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In the past decade, ensemble forecasting has developed into a major component of numerical 
weather prediction. With increases in computing resources, it is becoming more realistic to 
produce operational ensemble forecasts for compatible members with comparable resolutions 
in many numerical weather prediction centers around the world. Probabilistic forecasts based 
on a global ensemble prediction system, especially flow-dependent forecast probability 
distribution, which can be readily generated from an ensemble, allow for the identification of 
weather systems with high and low uncertainties. The potential economic benefit achieved by 
using ensemble probabilistic forecasts is significant when compared to that of a deterministic 
forecast. Among NCEP global ensemble-based applications, the relative measure of 
predictability is one of the excellent prediction tools used to estimate forecast uncertainty. 
Probabilistic quantitative precipitation forecasts can supplement short-/medium-range 
forecasts. However, the ensemble forecasts, like any numerical weather prediction system, are 
biased. The bias of ensemble forecasts is very similar to those of a deterministic forecast and 
comes from the imperfections of a numerical model such as initial conditions, physical 
parameterizations, numerical schemes, etc. The bias of ensemble forecasts can be removed, 
however, by applying a statistical calibration method. With the use of such a method, 
calibrated ensemble forecasts and ensemble-based, calibrated probabilistic forecasts can offer 
the possibility of bias-free products to the meteorological community and other users. 

1. Introduction 

One of the goals of the United States National Weather Service (US/NWS) for 2000-2005 is 
to provide weather, water and climate forecasts in probabilistic terms by the year 2005 (NWS 
1999). In the past decade, global ensemble forecasting has been implemented into a major 
component of numerical weather prediction, such as the National Centers for Environmental 
Prediction (NCEP) ensemble prediction system (EPS), which is based on the breeding of 
growing mode (BGM) method (Toth and Kalnay 1993; Tracton and Kalnay 1993; Toth and 
Kalnay 1997), and the European Center for Medium-Range Weather Forecasts (ECMWF) 
EPS, which is based on a singular vector (SV) method (Palmer et al 1992; Molteni et al 
1996). Both of the NCEP and ECMWF ensemble forecast systems add a small perturbation to 
the initial state of the model analysis. The Meteorological Service of Canada (MSC) also uses 
an EPS which is based on the system simulation experiment (SSE), but uses different 
methods to generate initial perturbations (Houtekamer and Derome 1996), including the use 
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of two different numerical models, different physical parameterization packages which are 
designed to simulate observation errors, model errors, imperfect boundary conditions, etc. 
The operational applications of EPS in major centers around the world have been offering 
dramatic information in addition to deterministic forecasts. There are many advantages of 
using ensemble forecasts, such as potentially providing case-dependent estimates of forecast 
uncertainty. The initial uncertainty and model uncertainty are two main sources that limit the 
skills of single/deterministic forecasts in a highly flow-dependent forecasting system. From a 
long term objective evaluation, there is a gain in skill of about 24 hours when comparing the 
ensemble mean (Fig. 1a and 1b, ENS, closed circle marks) to higher resolution deterministic 
forecast (MRF, cross marks) for root means square (RMS) errors and pattern anomaly 
correlation (PAC, not shown here) for an analysis based on Northern Hemisphere extra-
tropical (20N-80N) 500hPa geopotential height 6-day forecasts (Zhu et al 1996; Fig. 1a and 
1b). The season statistics of the ensemble spread (SPR, open square marks, where SPR is 
defined as standard deviation of the ensemble members from the ensemble mean). RMS 
errors between the NCEP analysis and climatology (CLM, closed square marks) are also 
shown in Fig. 1a and 1b. Note that the usage of computer resource for low resolution 
ensemble forecasts is less than or equal to the higher resolution deterministic forecast, but the 
ensemble probabilistic forecasts have more skill than the higher resolution deterministic 
forecast even for extreme events (Zhu and Toth 2001), based on Brier Skill Score (BSS) 
statistics. In fact, the potential economic value of an ensemble-based weather forecast (Zhu et 
al 2002) has indicated many advantages of using ensemble probabilistic forecast information. 
In the next section, I will briefly describe the current NCEP configuration, public data access 
and experiment setup. In section 3, selected current probabilistic forecast products would be 
introduced. The two probabilistic evaluation methods will be discussed in section 4. Finally, 
in section 5, conclusions and further discussions will be presented. 
 

 
 
Figure 1. RMS errors for Medium-Range forecasts (MRF) and ensemble mean of northern hemisphere extra-
tropical 500 hPa geopotential height: (a) for winter season (December 2001, January and February 2002), (b) for 
summer season (June, July and August 2002). 
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2. Ensemble Forecast 

2.1. NCEP Global Ensemble Configuration 

Currently, by adding small initial perturbations to an operational global analysis, the NCEP 
global ensemble forecasts are generated at 0000 UTC and 1200 UTC every day (Zoltan and 
Kalnay 1993; Tracton and Kalnay 1993; Zoltan and Kalnay 1997). The NCEP global 
ensemble forecasts consist each day of 25 individual independent forecasts run out to 16 days 
lead time, of which 5 members are control forecasts started from unperturbed analyses at 
0000 UTC (global forecast system (GFS), which merges the former medium-range forecast 
(MRF) and aviation forecast (AVN) after October 2002 and ensemble control), 0600 UTC 
(GFS), 1200 UTC (GFS) and 1800 UTC (GFS), and 20 members are perturbed forecasts at 
0000 UTC (10) and 1200 UTC (10) from initial conditions where bred perturbations of the 
size of estimated analysis uncertainty are added. Four GFS forecasts are integrated at 
T170/L42 resolution out to 180 hours, and then reduced to T62/L28 resolution out to 16 days. 
All perturbed members and an ensemble control forecast are run at T128/L28 resolution out 
to 84 hours, and then reduced to T62/L28 resolution out to 16 days. The breeding cycle is 24 
hours in the current NCEP global EPS. 

2.2. NCEP Ensemble Data 

Two public access ftp sites are available to users for NCEP global ensemble forecast data: 
1) ftp://tgftp.nws.noaa.gov 
2) ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/mrf/prod. 
All available files are updated daily on these NCEP public access ftp sites. 

2.3. Experimental Data 

The data for this study are the NCEP global ensemble and deterministic forecasts (MRF) of 
500hPa geopotential height (period from 01 DEC 2001 to 28 FEB 2002 for a winter season, 
period from 01 JUN 2002 to 31 AUG 2002 for a summer season), 850hPa temperature 
(period from 01 DEC 2001 to 28 FEB 2002) and gage 24-hour accumulated total 
precipitation (period from 01 DEC 2001 to 28 FEB 2002). The gage 24-hour accumulated 
precipitation data are used as observed precipitation. The climatology of 500hPa geopotential 
height and 850hPa temperature is from NCEP/NCAR re-analysis. All the model analysis and 
forecast data are calculated at 2.5 by 2.5 degree resolutions globally except of the 
precipitation analysis, which is based on 80km ETA grids (Baldwin and Mitchell 1996). 

2.4. Best Ensemble Forecast 

 What is the best ensemble forecast? There are many methods to measure ensemble forecasts. 
One of them is evaluating the difference between RMS errors of ensemble mean and 
ensemble spread. A perfect ensemble model assumes that an initial perturbation represents 
growing errors from an analysis, and also assumes that the forecasting model is perfect (Toth 
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and Kalnay 1993; Toth and Kalnay 1997). Therefore, the spread of the ensemble forecasts 
should be fully equal to the size of the RMS errors of the ensemble mean when compared to 
observations. However, in a real application, the forecast model is not perfect and the initial 
perturbations do not fully represent the analysis growing errors, and so differences appear 
between RMS errors and the spread. In Figs. 1a and 1b, the differences of the ensemble mean 
RMS errors (ENS, closed circles) and spread (SPR, open squares) indicate the imperfection 
levels of NCEP ensemble forecasts relative to the analysis. The measurement would be more 
accurate if the observations, rather than analyses, could be used directly in the verification. In 
general, when a spread is smaller than RMS error, it means the ensemble forecast is under 
representing the model errors and forecast uncertainties; otherwise it is over representing 
them. 

3. Probabilistic Forecast 

It is well known that all environmental forecasts are associated with uncertainty and that the 
amount of uncertainty can be situation dependent. The use of probabilistic forecasts helps in 
estimating this uncertainty. By considering a wide range of forecasting information, 
forecasters could subjectively generate probabilistic forecasts by using different methods. For 
example, probabilistic forecasts could be generated from a set of deterministic forecasts valid 
at the same time, such as a lag forecast, which was very often used for climate prediction. 
Meanwhile, probabilistic forecasts could be made by using historical forecasts and 
observations, or by statistical methods such as the model output statistics (MOS) forecast, or 
by a multi-model super-ensemble which is based on a set of numerical models that use 
statistical regression to weight each ensemble member (Krishnamurti et al 1999). In this 
study, probabilistic forecasts that are based on initial perturbed NCEP global ensemble 
forecasts from only the same numerical model will be discussed. 

There are many applications of probabilistic forecasts for the short/medium range. A 
"spaghetti diagram" is one such product. Two other major applications that will be described 
below include the probabilistic quantitative precipitation forecast (PQPF) and the relative 
measure of predictability (RMOP). PQPF is a product to help with a deterministic 
quantitative precipitation forecast (QPF). RMOP is a predictability measure for large and 
small uncertainty. 

3.1. PQPF Forecasts 

The PQPF forecasts have been produced operationally since 1997 in NCEP and are based on 
global ensemble forecasts using T62/L28 (T126/L28 out to 60 hours after 26 June 2000, 
T126/L28 out to 84 hours after 9 Jan. 2001) model resolution. The product includes nine 
threat amounts (0.254, 1.0, 2.54, 5.0, 6.35, 10.0, 12.7, 25.4, 50.8 mm) of 24-hour 
accumulation precipitation. To generate PQPF forecasts, the number of ensemble members 
that exceed a given precipitation threat level is divided by the total number of ensemble 
members at each grid point. For example, if the 24-hour forecasted precipitation amount 
exceeds 2.54 mm in 7 out of 10 total ensemble members at a particular grid point, then a 70% 
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probability of rainfall exceeding 2.54 mm (0.1 inches) for a 24-hour period (Zhu and Toth 
1998) is assigned to that grid point. The synoptic PQPF maps shown in Fig. 2 show a strong 
fall/winter storm affecting most of the U. S. East Coast, with another system off the West 
Coast of Washington State. The four panels show 60-84 hour lead-time PQPF forecasts with 
four different 24-hour threat amounts of 2.54, 6.35, 12.7 and 25.4 mm. This is a highly 
predictable storm system (Predictability will be discussed in section 3.2). Additional sets of 
PQPF maps (not shown here) are very useful as well. For example, we could use a 3-
parameter Gamma distribution or L-moment method to generate continued PQPF forecasts. 
By using continued PQPF forecasts, we may create a different precipitation forecast map for 
a specified probability (for example 30% probability, 75% probability, etc., Zhu and Toth 
2003). 

 
 
Figure 2. The 3-day lead-time probabilistic quantitative precipitation forecasts for 0.1, 0.25, 0.5 and 1.0-inch 
thresholds of the 24-hour period ending at 1200 UTC 17 Nov 2002, based on 23-member NCEP global ensemble 
forecasts. Contour lines are drawn at 5%, 35%, 65% and 95% probability levels. 
 

As we know from long terms statistical objective evaluations, model forecasts are biased 
in most cases, and ensemble forecasts are biased as well. Especially for precipitation (Zhu 
and Toth, 1999, Zhu and Toth, 2003), most numerical model forecasts tend to over-forecast 
small precipitation amounts and under-forecast extreme amounts. In order to make reliable 
PQPF forecasts, it is necessary to remove the bias (or, first moments) and adjust the spread 
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(or, second moments) if possible. Real time ensemble based calibrated PQPF and GFS (or 
MRF) based calibrated QPF forecast maps can be found on the NCEP website at 
http://wwwt.emc.ncep.noaa.gov/gmb/ens/enshome.html. 

3.2. RMOP Forecasts 

RMOP is a probabilistic measure to assess the flow-dependent uncertainty in a single 
forecast. Statistics indicate that, for certain cases, 10-13 day lead time forecast skill of the low 
uncertainty (high predictability, top 10%-15%) cases could be as good as one day forecast 
skill of the high uncertainty (low predictability, top 10%-15%) cases (Toth et al. 2001). 
Continuing with the same synoptic case from section 2, Fig. 3 shows the 3-day RMOP 
forecast map for 500hPa geopotential height, valid at 0000 UTC 17 Nov. 2002. The contours 
indicate the ensemble mean state, and the colored shaded areas show forecast uncertainties, 
which are the measures of predictability numbered under the color bar. The reference 
probability values above the color bar are calibrated by using independent data, and they 
reflect forecast uncertainty due not only to initial error but also to model related errors. Based 
on the RMOP measure, Fig. 3 shows a very high predictability (90%) area north of the Gulf 
of Mexico at 72-hour lead-time, which is associated with the East Coast storm system (see 
Fig. 2). 

 
 
Figure 3 (color): The 3-day lead-time 500hPa geopotential height 10-member NCEP global ensemble mean 
forecast (contour lines) and associated relative measure of predictability (shaded), valid at 0000 UTC 17 Nov. 
2002. 
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4. Probabilistic evaluation 

An operational global ensemble forecast at NCEP and ECMWF is made by using an initial 
perturbation method, which is based on the assumption of a perfect forecast model. All errors 
are then considered to result from observations, first guess error and an imperfect data 
assimilation scheme. From this assumption, clearly the imperfections of the forecast model 
are not considered to be a source of errors. The forecast uncertainty is fully represented by 
model initial uncertainty. However, the forecast model is not perfect due to physical 
parameterization, boundary forces and other factors. Therefore, the forecast uncertainties are 
truly from both the initial condition (analysis) and the use of an imperfect numerical model. It 
is very difficult to separate initial errors and model errors quantitatively by using probabilistic 
evaluations of a model forecast. However, the probabilistic evaluations are the basic tools to 
measure model forecast uncertainties, which represent model resolution and reliability (Toth 
et al. 2002). There are many probabilistic evaluation methods that can be used, such as 
Talagrand distributions, rank probability scores (RPS), relative operating characteristics 
(ROC) area, information contents (IC), Brier scores (BS), outlier maps, etc. Two methods 
will be described below which can assess the statistical reliability and resolution of a 
numerical model (Wilks 1995). 

4.1. Reliability Diagram 

For a given set of forecast probabilities of an event, one can compare with observations and 
determine the relative frequency at which an event with that forecast probability is observed. 
Ideally, one would like to see that the observed frequency is close to the forecast frequency, 
which would indicate perfect reliability (Fig. 4, diagonal line), in fact, the result is a curve 
indicating a model that is less than perfectly reliable (Fig. 4, solid line with closed circles). 
However, the reliability curve could be adjusted to near diagonal (dash line with open circles) 
by simple calibration by using past forecast and analysis information that is independent of 
current forecast data. This reliability diagram is based on Northern Hemisphere extratropical 
500hPa geopotential height forecasts at day 5 (120-hour). The forecasts and verifying 
analysis data are separated at each grid point into 10 climatological equally likely intervals 
(bins). These intervals are defined uniquely for each grid point and each month of the year 
using NCEP/NCAR re-analysis (Kalnay et al, 1996). From this study (Fig. 4), the forecasts 
are still not perfect after a simple calibration (dash line, open circles), but they are more 
reliable when compared to the uncalibrated (raw) forecasts. 

4.2. Economic Value 

A decision maker becomes a user of a weather forecast if he/she alters his/her actions based 
on forecast information. In 2002, Zhu et al introduced the concept of economic value (EV) of 
a weather forecast by using cost-loss analysis method and considering user reaction. Different 
from the reliability measurement that was discussed in section 4.1, the EV is an estimation of 
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forecast resolution, which is the ability of a forecast system to discern sub-sample forecast 
periods with different relative frequencies of an event. In this study, we evaluate the potential 
EV associated with the use of ensemble forecasts (T126/L28 out to 84 hours, then reduced to 
T62/L28), in terms of equivalent costs, as compared to a higher resolution deterministic 
forecast (MRF, T170 /L42 out to 7 days, then reduced to T62/L28). For this objective 
comparison, 850hPa temperatures in the Northern Hemisphere extratropics (20N-80N) have 
been used. By comparing lower resolution ensemble forecasts and higher resolution MRF 
forecasts at day 5 (Fig. 5), ensemble forecasts (solid line, closed circles) have better EVs than 
MRF forecasts (dash line, open circles) over all reasonable and selected cost-loss ratios from 
0.01 to 1.0. Based on 3-month statistics, the highest EV is apparently around 1:10 cost-loss 
range for both the ensemble and deterministic forecasts, which means that the probabilistic 
forecasts from numerical models are the best fit for user groups who are most comfortable 
with around a 1:10 cost-loss ratio. Therefore, when considering 1:10 cost-loss ratio only, Fig. 
6 shows the EVs for lead time out to 15-day. The ensemble forecasts (solid line, closed 
circles) have 20% more economic value than the MRF forecasts (dash line, open circles) at 
early lead times. The EVs of ensemble forecasts are almost double those of the MRF 
forecasts at longer lead time, but the EV's are already very small and close to zero. 
 
 

 
Figure 4. The 5-day lead-time ensemble-based reliability diagram for January 2002 for NH extra-tropical 500hPa 
geopotential height. Calibrated forecast probabilities (dash line, open circles) are based on observed frequencies 
associated with the same number of ensemble members falling in a climatologically equally likely bin during 1-20 
December 2001. The uncalibrated (raw) forecast is shown on the solid line (closed circles). The vertical axis 
shows observed relative frequencies. 
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5. Summary and Conclusions 

Ensemble-based probabilistic forecast products can provide dramatic information to users. 
With the use of such probabilistic forecasts, users have access to significantly more 
information than is available through a single, deterministic forecast, and this information can 
be used to make more accurate forecasts and allow users to alter their decisions, especially for 
extreme events that can be associated with higher and lower uncertainty weather systems. 
PQPF forecasts and RMOP forecasts are two examples of probabilistic products that were 
discussed in this paper. The PQPF predicts the future possibilities for many precipitation 
amount thresholds at all lead times and physical locations, while the RMOP describes the 
degree of uncertainty associated with the forecasting of future weather systems. 
 

 
 
Figure 5. The economic values for NH extratropical 850hPa temperatures, 5-day lead 10-member NCEP 
ensemble forecasts (solid line, closed circles) and NCEP deterministic forecast MRF (dash line, open circles) for 
a winter season (Dec. 2001, Jan. and Feb. 2002). The vertical axis is economic values. 
 

Reliability and resolution are two major attributes that are considered in the evaluation of 
these ensemble-based probabilistic forecasts. The reliability indicates how statistically 
consistent these probabilistic forecasts are with observations, such as through the use of 
Talagrand distributions, reliability diagrams, outlier maps, etc. The resolution summarizes 
how much more information the forecasts have with respect to climatology, such as through 
the use of EVs, ROC areas, ICs etc. 
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Finally, recent studies indicate that statistical calibration can improve model forecast 

reliability, although it does not have much effect on the resolution. Since forecast reliability is 
mostly due to system bias, that bias can be removed by applying historical information from 
previous forecasts with the same model, if there has been no significant change in the 
forecasting model in the recent past. 

 

 
 
Figure 6: The same as Fig. 5 except for all lead-time forecasts and 1:10 cost-loss ratio only. 
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