The 20-

member ensembles are produced at T126L28 horizontal (90km) and vertical resolution. 

The perturbations of the initial conditions are from Ensemble Transform with Rescaling 

(ETR) technique (Wei et al. 2008). The operational CMC ensemble is described in Charron 

et al. (2010). A single dynamical core, i.e. the Global Environmental Multiscale (GEM) 

model is used to produce the ensembles. The CMC’s multi-parameterization approach and 

stochastic perturbations are used in order to sample model errors for the 20 members of the 

ensemble. NCEP ensembles run with 20 ensemble members per cycle plus one control at 

00UTC, 06UTC, 12UTC, and 18UTC. The CMC ensemble runs at 00UTC and 12UTC. 

All runs go out to 384 hours at 6-hour intervals. All forecast data are interpolated to 1°x1° 

latitude/longitude resolution.    

 

The NAEFS multi-ensemble is an un-weighted combination of the NCEP and CMC 

ensembles. But the generation of NAEFS products consists not only of simple 

combinations of the two ensembles. A set of post-processing steps are applied to the two 

ensembles, which includes bias correction, dual resolution, multi-ensemble combination, 

probabilistic forecast generation and statistical downscaling. The first four techniques are 

performed on forecasts on  1° × 1° grid.  Two items are developed for NAEFS on the 1° × 

1° forecasts: probabilistic forecast (10%, 50%, 90%, ensemble mean, mode and spread) 

and climate anomaly forecasts. The last post-processing step, i.e. the statistical 
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downscaling generates NDGD 5km resolution products for the CONUS from 1° × 1° 

NAEFS forecasts.  

 

The bias correction or ensemble calibration has been described in previous work (Cui et al. 

2006; 2011). It is a correction of the first moment of the ensemble. First the difference 

between a ensemble mean (NCEP) or the individual members (CMC) forecast and the 

corresponding analysis is computed. Then this difference is multiplied by a weight 

(currently 2% in operations) and added to the previous day’s cumulative bias value. Such 

bias estimation is applied independently to every 6-hour time step of the forecast. For each 

grid-point, each ensemble forecast is adjusted by the difference between the above two 

fields (Cui et al. 2011). Note that only the variables, such as height, temperature and wind 

components, for which the errors are assumed is normal distributed, are bias corrected.   

There are 49 variables included in recent NAEFS upgrade in March 2011 (Zhu and Cui 

2011).   This section will present the other 3 post-processing methodologies one by one. 

     

2.1 Dual resolution technique 

 

The dual resolution technique is designed for and applied to the NCEP ensemble only and 

its application  is accompanied by the bias correction.  Dual resolution technique combines 

a limited set of NCEP/GEFS ensembles and high resolution forecasts from the NCEP 

Global Forecast System (GFS). NCEP/GFS is a high- resolution deterministic forecast. It 

is an unfrozen system and major changes have been implemented frequently 

(http://www.emc.ncep.noaa.gov/GFS/doc.php).  Historical   statistics shows the 

http://www.emc.ncep.noaa.gov/GFS/doc.php
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NCEP/GFS (T254L64) performs consistently better than lower resolution forecasts such as 

the ensemble control at T126L28 resolution up to 120 hours (Zhu et al. 2005; more GFS 

performance statistics are available online at 

http://www.emc.ncep.noaa.gov/gmb/STATS_vsdb/). In order to take advantage of both the 

GFS and NCEP ensembles, the NCEP/GEFS are adjusted toward GFS forecasts for 

forecast lead time up to 180 hours. Higher weights are chosen at short lead time and 

decrease with lead time.   

  

Before applying the dual resolution technique,  GFS forecast F
gfs

i,j(t),  NCEP ensemble 

control forecast F
ctl

i,j(t) and each NCEP/GEFS member F
k

i,j(t) are first bias corrected with 

the same process (Cui et al. 2011). In order to combine the bias corrected F
gfs

i,j(t), F
ctl

i,j(t)  

and F
k

i,j(t) for the first 180 hours, a cosine weighting function wgfs(t) has been used to 

weight the difference between F
gfs

i,j(t) and F
ctl

i,j(t)  with  highest weight for the GFS at 

short lead time in such a way that it smoothly approaches the ensemble forecast as the 

lead-time approaches 180 hours ( Figure 1 ). Here is the formulation for each ensemble 

forecast:  

 

 F
k
*i,j(t) =    F

k
i,j(t)  -  wgfs(t)  ( F

gfs
i,j(t)  - F

ctl
i,j(t) )              ( k=1,2,… n)           (1)                                        

 

Where wgfs(t) = ( 1+ cos (t) )/ 2, t represents forecast hours from 0 to 180. Figure 1 

illustrates that the GFS has higher weights at short lead time that decrease with lead time 

from 1 to 0 at 180 hour. The dual resolution technique began to be operationally performed 

in 2007 at NCEP. 



 

 11 

2.2 CMC ensemble adjustment before multi-ensemble combination 

 

The generation of the NAEFS joint ensemble from NCEP and CMC ensembles is not a 

simple grouping together of the calibrated forecasts. Due to the different data assimilation 

systems, there are systematic differences between the NCEP and CMC analyses. Such 

systematic differences exist not only in initial conditions but accompany every time step of 

the forecast. It is not proper to remove these analysis differences by use of the usual 

calibration methods. A simple and practical method is designed and applied at NCEP. The 

differences between the NCEP and CMC analyses are computed and updated daily with a 

30% decay weight for the latest differences. Then CMC ensemble is adjusted individually 

by removing the accumulated analysis differences prior to the merging of NCEP and CMC 

ensembles. The reason for adjusting the CMC ensemble toward the NCEP analysis is that 

the products generated at NCEP are provided to the US NWS. The NWS users are familiar 

with NCEP analysis characteristics and tendencies. The impacts of different weights for 

adjustments on the multi-ensemble performance are not investigated in this study. Further 

research on multi-ensemble combinations is needed.  

 

 2.3 NAEFS probabilistic forecasts and forecast anomaly 

 

After a set of post-processing steps, i.e. bias correction, dual resolution, CMC ensemble   

adjustment, NAEFS combines the CMC and NCEP ensembles to create probabilistic 

forecast products on the 1° × 1° resolution grid.  The L-moment method has been 

introduced in probabilistic forecast generation (Zhu and Cui 2007). In particular, the 
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Generalized Extreme-Value Distribution (GEV) has been assumed to assimilate the 

ensemble forecast distribution. In general, GEV has properties similar to those of the 

common Gamma-3 distribution, Pearson Type 3 distribution and so on.  The 10%, 50% 

(median), 90% probability forecast are produced by the L-moment method. The mean and 

spread of NAEFS are taken straight from the multi-center ensembles. The ensemble mode 

comes from the approximated formulation:  mode = 3*median – 2*mean. Delivery of these 

products to users started in 2007 at NCEP. 

 

The forecast anomalies for the ensemble mean are also generated for 19 selected bias-

corrected ensemble variables. The anomalous values are the differences between 

climatological mean from Climate Data Assimilation System (CDAS, Kalnay et al. 1996) 

and bias corrected ensemble mean. The corrected ensemble means have been adjusted by 

considering the systematic difference between CDAS reanalysis and current NCEP Global 

Data Assimilation System (GDAS) analysis.   

 

2.4 Statistical downscaling methodology   

 

Statistical downscaling is the last post-processing step in the NAEFS context. It was 

implemented at NCEP in December 2007 and is currently generating NDGD 5km 

resolution products for CONUS from 1° ensemble forecasts. There are four variables for 

this application: 2-meter temperature, surface pressure, and 10-meter u and v wind 

components. The downscaled products include probabilistic forecasts (10%, 50%, and 
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90%), ensemble mean, spread and mode - twice per day out to 16 days. The statistical 

downscaling process follows three steps.  

 

(a). Choosing truth (reference)  

 

The Real Time Mesoscale Analysis (RTMA) system generates CONUS-scale real-time 

hourly analyses on the National Digital Forecast Database (NDFD) grid at NCEP (Pondeca 

et al. 2007). As a 5-km resolution analysis with high quality, RTMA is chosen as the truth 

or reference for the statistical downscaling process.    

 

(b). Getting the Downscaling Vector DV
5km

 

This step is used to establish the relationship between the coarse and fine resolution 

analysis. We assume that the differences between the low resolution NCEP GDAS (Global 

Data Assimilation System) analysis and high resolution RTMA analysis are systematically 

reproducible and remain contant throughout the ensuing forecasts. The time mean 

difference between low and high resolution analysis is used as to define the analysis 

uncertainty. GDAS
5km

 is the GDAS analysis on the 5km grid interpolated from 1° 

resolution data. DV
5km

 is the downscaling vector, defined as the difference between 

GDAS
5km

 and RTMA
5km 

at the same valid time.  The DV
5km

 are updated daily by applying 

a decaying averaging algorithm.      

DV
5km 

(t0) = (1 - w) DV
5km

 (t-1) + w (GDAS
5km

 (t0) – RTMA
5km 

(t0))       (2) 

 



 

 14 

Where t0 is the latest analysis valid time that can be at 00UTC, 06UTC, 12UTC and 

18UTC, respectively.  t-1 is previous analysis cycle valid at the same time as  t0 . The 

DV
5km

 is calculated for each individual grid point and there are 4 downscaling vectors 

DV
5km

 each day.  w is the decay weighting coefficient.  The value w=0.3 has been used in 

operations which is mainly using information from the past 3-4 days. The decaying 

average algorithm is used because it is communicated rapidly. It is simple and does not 

require a buffer of recent samples, which is of practical importance for real-time operation.   

  

(c). Downscaling the forecasts DF
5km

  

 

In order to get the downscaled forecast, DF
5km

, bias-corrected ensemble forecasts at 5km 

BF
5km

 are generated through bilinear interpolation. BF
5km

 can be either one ensemble 

member or probabilistic forecasts such as ensemble mean and mode. DV
5km

 is subtracted 

from BF
5km 

at the same analysis time. 

  

DF
5km

 (t) = BF
5km

 (t) – DV
5km 

(t0)                                                             (3) 

 

       Where t is the forecast time, and t0 is chosen to have the same valid analysis time as  t. 

There are four DV
5km

 available - at 00UTC, 06UTC, 12UTC and 18UTC. Downscaled 

products are generated following the above step. 

 

The downscaling strategy does not require large amounts of computational resources. This 

approach can be easily applied to different model or ensemble forecast output.  
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Downscaled products from NCEP/GEFS and NAEFS for CONUS respectively have been 

available since December 2007. In this paper, the bias-corrected and downscaled NAEFS 

forecast are denoted as NAEFS final products. 

 

 3. Verification procedure 

 

There is an ensemble-based probabilistic forecast verification system at NCEP (Zhu and 

Toth 2008). This system was developed for NCEP/GEFS in the 1990s and recently 

upgraded and applied to NAEFS.  To assess the benefits of the post-processing techniques, 

several probabilistic measures and traditional evaluation methods are used from the 

NCEP/GEFS and NAEFS verification system (Zhu 2004; Zhu and Toth 2008). The 

statistics include mean bias, ensemble Root Mean Square Error (RMSE), ensemble spread, 

mean absolute errors (MAE), Relative Operational Characteristics (ROC) and Continuous 

Ranked Probability Skill Score (CRPS). Diagnoses on regional areas are also performed. 

The RMSE of the ensemble mean measures the distance between forecasts and analyses 

(or observations). Ensemble spread is calculated by measuring the deviation of ensemble 

forecasts from their mean (Zhu 2005). The statistic CRPS measures the reliability and 

resolution of probabilistic forecasts and therefore evaluates ensemble performances (Toth 

et al. 2003; Zhu and Toth 2008). The lower the CRPS score, the better the probabilistic 

system is by being both reliable and exhibiting high resolution. The CRPS score is one of 

the most important measures for evaluating the performance of probabilistic forecasts.  

In addition to the verification statistics as the basic measurements of ensemble 

performance, one operational product similar to the NAEFS downscaled forecasts is used 
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for comparison. The Meteorological Development Laboratory (MDL) of NOAA’s NWS 

has been producing a gridded Model Output Statistics (GMOS) forecast guidance system 

in recent years (Dallavalle and Glahn 2005; Ruth et al. 2009). The MDL/GMOS populates 

a 5-km grid covering CONUS with elements needed for weather forecast grids. In the light 

of results from downscaling techniques, NAEFS and MDL/GMOS both perform 

verification based on RTMA grids (De Pondeca et al. 2007).  The goal of this comparison 

is not to provide an exhaustive validation of the performance of the different products, but  

meant to complement verification of NAEFS probabilistic forecasts to show the potential 

benefit of downscaling techniques.   

 

4. Results 

 

The decaying average algorithm is chosen for both bias correction and statistical 

downscaling. The first issue for their application is to choose a decaying weight 

coefficient. A previous study (Cui et al. 2006, 2011) has shown that a 2% weight is an 

optimal option for bias correction. Subsection 4.1 will briefly show the performance of 

bias correction and dual resolution. Subsection 4.2 will verify how decaying weights affect 

the downscaling process.  

 

4.1 Performance of bias correction and dual resolution  

 

Figure 2 gives an example of the performance of bias correction. It shows NCEP/GEFS 2-

meter temperature 120-hour forecasts (ensemble mean) and forecast errors before and after 
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calibration. The initial time is 0000UTC 7 October, 2006. Most of systematic errors are 

removed and the improvement of the ensemble is noticeable. Though in some areas the 

bias signs change from positive to negative, error magnitudes decrease greatly, indicating 

the effectiveness of bias correction.   

 

The performance of the dual resolution technique is estimated in this subsection. The 

improvement depends on the variables. For example, there is significant improvement for 

Northern Hemisphere (NH) 2-meter temperature. Figure 3 shows one month of statistics.  

E14s denotes the NCEP 14 global ensemble raw forecast, E14sb is the bias- corrected 

forecast, and E14hbbc is the ensemble with both bias-correction and dual resolution 

technique application . Both GFS and ensemble use a 2% weight in calibration (Cui et al. 

2011). Apparently the bias-corrected ensemble with dual resolution adjustment gives 

significant improvement for short lead time up to 180 hours compared to the ensemble 

with bias correction only. E14hbbc and E14sb are similar to each other after 180 hours, 

corresponding to the zero weight applied to the GFS forecast after 180 hours. The bias-

corrected ensemble, E14sb has a better score than the raw ensemble. The contribution from 

dual resolution is even lager than the bias correction.   

 

4.2 Statistical downscaling performance 

 

Figure 4 shows sensitivity tests of decaying weights for the downscaling technique. All 

seven curves are domain-averaged bias (absolute values) over CONUS. The effects of the 

downscaling treatment are clearly displayed. The seven curves are divided into two 
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clusters, one with the downscaling process and one without. The gefs_raw curve is from 

the NCEP raw ensemble, and the gefs_bc is from NCEP bias-corrected ensemble. Both are 

bilinearly interpolated values on NDGD grids and have no downscaling processing. Their 

biases are much bigger than those of the five downscaled ensembles, indicating that the 

downscaling processing can effectively reduce the forecast errors on fine grids.  Bias 

correction contributes to the improvement of the ensemble but has weak impact compared 

to the downscaling process. Around 70% of forecast errors are reduced at all lead time 

(gefs_bcds_10%). The effect of downscaling on the low resolution analysis is also 

displayed. It is notable that the biases are significantly reduced at 00hr after downscaling. 

Diagnosis of the analyses also shows that most differences between low resolution analysis 

and RTMA analysis disappear or become smaller after the downscaling process (not 

shown), suggesting that low resolution GDAS analysis is made to look more similar to 

high resolution RTMA through downscaling. It provides a possibility that the downscaling 

process is able to create fine resolution information based on coarse resolution fields, i.e., 

to predict high resolution analysis from low resolution analysis.    

 

Among the 5 downscaled ensembles, discrepancies are also discernible. The downscaled 

ensemble with 10% weight is the best. The 5% and 10% weight curves are relatively close 

at all lead times. Though the room available for improvement becomes smaller when the 

decay weight increases from 2% to 10%, it was suggested that we experiment with higher 

weights. Downscaled ensembles with decay weights of 20%, 30% and 50% were created 

and compared (not shown). A weight of 30% was finally adopted as an optimal choice and 

was used in the operational statistical downscaling process for NAEFS in 2007. 
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 4.3. NAEFS downscaled product performance 

   

These subsections describe the comparison between NAEFS final products and raw 

ensemble outputs. NAEFS products come from multi-ensembles system with ensemble 

size increased from 20 to 40 members. Considering its multi-ensemble characteristics, one 

hopes that the NAEFS will have a better global skill than a single NCEP/GEFS or 

CMC/GEFS.  In order to show the multi-ensemble results, the comparison is also 

performed with the single NCEP and CMC ensemble.   

 

Figure 5 gives an example of a 24-hour forecast of 2-meter temperature from the NCEP 

raw ensemble mean and NAEFS final product. The NAEFS can account for the complex 

influence of land surface heterogeneities. There is more detailed information added to the 

forecasts of NAEFS than the raw ensemble.  

 

Figure 6 compares mean absolute errors (MAE) of 12-hour forecasts of 2-meter 

temperature for September 2007 with 3 ensembles. The three images are for the NCEP raw 

ensemble, the NCEP bias-corrected and downscaled ensemble, and the NAEFS final 

product. All the MAE is calculated with respect to the RTMA analysis and use the same 

shading scales. Most biases are reduced due to the bias correction and downscaling 

processes (Figure 6a and 6b), especially over western high topography areas. The effects of 

multi-ensembles are also shown through the comparisons between downscaled NCEP and 

downscaled NAEFS. The domain- averaged MAE values for the 3 images are 1.999, 1.161 
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and 1.002, indicating that the combined NAEFS has more advantage than the single 

NCEP/GEFS system.  

 

Figure 7 shows the MAE change with forecast lead time for four ensemble systems. They 

are the NCEP raw ensemble (NCEP_raw), NCEP bias corrected and downscaled ensemble 

(NCEP_drbcds,), CMC bias corrected and downscaled ensemble (CMC_bcds), and 

NAEFS final products. The MAE of 2-meter temperature is shown to decrease mostly after 

the downscaling process is applied to the ensembles (Figure 7a). Both NCEP and CMC 

have very comparable ensemble forecast systems. The final NAEFS product gains +4 days 

compared to NCEP raw forecast.  The result for the u-component of the 10-meter wind 

also indicate the fact that an ensemble size increase from 20 to 40 members can improve 

the skill of the multi-ensemble system compared to its components (Figure 7b). 

 

Figure 8 displays ensemble RMSE and ensemble spread for the four ensembles as in 

Figure 7. The downscaled forecasts (NAEFS, NCEP_drbcds, CMC_bcds) have reduced 

ensemble RMSE compared with the raw and bias-corrected ensemble (NCEP_raw). The 

NAEFS has the smallest RMSE at all lead times with RMS errors reduced by around 12% 

- 35%.  NAEFS has the largest spread, especially for long lead time. The NCEP_raw and 

NCEP_drbcds have identical ensemble spread. The reason for this is that the bias 

correction of NCEP/GEFS is designed only to reduce their systematic errors for the first 

moment. Higher moments such as ensemble spread are not impacted.   
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The reliability and resolution of NAEFS products are also investigated. Figure 9 shows the 

CONUS performance (CRPS) of four ensemble systems. CRPS is used to measure the 

distance of the ensemble’s distribution from the true distribution. The CRPS score shows 

that the downscaled NAEFS gains 8 days in score as compared to the NCEP raw ensemble.   

  

4.4. NAEFS and MDL/GMOS products     

 

This subsection compares downscaled NAEFS and MDL/GMOS products. The 

comparison shown for 2-meter temperature only. The period is from September 5 2007 to 

September 30 2007. Both MDL/GMOS and downscaled NAEFS products are gridded 

guidance and the verifications are against RTMA. As already mentioned, the goal is not to 

present an exhaustive comparison, but to show the general characteristics of statistical 

downscaling in this study. Figure 10 shows verifications of NAEFS and MDL/GMOS for 

2-meter temperature.  Results indicate that downscaled NAEFS have smaller MAE than 

GMOS from day 1 through day 8.  

To examine the extent of the improvement obtained from downscaling, comparisons of the 

NAEFS with MDL/GMOS in four NWS CONUS regions (southern US, western US, 

central US and eastern US) were performed. For NAEFS, the extent of MAE improvement 

in western areas is better than that of the other three regions. There was approximately a 

15%- 30% of reduction of MAE errors as compared to MDL/GMOS. For the other three 

regions, NAEFS is better than MDL/GMOS from day 1 to 5, and becomes comparable to 

MDL/GMOS for the remaining three days.  The western areas have complex terrain. 
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Downscaling technique is effective in producing high- resolution products that represent 

grid analysis very well with smaller MAE. On the other hand, most elements of GMOS are 

created by analyzing all available MOS station forecasts (Glahn et al. 2008). The relative 

high MAE of GMOS comes from station observation uncertainty. It is not a surprising 

result because the downscaling process is trained through RTMA analysis and GMOS are 

trained by observations. In current data assimilation system, it is difficult to find a 

reference to satisfy all the products verification. The evaluations and comparisons among 

several products help us to understand the characteristics of a new technique.    

5. Summary and Future Plan 

   

In the NAEFS, a set of statistical post processing techniques has been designed and applied 

for both NCEP/GEFS and CMC/GEFS in operation. Among them, the most important 

approaches are the bias correction and statistical downscaling. The bias correction is used 

to statistically correct ensemble lead-time- dependent systematic errors. The statistical 

downscaling aims to compensate the lack of details of model spatial/temporal resolution. 

These are two separate and independent processing techniques. Both are intended to 

improve ensemble prediction reliability and resolution. The correction method was 

implemented operationally at both centres (NCEP and CMC) in 2006. The statistical 

downscaling method was implemented at NCEP in 2007. Today’s post-processor produces 

outputs on 1°x1° latitude/longitude grids for 49 variables and on 5x5 km grid for four 

fields covering the CONUS: surface pressure, 2-meter temperature, and 10-meter wind 

components (u and v). The post-processor uses equal weights and dual resolution methods 
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when combining a limited set of NCEP ensembles and high resolution GFS forecasts. The 

downscaled probabilistic forecast products are for NECP/GEFS and NAEFS. After 

applying the statistical post processing, the quality and value of ensemble forecast, 

including both its reliability and resolution, show a significant increase.   

 

This study has provided a discussion of the positive and negative effects of the NAES post-

processing system with a focus on the downscaling method. The statistical downscaling 

method is a process of deriving information from high resolution analysis and inserting 

variability into coarse forecasts.  A decay weight of 0.3 is chosen in operations for 

accumulating analysis differences between RTMA and GDAS. Downscaling helps 

enhance “spatial” resolution and is not dependent on lead time.   There is more forecast 

detail in the downscaled forecast while around 10% - 30% of RMS errors are reduced. The 

variability of the reliability of downscaled ensemble forecasts is investigated. CRPSS show 

that the downscaled and bias-corrected ensemble forecasts have been improved compared 

with the raw ensembles. NAEFS product has reduced mean absolute errors by 4+ days and 

improved probabilistic skills by 8+ days. NAEFS has a better global skill than a single 

NCEP/GEFS or CMC/GEFS. Downscaling contributes more to ensemble performance 

than bias correction and the multi-ensemble approach. 

 

There is great need for bias-corrected and downscaled forecasts among the ensemble user 

groups. Downscaling offers the chance to transfer more information into the low resolution 

forecasts for valuable surface variables at low cost. The design and application of 

downscaling are simple that offer the potential to easily incorporate successful 
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downscaling methods into operational prediction systems for different regions, models or 

ensemble outputs. Once the RTMA is available, the statistical downscaling method can be 

applied to other regions such as Alaska, Hawaii, Puerto Rico and Guam. More new 

variables are also easily added.  New downscaling techniques were implemented recently 

in December 2010 for the Alaska region. In addition to the four variables in current 

CONUS operations, four new important and high-demand surface variables have been 

included: wind speed and direction, maximum and minimum temperature. New 

downscaling methods for the four new variables have been developed (to be discussed in 

another paper) and probabilistic forecasts (10%, 50%, and 90%), ensemble mean, mode 

and spread are produced, four times per day out to 16 days. 

 

One goal of the statistical downscaling is to provide high-resolution probabilistic products 

for as many NDGD elements as possible. The probabilistic guidance should be accurate, 

reflect high-resolution terrain, and provide good forecast continuity. NAEFS enhancements 

and implementations are still in progress. NAEFS plan to upgrade CONUS products with 

four additional variables as in Alaska and two new variables (2-meter dew point 

temperature, 2-meter relative humility). New downscaling methods are being developed 

and are expected to be implemented in NCEP operations in 2012. NAEFS is providing 

more guidance of user-relevant variables on the fine scale.  
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Figure 1.  Cosine weighting function wgfs(t)  used to weight NCEP high resolution forecast 

GFS and ensemble control forecast CTL.  
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Figure 2.  Example of 2-meter temperature 120 hour forecasts (K, contour) and forecast 

errors (shaded) for (a) NCEP raw ensemble mean and (b) NCEP bias corrected ensemble 

mean. The initial times are 0000UTC 7 October, 2006. 

 

 

 
 

Figure 3.  ROC areas (from 0 to1) for the NCEP 14 global ensemble raw forecast 

(E14s), compared to the bias corrected forecast (E14sb) and the dual resolution bias 

corrected forecast (E14hbbc) for NH 2-meter temperature for one month from May 

13, 2007 to June 15, 2007. 
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Figure 4. 3 months averaged ensemble mean forecast errors of 2-meter temperature ending 

at 2007030500 for NCEP raw ensemble (gefs_raw), bias corrected ensemble (gefs_bc), 

bias corrected and downscaled ensemble with weights of 0.5%, 1%, 2%, 5% and 10% 

(gefs_bcds_0.5%, gefs_bcds_1%, gefs_bcds_2%, gefs_bcds_5%, gefs_bcds_10%).   

 

 
 

Figure 5.  Example of 2-meter temperature 24 hour forecast (K): (a) NCEP raw ensemble 

mean  and (b) NAEFS bias corrected and downscaled ensemble mean.   
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Figure 6. Mean absolute error of 2-meter temperature 12 hour forecasts with respect to 

RTMA for CONUS for September 2007: (a) NCEP raw ensemble forecasts, (b) NCEP bias 

corrected and downscaled ensemble forecasts, and (c) NAEFS final forecasts.  
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Figure 7.  CONUS MAE of September 2007 for NAEFS final products (NAEFS), NCEP 

raw ensemble (NCEP_raw), NCEP bias corrected and downscaled ensemble 

(NCEP_drbcds), CMC bias corrected and downscaled  ensemble (CMC_bcds) for (a) 2-

meter temperature, and (b) 10-meter wind u component. 
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Figure 8.  As in Fig.7, but for the ensemble RMSE (solid) and ensemble spread 

(dashed)  of 2-meter temperature 
 

 

Figure 9.  As in Fig.7, but for the CRPS of 2-meter temperature. 
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Figure 10.  Mean absolute errors of 2-m temperature for September 2007.  Forecasts are 

from MDL/GMOS forecast and NAEFS final products and verified against RTMA.  

 

   


