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Abstract 25 

The Ensemble Transform with Rescaling (ETR) method has been used to produce fast 26 

growing components of analysis error in the NCEP Global Ensemble Forecast System (GEFS). 27 

The rescaling mask contained in the ETR method constrains the amplitude of perturbations to 28 

reflect regional changes of analysis error. However, due to a lack of suitable three-dimensional 29 

(3D) analysis error estimation, in the operational GEFS the mask is based on an estimated 30 

analysis error at 500hPa and is not flow-dependent but changes monthly. With the availability of 31 

an ensemble-based data assimilation system at NCEP, a 3D mask can be computed. This study 32 

generates initial perturbations by the Ensemble Transform with 3D Rescaling (ET_3DR) and 33 

compares the performance with the ETR. Meanwhile, the ET_3DR is also applied into the 34 

Ensemble Kalman Filter (EnKF) method (hereinafter referred to as EnKF_3DR).  35 

Results from a set of experiments indicate that the 3D mask affects the amplitude of initial 36 

perturbations. Relative to the ETR, the large amplitudes of the ET_3DR initial perturbations at 37 

500hPa connect better with baroclinic instability areas over the extra-tropics and deep convection 38 

areas over the tropics. Furthermore, the maxima of vertical distribution for the ET_3DR initial 39 

perturbations correspond to the subtropical jet region and tropical easterlies jet region. The better 40 

distribution of the perturbations is found to produce faster spread growths. Results with 41 

EnKF_3DR also show benefits. The variance along orthogonal basis vectors in the EnKF_3DR is 42 

maintained more than in the EnKF. Furthermore, it is found that the EnKF_3DR outperforms the 43 

EnKF. 44 

 45 

 46 

 47 
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1. Introduction 48 

    Ensemble generation methods seek to create a set of initial perturbations representative of 49 

analysis errors in a numerical weather prediction system with the goal to improve its probabilitic 50 

forecast performance. The analysis errors can be decomposed into nongrowing and growing 51 

(Toth and Kalnay, 1997). The nongrowing errors have large dimensional subspace, which cannot 52 

be sampled with a limited number of ensemble members and these errors will typically lose their 53 

amplitude rapidly. The growing errors amplify fast and dominate the short-range forecast error 54 

growth. Therefore, the success of an ensemble generation method lies on how well its 55 

perturbations sample the growing errors in the analysis.  56 

    The Breeding Vector (BV) method (Toth and Kalnay, 1993, 1997) creates perturbations that 57 

grow fast by inserting (“breeding”) rescaled errors from previous cycles. After several cycles, the 58 

growing component amplifies, and the nongrowing component is eliminated. However, the BV 59 

method alone is insufficient to systematically capture all initial uncertainties (Annan, 2004; 60 

Buizza et al., 2005). Therefore, an improved version of the BV, the Ensemble Transform (ET) 61 

method is introduced to generate initial perturbations which are globally transformed from the 62 

forecast perturbations (Bishop and Toth, 1999; Wei et al., 2008). As the BV method, the ET also 63 

generates a flow-dependent spatial structure and is able to represent fast growing component of 64 

analysis errors with minimal computer expense. The advantages of the ET are that the 65 

perturbations have the maximum number of effective degrees of freedom and are more 66 

consistent with the data assimilation system due to their orthogonalization in the inverse analysis 67 

error variance norm (Wei et al., 2008); more importantly ET outperforms BV in standard 68 

probabilistic skill scores.  69 
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    The analysis error variance decides the analysis perturbation globally during the 70 

transformation, but the initial spread distribution can be regionally inconsistent with the analysis 71 

error variance due to the limited ensemble size compared with the state dimension (McLay et al., 72 

2008; Wei et al., 2008). McLay et al. (2010) performed the local ET with partitioning the global 73 

domain into latitude bands or latitude-longitude blocks, resulting in a better agreement with 74 

analysis error variance and improved ensemble performance. At NCEP, a simple remedy that 75 

regional rescaling process is imposed into the ET initialization periodically to make the 76 

amplitude of initial perturbations vary in accordance with regional changes of analysis 77 

uncertainties. This regional rescaling improved both the spread distribution of initial 78 

perturbations and most probabilistic scores with respect to the ET without rescaling (Wei et al. 79 

2008). The regional rescaling factor is designed as the ratio of the mask and the square root of a 80 

special norm of analysis perturbations at each grid point. The choice of mask is the key to the 81 

regional rescaling. In the NCEP operation, the mask is calculated using a long term averaged 82 

root-mean-square of analysis error variance in the kinetic energy norm at the 500hPa level 83 

obtained from variational data assimilation system (Szunyogh and Toth, 2002; Wei et al., 2008). 84 

But the current mask is not adequate enough for using in the context of ensemble forecast system 85 

to represent the analysis uncertainties. First and foremost, the two-dimensional (2D) mask cannot 86 

represent the vertical structure of analysis uncertainties. To compensate for the underestimate of 87 

analysis error, extra inflations with empirical factor have to be applied to the mask for levels 88 

below 500hPa at NCEP. But it is obviously not optimal for regional rescaling. Second, the mask 89 

was computed from a past decade climatological data, during which the density and accuracy of 90 

observation, as well as the data assimilation technology all have greatly changed. Thus, there is a 91 

need to update the mask with the estimation of analysis errors from the current real time data 92 
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assimilation system to make the initial perturbations more consistent with the observations and 93 

data assimilation system. As found in the study of Wei et al. (2008), compared with the ET 94 

method, the ETR failed to show high spread in the southern-ocean storm track area due to the 95 

mask, which indicated a more accurate time-dependent mask was necessary. Third, the total 96 

energy norm may be more reasonable to measure the magnitude of initial perturbations than the 97 

kinetic energy norm. Palmer et al. (1998) found that the total energy is more consistent with 98 

analysis error statistics than the streamfunction, enstrophy or kinetic energy metric. Some 99 

previous studies also considered parts of these problems above and designed different masks. 100 

Wang and Bishop (2003) chose the square root of the seasonally and vertically averaged initial 101 

ensemble wind variance from the Ensemble Transform Kalman Filter (ETKF) ensemble as the 102 

mask applied in the BV method. Magnusson et al. (2008) designed vertically integrated 103 

estimation of analysis errors using total energy norm from four-dimensional variational (4D-Var) 104 

assimilation system as the mask. In this paper, a new mask will be defined by 3D analysis 105 

uncertainty measured in total energy norm obtained from the 80-member ensemble analysis 106 

generated by the NCEP’s hybrid 3D-Var/EnKF system (Wang et al., 2013). The sensitivity of 107 

ETR perturbations and forecast skill to the mask in the NCEP GEFS will be explored. 108 

Relative to the variational data assimilation method with static background error, the 109 

ensemble-based data assimilation has the ability to provide flow-dependent estimates of the 110 

background error. Moreover, the ensemble-based data assimilation generates a set of initial 111 

analysis to initialize the ensemble of predictions in the next cycle and also to provide an estimate 112 

of the analysis error, which unifies the ensemble forecast and data assimilation steps. 113 

Consequently, many Numerical Weather Prediction (NWP) centers are adopting the use of 114 

ensemble technology to produce analysis in the data assimilation system and initial conditions in 115 
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the ensemble prediction system simultaneously, such as the Meteorological Service of Canada 116 

(MSC) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Researches 117 

demonstrate that the ensemble-based data assimilation is beneficial for both systems by 118 

producing flow-dependent estimates of analysis uncertainty and background error uncertainty 119 

(Buehner et al., 2010a, b; Buizza et al., 2008, 2010). A hybrid 3D-Var/EnKF data assimilation 120 

system became operational on 22 May 2012 at the NCEP (Wang et al., 2013). In this system, the 121 

background error is created by a combination of static background error from the 3D-Var and 122 

flow-dependent background error produced from the EnKF, and the EnKF perturbations are 123 

recentered on the hybrid analysis. The hybrid 3D-Var/EnKF provided better analyses and 124 

subsequent forecasts than the previous operational 3D-Var (at 125 

http://www.emc.ncep.noaa.gov/GFS/impl.php). 126 

    Since the ETR method is able to maximize the effective degrees of perturbation freedom 127 

without extra cost of computer resources, applying the ETR on other ensemble analysis (e.g. 128 

multi-center analysis, or analysis from ensemble-based data assimilation) may have a positive 129 

impact on the quality of initial conditions. The availability of the EnKF in the NCEP Global Data 130 

Assimilation System (GDAS) provides alternative ensemble initial conditions for the operational 131 

GEFS. The performance of the EnKF and ETR perturbations in the NCEP operational 132 

environment is compared and will be presented in another paper. In this study, the EnKF 133 

ensemble analysis will be transformed and rescaled by ET_3DR, and the impact will be explored. 134 

    In the next section, the methodology of ET_3DR and EnKF_3DR are described. Section 3 135 

investigates the horizontal and vertical distributions of perturbations generated by the ETR and 136 

ET_3DR, and compares their forecast performances. In section 4, the characteristic of initial 137 
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perturbations generated by the EnKF and EnKF_3DR is analyzed, and their forecast skills are 138 

compared. The conclusions are summarized in section 5. 139 

2. Initialization methodologies and experimental design 140 

2.1 Initialization methodologies  141 

a. The ET_3DR method 142 

In the ETR scheme (Wei et al., 2006; Wei et al., 2008), the analysis perturbations matrix a
X  143 

are generated from the forecast perturbations matrix f
X  through an ensemble transformation 144 

matrix T as follows 145 

a f
X = X T ,                                                                      (1) 146 

where n analysis perturbations a

i
x  (i=1, 2, …, n) are listed as columns in the matrix a

X , and n 147 

forecast perturbations f

i
x  (i=1, 2, …, n) are listed as columns in the matrix f

X . After the 148 

transformation, all perturbations are orthogonal. As shown in Wei et al. (2008) and Ma et al. 149 

(2012), the transformation matrix T is given by 150 

T=CҒ
-1/2

,                                                                     (2) 151 

where columns of the matrix C contain the orthonormal eigenvectors ( ic , i=1, 2, …, n) of the 152 

matrix 11
( ) ( )

1

f T a f

n




X P X , and the diagonal matrix Γ  contains the corresponding eigenvalues 153 

( i , i=1, 2, …, n), in which the first n-1 eigenvalues are non-zero and the last eigenvalue is zero. 154 

A diagonal matrix Ғ is defined by setting the zero eigenvalue in Γ  to a non-zero constant  . 155 

The diagonal matrix aP  contains the analysis error variances. Then, a simplex transformation is 156 

performed to mask analysis perturbations be centered on the analysis, but perturbations become 157 

quasi-orthogonal at this step. 158 
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To make the amplitude of initial perturbations vary in accordance with regional changes of 159 

analysis uncertainties, a
X  is rescaled using a rescaling factor   which is designed as 160 

,     

   1  ,          

mask
if mask pertb

pertb

if mask pertb






 
 

.                                                                 (3) 161 

Here, mask  denotes a long term averaged root-mean-square of analysis error variance; pertb  is 162 

the square root of a special norm from a
X  at each grid point. If the ratio is larger than 1.0, the 163 

rescaling factor will be set to 1.0, which means the perturbations can grow freely; otherwise the 164 

amplitude will be rescaled to the size of the mask. 165 

The mask used in the current NCEP operational GEFS is a 2D mask, which is computed from 166 

a long term averaged root-mean-square of analysis error variance in the kinetic energy norm at 167 

the 500hPa level obtained from variational data assimilation system (Szunyogh and Toth, 2002; 168 

Wei et al., 2008).  169 

As discussed in section 1, an ensemble of analyses can be obtained from the NCEP operational 170 

hybrid 3D-Var/EnKF data assimilation system directly, which can provide a flow-dependent 171 

estimate of analysis error. In this study, the 3D mask is defined by the root-mean-square of the 172 

deviation total energy norm TE computed from 80-member EnKF analysis 173 

80
2 2 2

1

1 1
( )

80 2
i i i

i

TE u v T


     ,                                                    (4) 174 

where 
iu  , iv and 

iT   (i=1, 2, …, 80) are the deviation of the ith EnKF member from EnKF mean 175 

analysis for the wind components and temperature. 
p

r

c

T
   equals approximately 1 24.0JKg K  in 176 

which pc  is the special heat at constant pressure and rT  is the reference temperature. For the 177 

purpose of representative of the typical large-scale components and considering the most recent 178 
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behavior of analysis uncertainties meanwhile, the decaying average method (Cui et al., 2012) is 179 

employed to accumulate the mask, given by 180 

( ) (1 ) ( 1) ( )ave aveTE t w TE t wTE t    .                                               (5) 181 

Here, the averaged mask ( )aveTE t is updated by the prior period averaged mask ( 1)aveTE t  and 182 

the most recent ( )TE t  with the weight coefficient w ( 2%w   in this study). To preserve most of 183 

the dynamical balance in the perturbations, the mask is smoothed horizontally with a spectral 184 

filter. 185 

    Figure 1a, b show the horizontal distribution of the 2D and 3D mask at 500hPa over the period 186 

1 September - 30 November 2012. The 2D mask obtained from static analysis error estimation, 187 

has large amplitude over the poorly observed oceans and small amplitude over the data-rich 188 

continents. Over the mid-latitudes, the 3D mask estimated from the EnKF data assimilation 189 

system has relatively small amplitude over the continents compared to the oceans, but this 190 

property is not quite obvious like the 2D mask. That is because the EnKF ensemble analysis used 191 

to produce the 3D mask is processed with a multiplicative inflation algorithm to account for 192 

unrepresented error sources during the generation (Whitaker and Hamill, 2012). The values of 193 

inflation are proportional to the amount observations reduce the ensemble spread, which are 194 

large in regions of dense observations. The analysis error should be not only associated with the 195 

observation network but also the distribution of the atmospheric instability (Hamill et al., 2003). 196 

The 3D mask is more flow-dependent relative to the 2D mask. For example, over the northern 197 

and southern extra-tropics, for the 3D mask we see that areas over the maximum amplitude are 198 

respective around 60˚N and 60˚S corresponding to main regions of baroclinic energy conversions, 199 

but the maximum areas are over the poles in the 2D mask. That may solve the problem that the 200 

old rescaling factor cannot reduce the amplitudes enough at the higher latitudes (Toth and 201 
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Kalnay, 1997). Another striking difference is located in the tropics, which will be discussed in 202 

the next section. Figure 2 shows the vertical profile of the 2D and 3D mask over the same period 203 

as Fig. 1. In the 3D mask, the amplitude increases with the altitude and decreases after it reaches 204 

the maxima between the 300hPa and 100hPa. The vertical structure cannot be represented with 205 

the 2D mask. 206 

b. The EnKF_3DR method 207 

As illustrated in the Fig. 3, the following steps are performed to initialize the ensemble with 208 

the EnKF_3DR method. Firstly, use the EnKF method (Whitaker and Hamill, 2002) to generate 209 

ensemble analysis. In this study, the 80 EnKF analyses are directly obtained from the NCEP 210 

hybrid 3D-Var/EnKF data assimilation system. Secondly, compute the ensemble mean analysis 211 

and the 80 ensemble deviations from the ensemble mean analysis. The root-mean-square of the 212 

deviation total energy norm is calculated by Eq. (4). Finally, apply ET_3DR method onto the 80 213 

EnKF perturbations to generate 80 EnKF_3DR perturbations. The rescaling mask used in the 214 

ET_3DR method is the estimate of analysis error computed at the second step. 215 

2.2 Experimental design 216 

Four sets of ensemble generation experiments (ETR, ET_3DR, EnKF and EnKF_3DR) are 217 

performed using the NCEP Global Forecast System (GFS) model with a T254 horizontal 218 

resolution, 42 sigma-p hybrid vertical levels. The analysis is truncated from the T574L64 219 

analysis provided by the NCEP GDAS. The initial perturbations for the ETR and EnKF 220 

experiments are obtained from the operational GEFS and hybrid 3D-Var/EnKF data assimilation 221 

system respectively. The methods used to generate the ET_3DR and EnKF_3DR ensemble initial 222 

perturbations are described in subsection 2.1. The perturbations are updated every 6-hour for 80-223 

member and only 20-member is chosen for long forecasts due to limited computational resources. 224 
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The ET_3DR initial perturbation cycles are performed from 1 September to 30 November 2012 225 

and the first 10 days are used for the system to spin-up. The 8-day long forecasts of the four sets 226 

experiments are produced once per day (00 UTC) between 11 September and 30 November 2012 227 

(81 cases). To represent model error, all experiments use the Stochastic Total Tendency 228 

Perturbation (STTP) (Hou et al., 2006, 2008) as in the NCEP operational GEFS. Verification 229 

results are presented for 500hPa geopotential height (Z500); 850hPa temperature (T850); and 230 

250hPa, 850hPa, 10m u-components of wind (U250, U850, and U10m) over the extra-tropics of 231 

the Northern Hemisphere (NH, 20˚-80˚N), the extra-tropics of the Southern Hemisphere (SH, 232 

20˚-80˚S) and the Tropics (TR, 20˚S-20˚N). 233 

3. ETR versus ET_3DR 234 

3.1 Initial perturbation distribution 235 

Figure 4 shows the vertical profile of the square root of total energy of perturbations at 236 

different lead times for the ETR and ET_3DR experiments. Over the NH, the ETR has larger 237 

initial amplitude compared to the ET_3DR at the lower levels and the other maximum of initial 238 

perturbations is at 250hPa, which is slightly smaller than the ET_3DR (the left panel of Fig. 4a). 239 

The left panel of Figs. 4b, c, d shows that the ET_3DR grows faster than the ETR. After 12-h, 240 

the amplitude of ET_3DR perturbations gets closer to the ETR below 700hPa, and the difference 241 

becomes larger than that at the initial time above 700hPa. After 48-h, the perturbations of the 242 

ET_3DR are larger than the ETR for all levels. Over the SH (the middle panel of Figs. 4a, b, c, 243 

d), the situation exhibits similarity with that over the NH. The growth rate over the TR (the right 244 

panel of Figs. 4a, b, c, d) is lower than that over the NH and SH. At the upper levels, the 245 

maximum of the ETR (ET_3DR) initial perturbations is at 200hPa (100hPa) and their growth 246 

rates are comparable. At the lower levels, to compensate for the slow growth of the ETR 247 
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perturbations, the amplitude of its initial perturbations is much larger than that for the ET_3DR, 248 

but the amplitude of perturbations for the ETR is still caught up by the ET_3DR after 96-h. The 249 

fast growth of the ET_3DR perturbations compared to the ETR shown in Fig. 4 may be due to its 250 

structure of initial perturbations which could better sample the analysis error with applying the 251 

3D regional rescaling mask. To further illustrate the details of the initial perturbations, the 252 

horizontal and vertical distributions will be analyzed below. 253 

 Figure 5 shows the horizontal distribution of the square root of total energy of initial 254 

perturbations on the 500hPa level for the two experiments. It is found that the regional rescaling 255 

masks applied for the ETR and ET_3DR experiments have great impact on their initial 256 

perturbations. For the ETR (Fig. 5a), the maxima are around the poles. In addition, the dominant 257 

feature of initial perturbations is the locations of the maxima and minima coinciding with the 258 

distributions of oceans and continents. The maxima are over the North Pacific, Atlantic and 259 

Indian Oceans, and the minima are located in the North America, Eurasia and Australia. For the 260 

ET_3DR (Fig. 5b), the large initial perturbations are over the meridional bands around 60°N, 261 

60°S and the equator, which seem to be related to the baroclinic zones and tropical convection 262 

zones respectively. The flow-dependent ET_3DR initial perturbations will be beneficial for 263 

obtaining a sufficient dispersed ensemble in the medium range. 264 

To investigate the connection between the initial perturbations and baroclinic instability, the 265 

correlation coefficients between the Eady index and the square root of total energy of initial 266 

perturbations over the NH and SH for both experiments are shown in Fig. 6 in which the shades 267 

indicate that the correlation is statistically significant at the 95% confidence interval. The Eady 268 

index which is a simple measure of the most unstable Eady mode, is defined as (Hoskins and 269 

Valds, 1990)   270 
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0.31E

f du

N dz
  ,                                                                      (6) 271 

where f is the Coriolis  parameter, N is the static stability, u is the magnitude of the vector wind. 272 

Here, 
1

2
ln

( )
d

N g
dz


  and 

du

dz
 are computed using the 300hPa and 1000hPa potential temperature 273 

and wind from the NCEP Final Analyses. Over the NH (Figs. 6a, b), the areas of initial 274 

perturbations for the ET_3DR which are statistically significantly correlated with the Eady index 275 

are larger than the ones for the ETR. Especially, the correlation coefficients are higher than 0.6 276 

even up to 0.8 over the western part of the Pacific Ocean and the Atlantic Ocean in the ET_3DR 277 

experiment. Over the SH (Figs. 6c, d), the correlations in the two experiments are low compared 278 

to those over the NH. 279 

Over the TR, the deep convection has an important role on the development of perturbations 280 

through the release of latent heating. To illustrate the relationship between the initial 281 

perturbations and deep convection, the outgoing longwave radiation (OLR) which is a common 282 

measure of the intensity of the tropical convection is plotted in Fig. 7. The low value of OLR 283 

represents intense tropical convection. For the ET_3DR (Figs. 5b, 7), the locations of the 284 

maxima of initial perturbations accurately coincide with the intense deep convection zones (low 285 

OLR) except the maximum over the eastern Pacific Ocean. This connection cannot be detected at 286 

all in the ETR experiment (Figs. 5a, 7). 287 

Figure 8 shows the zonal average of the square root of total energy of initial perturbations. For 288 

the ETR (Fig. 8a), below the 200hPa level, the minima of initial perturbations on both 289 

hemispheres are around 60°N and 40°S, respectively. Over the TR, there are two maxima at 290 

10°N, 300hPa and 950hPa. Above the 200hPa level, the perturbations decrease with the height 291 

over the globe. For the ET_3DR (Fig. 8b), the amplitude is slightly larger over the SH than over 292 
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the NH. The maxima are around 55°N and 55°S at 300hPa, which correspond with the 293 

subtropical jet regions. Over the TR, the maximum is around 10°N, 100hPa, near the tropical 294 

easterlies jet region. 295 

3.2 Ensemble forecast skill 296 

The verification methods used to evaluate the ensemble forecast skills with ETR and ET_3DR 297 

initial perturbations include Root Mean Square Error (RMSE; Toth et al., 2003) of ensemble 298 

mean and Continuous Ranked Probability Score (CRPS; Toth et al., 2003; Wilks, 2006). The 299 

paired block bootstrap algorithm (Hamill, 1999) is used to estimate the statistical significance of 300 

differences in scores. In this study, 95% confidence interval is computed from a bootstrap 301 

resampling using 1000 random samples of the 81 cases. 302 

a. RMSE and ensemble spread 303 

    Figures 9a, b, c, d show the ensemble mean RMSE and ensemble spread for U250, Z500, 304 

U850, and T850 over the NH. Comparing the RMSE of the ETR and ET_3DR experiments, the 305 

results have no significant differences for all lead times. Regarding the ensemble spread, there 306 

are substantial differences between the two experiments. For U250, the ET_3DR and ETR have 307 

the same size of initial perturbations, but the ET_3DR grows faster than the ETR and keeps 308 

being consistent with the RMSE for all lead times as a perfect ensemble forecast system should 309 

do (Fig. 9a). For the indirect model variable Z500, figure 9b shows that the ET_3DR starts from 310 

a larger spread and overestimates the ensemble mean errors, but the amplitude of initial 311 

perturbations could be tuned further to give a similar spread to the errors at the initial time. For 312 

U850 and T850, the ET_3DR initial perturbations are much smaller than the ETR, but the spread 313 

catches up after 24-h and gets close to the RMSE gradually (Figs. 9c, d). Over the SH (Figs. 10a, 314 

b, c, d), the results are similar to the ones over the NH.  315 
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Figures 11a, b show the RMSE and spread for U850 and U10m since the wind field is of more 316 

interest than the mass field over the TR. The ETR starts from a much larger spread than the 317 

ET_3DR and decays during the first 2-d. The spread of ET_3DR has higher growth rate than the 318 

ETR especially for the first 2-d. As found in section 3.1, that is attributed to the close connection 319 

between the initial perturbations of the ET_3DR over the TR and the tropical deep convection 320 

which is an important factor for the development of perturbations. The ETR has significantly 321 

higher RMSE than the ET_3DR at 12-h lead time. Both experiments produce smaller spread than 322 

the RMSE. Because the growth in the ensemble spread over the TR is mostly determined by the 323 

physical processes, while that over the NH and SH is mainly influenced by the dynamic 324 

instability, sampling the model related errors plays a more important role on the ensemble spread 325 

over the TR.  326 

Overall, the main advantage of the ET_3DR as the figures shown is the higher growth rate 327 

unlike the ETR method which artificially increases the amplitude of the initial perturbations to 328 

compensate for the low growth rate of spread with the cost of negative effects on the 329 

performance at short lead times. This advantage is especially obvious at lower levels and over 330 

the TR. 331 

b. Continuous Ranked Probability Score (CRPS) 332 

The CRPS is used to measure the reliability and resolution of ensemble-based probabilistic 333 

forecasts by calculating the distance between the predicted and the observed cumulative 334 

distribution functions of scalar variables. The smaller the score is, the better the quality of the 335 

probabilistic forecast is. Over the NH, the CRPS for U250 is similar for the two experiments (Fig. 336 

12a). The ETR has significantly smaller score than the ET_3DR for the first 12-h for Z500 (Fig. 337 

12b). There are more improvements on the probabilistic forecast score for lower levels compared 338 
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to upper levels using the ET_3DR initial perturbations. For U850, the ET_3DR produces 339 

statistically significantly better probabilistic forecast for the first 4-d than the ETR (Fig. 12c). For 340 

T850, the ET_3DR has slightly but statistically significantly better performance for the first 2-d 341 

than the ETR (Fig. 12d). Over the SH (Figs. 13a, b, c, d), the results are generally similar to that 342 

over the NH, except that the ET_3DR presents statistically significantly smaller value than the 343 

ETR only for lead times up to 12-h for U850 and T850. Over the TR (Fig. 14), the ET_3DR has 344 

statistically significantly better performance than the ETR for almost all 8-d lead times except 345 

day 1.5-2.5 for U850. For U10m, the ET_3DR has statistically significant advantage over the 346 

ETR for the first 1-d. 347 

4 EnKF versus EnKF_3DR 348 

4.1 Initial perturbation  349 

    Initial perturbations should span as many unstable directions of the atmosphere as possible 350 

with limited ensemble members. The eigenvalue spectra of the covariance matrix of the initial 351 

perturbations can be used to evaluate the distribution of the amounts in independent directions. 352 

Figure 15 shows the mean eigenvalue spectra for Z500 during the period 11 September - 30 353 

November 2012 over the globe. It is found that the initial perturbations of the EnKF are too 354 

much contained in the direction of the first mode. The EnKF_3DR has flatter spectra than the 355 

EnKF, implying that the ensemble members are more independent than the EnKF, which may 356 

have potentially positive impact on the ensemble performance. 357 

4.2 Ensemble forecast skill 358 

The results of the EnKF and EnKF_3DR experiments will be compared in this section using 359 

the same verification methods as in section 3.2. 360 
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a. RMSE and ensemble spread 361 

In Fig. 16, the RMSE and ensemble spread for U250, Z500, U850 and T850 over the NH are 362 

shown. Comparing the RMSE, the EnKF_3DR is slightly better than the EnKF for U250 and 363 

Z500 (Figs. 16a, b), but the difference is not statistically significant for U250 and only 364 

significant for the first 1-d for Z500. Results for U850 and T850 (Figs. 16c, d) show that the 365 

EnKF_3DR has significantly smaller RMSE than the EnKF for the first 3.5-d. Regarding the 366 

ensemble spread, the growth rates are basically similar for the two experiments. For U250 and 367 

Z500, the initial spread for the EnKF_3DR is slightly smaller than the EnKF, and the spread for 368 

the EnKF_3DR is more consistent with the RMSE compared to the EnKF until 4-d for U250 and 369 

all lead times for Z500 (Figs. 16a, b). For U850 and T850, the spread grows somewhat slower 370 

than the RMSE for short lead times, but becomes almost equal to the RMSE with the increasing 371 

of forecast length (Figs. 16c, d). 372 

Over the SH, the difference of the RMSE between the two experiments for U250 is also not 373 

significant for all lead times (Fig. 17a). The forecast length, during which the EnKF_3DR has 374 

significantly smaller RMSE than the EnKF, extends to 6.5-d for Z500 (Fig. 17b). For U850 and 375 

T850, the EnKF_3DR produces smaller RMSE than the EnKF, and the difference is statistically 376 

significant for all lead times (Figs. 17c, d). The spread for U250 and Z500 in the EnKF_3DR 377 

experiment is more consistent with the RMSE compared to the one in the EnKF experiment 378 

which is much larger than the RMSE (Figs. 17a, b). Similar to the one over the NH, the spread 379 

for U850 and T850 grows slower than the RMSE during the first 3 to 4-d, and then becomes 380 

almost equal to the RMSE with the increasing of forecast length. 381 

Results for the TR (Fig. 18) show that U850 and U10m for both experiments appear to 382 

produce much less spread than the RMSE due to the under-sampling of model related errors. The 383 
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spread for the EnKF_3DR grows slightly slower than the EnKF, but the RMSE is substantially 384 

smaller than the EnKF. 385 

b. CRPS 386 

The CRPS for U250 shows similar scores between the two experiments for both hemispheres 387 

and only differs significantly for the first 12-h over the SH (Figs. 19a and 20a). For Z500, the 388 

EnKF_3DR produces slightly better probabilistic forecast than the EnKF over the NH, and the 389 

difference is significant for up to 2-d (Fig. 19b). Over the SH, the improvement becomes more 390 

apparent that is significant for 6.5-d (Fig. 20b). For U850 and T850, the EnKF_3DR has 391 

substantially better performance than the EnKF for both hemispheres. The difference is 392 

statistically significant until 4-d over the NH, and all lead times over the SH (Figs. 19c and 20c). 393 

Over the TR, for all lead times, the EnKF_3DR shows significantly better score for both U850 394 

and U10m (Fig. 21). 395 

5 Conclusions and discussion 396 

In the ETR method, the rescaling mask plays a critical role to constrain the amplitude of initial 397 

perturbations to reflect regional changes of analysis error. While the ETR used in the NCEP 398 

GEFS has proved to improve the spread and probabilistic skill of the ensemble forecasts over 399 

both BV and ET methods, its mask has several limitations, which in this study we attempt to 400 

address. There are three main modifications to the mask. First and foremost, for representing the 401 

vertical structure of analysis error, the 3D mask is employed instead of the 2D mask. This is the 402 

most advantage of the ET_3DR compared to the ETR. In the ETR method, due to the vertical-403 

constant mask used, extra inflations have to be applied to the mask for levels from model bottom 404 

to 500hPa with empirical factors to compensate for the underestimate of analysis errors. Second, 405 

with the availability of an ensemble of analyses from the hybrid 3DVar-EnKF data assimilation 406 
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system, on each data assimilation cycle a flow-dependent error variance is computed with real 407 

observations, which is associated with both the dynamics of the day and the observation density 408 

distribution. This new analysis error variance replaces the static analysis error variance. Third, 409 

the kinetic energy norm is changed into the total energy norm to measure the magnitude of initial 410 

perturbations. Results with the ETR and ET_3DR experiments performed from 11 September to 411 

30 November 2012 using the NCEP GFS indicate that these updates have direct impact on the 412 

perturbations. The horizontal distribution of the ETR initial perturbations at 500hPa coincides 413 

with the distribution of oceans and continents, but is not consistent with the flow. Because of the 414 

flow-dependent mask applied in the ET_3DR, the large amplitudes of the initial perturbations 415 

connect better with the areas of baroclinic instability over the NH and the areas of deep 416 

convection over the TR, which is beneficial for obtaining a sufficient dispersed ensemble in the 417 

medium range. The difference of vertical distribution for the ETR perturbations is small due to 418 

the vertical-constant mask, while the maxima of vertical distribution for the ET_3DR 419 

perturbations correspond to the subtropical jet region and tropical easterlies jet region. Since the 420 

amplitude of the initial perturbations for the ET_3DR is better consistent with the distribution of 421 

the atmospheric instability regions, the spread grows much faster than the ETR, especially at the 422 

lower levels and over the TR. Consequently, the choice of mask is important to perturbation 423 

growth and ensemble performance for the NCEP GEFS. 424 

    Since the ETR method is able to maximize the effective degrees of perturbation freedom 425 

without extra cost of computer resources, with the availability of the EnKF analyses in the NCEP 426 

GDAS, the EnKF_3DR method is designed in this study by applying ET_3DR on EnKF 427 

ensemble analysis. The eigenvalue spectra of the covariance matrix of the initial perturbations 428 

show that the ensemble members of the EnKF_3DR are more independent than the EnKF. By 429 
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evaluating the ensemble performance, it is found that the EnKF_3DR is substantially better than 430 

the EnKF, especially at the lower levels and over the TR.         431 

    The EnKF may be considered as the potential candidate of the NCEP operational GEFS initial 432 

perturbation method in the next implementation. However, from the results of this study, we can 433 

find that applying ET_3DR on EnKF is more beneficial for the improvement of the ensemble 434 

forecast performance than the EnKF. Further studies will explore the results using this strategy 435 

for other seasons. Furthermore, due to the merit of the ETR method, it may be also considered to 436 

apply on other ensemble analysis, such as multi-center analysis. 437 

Although the results of this study indicate that the improvement of the mask benefits the 438 

ensemble performance, this regional rescaling is only a simplified remedy to the complex 439 

problem of making initial spread distribution agree with the analysis error variance regionally. 440 

Therefore, future research effort should be on practical accounting for all sources of analysis 441 

uncertainties. 442 
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Figure Caption List 520 

Figure 1: The regional rescaling (a) 2D mask and (b) 3D mask at the 500hPa level over the 521 

period 1 September - 30 November 2012. The contour interval is 0.2 m s
-1

. 522 

Figure 2: The vertical profile of the 2D mask and 3D mask over the period 1 September - 30 523 

November 2012. 524 

Figure 3: The flow chart of the EnKF_3DR method. 525 

Figure 4:  The vertical profile of the square root of total energy (m s
-1

) of perturbations at (a) the 526 

initial time, (b) 12-h, (c) 48-h, and (d) 96-h forecast time for the ETR (dashed) and ET_3DR 527 

(solid) experiments at the 500hPa level as a mean for the period 11 September - 30 November 528 

2012. 529 

Figure 5: The square root of total energy (m s
-1

) of initial perturbations for the (a) ETR and (b) 530 

ET_3DR experiments at the 500hPa level as a mean for the period 11 September - 30 531 

November 2012.  532 

Figure 6: The correlation coefficients between the Eady index and the square root of total energy 533 

of initial perturbations, which are statistically significant at the 95% confidence interval for 534 

500hPa level over the period 11 September - 30 November 2012.  535 

Figure 7: The average OLR at the 500hPa level over the period 11 September - 30 November 536 

2012. The contour interval is 20W/m
2
. 537 

Figure 8: The zonal average of the square root of total energy (m s
-1

) of initial perturbations for 538 

the (a) ETR and (b) ET_3DR experiments at the 500hPa level as a mean for the period 11 539 

September - 30 November 2012. 540 
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Figure 9: The ensemble mean RMSE (solid) and ensemble spread (dashed) for (a) U250, (b) 541 

Z500, (c) U850 and (d) T850 over the NH. The vertical bars represent the 95% confidence 542 

interval from a paried block bootstrap. 543 

Figure 10: Same as in Fig. 9, but over the SH. 544 

Figure 11: The ensemble mean RMSE (solid) and ensemble spread (dashed) for (a) U850 and (b) 545 

U10m over the TR for the period 11 September - 30 November 2012. The vertical bars 546 

represent the 95% confidence interval from a paried block bootstrap. 547 

Figure 12: The CRPS for (a) U250, (b) Z500, (c) U850 and (d) T850 over the NH for the period 548 

11 September - 30 November 2012. The vertical bars represent the 95% confidence interval 549 

from a paried block bootstrap. 550 

Figure 13: Same as in Fig. 12, but over the SH. 551 

Figure 14: The CRPS for (a) U850 and (b) U10m over the TR for the period 11 September - 30 552 

November 2012. The vertical bars represent the 95% confidence interval from a paried block 553 

bootstrap. 554 

Figure 15: The mean eigenvalue spectra of the covariance matrix of the initial perturbations for 555 

Z500 during the period 11 September - 30 November 2012 over the globe. 556 

Figure 16: The ensemble mean RMSE (solid) and ensemble spread (dashed) for (a) U250, (b) 557 

Z500, (c) U850 and (d) T850 over the NH. The vertical bars represent the 95% confidence 558 

interval from a paried block bootstrap. 559 

Figure 17: Same as in Fig. 16, but over the SH. 560 

Figure 18: The ensemble mean RMSE (solid) and ensemble spread (dashed) for (a) U850 and (b) 561 

U10m over the TR for the period 11 September - 30 November 2012. The vertical bars 562 

represent the 95% confidence interval from a paried block bootstrap. 563 
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Figure 19: The CRPS for (a) U250, (b) Z500, (c) U850 and (d) T850 over the NH for the period 564 

11 September - 30 November 2012. The vertical bars represent the 95% confidence interval 565 

from a paried block bootstrap. 566 

Figure 20: Same as in Fig. 19, but over the SH. 567 

Figure 21: The CRPS for (a) U850 and (b) U10m over the TR for the period 11 September - 30 568 

November 2012. The vertical bars represent the 95% confidence interval from a paried block 569 

bootstrap. 570 
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(a) 587 

  588 

(b) 589 

  590 

Fig. 1 The regional rescaling (a) 2D mask and (b) 3D mask at the 500hPa level over the period 1 591 

September - 30 November 2012. The contour interval is 0.2 m s
-1

. 592 

 593 

 594 
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 595 

Fig. 2 The vertical profile of the 2D mask and 3D mask over the period 1 September - 30 596 

November 2012. 597 
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603 
  604 

Fig. 3 The flow chart of the EnKF_3DR method. 605 
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(a)  619 

(b)  620 

(c)  621 

(d)  622 

Fig. 4 The vertical profile of the square root of total energy (m s
-1

) of perturbations (a) at the 623 

initial time, after (b) 12-h, (c) 48-h, and (d) 96-h for the ETR (dashed) and ET_3DR (solid) 624 

experiments at the 500hPa level as a mean for the period 11 September - 30 November 2012. 625 
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(a) ETR 628 

 629 

(b) ET_3DR 630 

 631 

Fig. 5 The square root of total energy (m s
-1

) of initial perturbations for the (a) ETR and (b) 632 

ET_3DR experiments at the 500hPa level as a mean for the period 11 September - 30 November 633 

2012. 634 
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(a) ETR over NH 636 

 637 

(b) ET_3DR over NH 638 

 639 

(c) ETR over SH 640 

 641 

(d) ET_3DR over SH 642 

  643 

Fig. 6 The correlation coefficients between the Eady index and the square root of total energy of 644 

initial perturbations, which are statistically significant at the 95% confidence interval for 500hPa 645 

level over the period 11 September - 30 November 2012.  646 
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 651 

Fig. 7 The average OLR at the 500hPa level over the period 11 September - 30 November 2012. 652 

The contour interval is 20W/m
2
. 653 
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(a) ETR 672 

   673 

(b) ET_3DR 674 

 675 

Fig. 8 The zonal average of the square root of total energy (m s
-1

)  of initial perturbations for the 676 

(a) ETR and (b) ET_3DR experiments at the 500hPa level as a mean for the period 11 September 677 

- 30 November 2012. 678 
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(a)                                                                        (b) 680 

  681 

(c)                                                                        (d) 682 

   683 

Fig. 9 The ensemble mean RMSE (solid) and ensemble spread (dashed) for (a) U250, (b) Z500, 684 

(c) U850 and (d) T850 over the NH. The vertical bars represent the 95% confidence interval 685 

from a paried block bootstrap. 686 
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(a)                                                                        (b) 691 

  692 

(c)                                                                        (d) 693 

   694 

Fig. 10 Same as in Fig. 9, but over the SH. 695 
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(a)                                                                        (b) 702 

   703 

Fig. 11 The ensemble mean RMSE (solid) and ensemble spread (dashed) for (a) U850 and (b) 704 

U10m over the TR for the period 11 September - 30 November 2012. The vertical bars represent 705 

the 95% confidence interval from a paried block bootstrap. 706 
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(a)                                                                        (b) 719 

   720 

(c)                                                                        (d) 721 

   722 

Fig. 12 The CRPS for (a) U250, (b) Z500, (c) U850 and (d) T850 over the NH for the period 11 723 

September - 30 November 2012. The vertical bars represent the 95% confidence interval from a 724 

paried block bootstrap. 725 
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(a)                                                                        (b) 730 

   731 

(c)                                                                        (d) 732 

   733 

Fig. 13 Same as in Fig. 12, but over the SH. 734 
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(a)                                                                        (b) 741 

  742 

Fig.14 The CRPS for (a) U850 and (b) U10m over the TR for the period 11 September - 30 743 

November 2012. The vertical bars represent the 95% confidence interval from a paried block 744 

bootstrap. 745 
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 755 

Fig. 15 The mean eigenvalue spectra of the covariance matrix of the initial perturbations for 756 

Z500 during the period 11 September - 30 November 2012 over the globe. 757 
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(a)                                                                        (b) 773 

  774 

(c)                                                                        (d) 775 

   776 

Fig. 16 The ensemble mean RMSE (solid) and ensemble spread (dashed) for (a) U250, (b) Z500, 777 

(c) U850, and (d) T850 over the NH. The vertical bars represent the 95% confidence interval 778 

from a paried block bootstrap. 779 
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(a)                                                                        (b) 784 

  785 

(c)                                                                        (d) 786 

   787 

Fig. 17 Same as in Fig. 16, but over the SH. 788 
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(a)                                                                        (b) 795 

 796 

Fig. 18 The ensemble mean RMSE (solid) and ensemble spread (dashed) for (a) U850 and (b) 797 

U10m over the TR for the period 11 September - 30 November 2012. The vertical bars represent 798 

the 95% confidence interval from a paried block bootstrap. 799 
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 (a)                                                                        (b) 812 

   813 

(c)                                                                       (d)                                                          814 

 815 

Fig. 19 The CRPS for (a) U250, (b) Z500, (c) U850 and (d) T850 over the NH for the period 11 816 

September - 30 November 2012. The vertical bars represent the 95% confidence interval from a 817 

paried block bootstrap. 818 
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(a)                                                                        (b) 823 

  824 

(c)                                                                       (d) 825 

   826 

Fig. 20 Same as in Fig. 19, but over the SH. 827 
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(a)                                                                        (b) 834 

   835 

Fig. 21 The CRPS for (a) U850 and (b) U10m over the TR for the period 11 September - 30 836 

November 2012. The vertical bars represent the 95% confidence interval from a paried block 837 

bootstrap. 838 
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