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ABSTRACT 

 
Ensemble techniques have been used to generate daily numerical weather forecasts since the 1990’s in numerical 

centers around the world due to the increase of computation ability. One of the main purposes of numerical 

ensemble forecast tends to assimilate initial uncertainty (both observation and analysis errors) and forecast 

uncertainty (model errors) by applying either initial perturbation method, ensemble assimilation, or multi-

model/multi-physics method, and stochastic physics. In fact, the mean of ensemble forecasts is offering better 

forecast than deterministic (or control) forecast after a short lead-time (1-3 days) for the global model application. 

There is about a 1-2 day improvement in the forecast skill when using ensemble mean instead of a single forecast 

for longer lead-time. The skillful forecast (65% and above of an anomaly correlation) could be extended to 8-10 

days (or longer) by present state-of-the-art analysis and ensemble forecast system. It is most important that 

ensemble forecast can deliver the probabilistic forecast directly, which is based on probability density function 

(PDF), instead of a single value forecast from traditional deterministic system to the users. It has long been 

recognized that the ensemble forecast is not only improving our weather forecast predictability but also offering a 

remarkable forecast for a future uncertainty, to help us making right decision, such as relative measure of 

predictability (RMOP), economic value (EV) and probabilistic quantitative precipitation forecast (PQPF). Not 

surprisingly, the success of ensemble forecast and its wide application are greatly increasing the confidence of 

model developers and research communities. 

 

 

 

 

Note: This article is mainly expansion of published article “Ensemble Forecast: A New Approach to Uncertainty and 

Predictability” (Zhu, 2005) which contributes to the lecture notes for WMO/RTC publication. 
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Chapter 3    Predictability, Probabilistic Forecasting and Ensemble 

Prediction Systems 
 

 

3.1 Introduction 
 

In the past decade, the methodologies followed at the National Centers for Environmental Predictions 

(NCEP) of the National Weather Service of the United States, the European Centre for Medium-Range Weather 

Forecasts (ECMWF) and the Canadian Meteorological Center (CMC) of the Meteorological Service of Canada 

have been developed to simulate the effect of initial and model uncertainties onto the forecast errors (see Table 

1, 2, 3). In early studies, the characteristics of these three global ensemble prediction systems (EPS) have been 

discussed, and the objective evaluations have been taken by using the three ensemble forecasts for a 3-month 

period, May-June-July 2002 (Buizza et al. 2005). The probabilistic applications, the probabilistic evaluations 

and the differences between deterministic and ensemble forecast from NCEP EPS system have been presented 

in past years (Zhu et al. 1996; Zhu et al. 1999; Zhu et al. 2002 and Zhu 2004). In the part of this presentation, 

the experiments have been done based on global ensemble forecasts (Jun-July-August 2004) from world 

numerical centers to represent the improvement of numerical models and ensemble techniques over recent 

years. In additional, many other cases have been studies, too. Meanwhile, synoptic examples of probabilistic 

quantitative precipitation forecast (PQPF) from three numerical prediction centers have been exhibited side by 

side to allow us to compare each one. The multi-center ensembles, which are combined by NCEP EPS and 

ECMWF EPS, are studied to demonstrate the new approach of ensemble method, which is from different initial 

condition generation methods, different assimilation systems (initial conditions), different forecast models 

(dynamics and physical parameterizations) and different model resolutions (vertical and horizontal resolutions). 

The importance of all these studies are not to rank the performance of the ensemble systems, but to identify 

possible reasons of superior/inferior performance, thus drawing a guideline for the future ensemble 

development, and improving the ensemble forecast system and predictability. 

This paper will discuss the importance of the ensemble forecast in the next section. After that, the 

methods of ensemble forecast will be briefly reviewed, and the objective evaluations of forecast from improved, 

state of the art ensemble systems will be presented in terms of deterministic (or/and ensemble mean) and 

probabilistic (distribution) concepts in section 4. In section 5, the multiple applications of the ensemble forecast 

will be introduced. The experimental multi-center ensemble forecast will be discussed in section 6 through 

selected combinations from comparable ensemble systems. In additional to the discussion of the forecast skill in 

section 4, the effect of model initial condition and model resolutions will be investigated from one-year 

statistics. 

 

3.2 Why Do We Need Ensemble Forecast? 
 

              There are two main reasons to emphasize the importance of ensemble model forecast. One is the 

forecast error (uncertainty), which comes from each process of numerical weather prediction system, such as 

observation and data collection (observation system), data assimilation (analysis system) and forecast model 

(dynamical process, computation, physical parameterization and et al.). Early studies (Lorenz 1969; Lorenz 

1982) suggested that the initial error could grow very fast into the different scales no matter how small the 

initial error. In fact, the forecast error will be increased continually with model integration before it is saturated. 

The optimum solution to capture and reduce this forecast error (uncertainty) is to use ensemble forecast instead 

of single (deterministic) forecast. As shown in the figure 1, the initial probability PDF(D) represents the initial 

uncertainties. From the best estimate of the initial state a single deterministic forecast is performed. This single 

deterministic forecast fails to predict correctly the future state. However, an ensemble of perturbed forecasts 

starting from perturbed initial conditions designed to sample the initial uncertainties can be estimate the 

probability PDF(D+n) at future time (D+n) (Buizza et al., 2001). Figure 2 is a real example for bimodality, 

trimodality and uncertainties. The advantage of ensemble forecast to estimate the uncertainties is because the 

ensemble forecast is producing a set of randomly-equally-likely (independent) solutions for the future. The 

diversity of these solutions, which is called forecast spread, is mostly representing the forecast uncertainty. The 
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relationship of ensemble spread and ensemble mean error (uncertainty) has been discussed in the early study 

(Zhu 2004) and will be discussed again in this study. The perfect ensemble prediction system is expected to 

have a similar spread to their mean error (or high correlation between ensemble spread and ensemble mean 

error) in a long term statistics. How much does the ensemble spread represent forecast uncertainty in the real 

atmosphere? It can not be answered quantitatively. It depends on the sizes of spread and error, the distribution 

of the error and et al. In fact, the skill of ensemble forecast is greatly improved when comparing the ensemble 

mean forecast to a deterministic forecast after a short lead-time. The ensemble mean forecast for a short lead-

time is degraded due to introduce initial perturbation (error) for both of NCEP EPS and ECMWF EPS. Another 

reason is predictability. The atmosphere is a chaotic system as the solutions of the equations for Lorenz 63 

model (Lorenz, 1963) shown in figure 3, 
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where the parameters 28,3/8,10 === γβδ . There are two regimes corresponding to positive values of x and 

y, and negative values of x and y separately. It’s hard to predict the occurrence of regime changes which makes 

the atmospheric system lacking of long term predictability. Knowing the future has always been a practical and 

spiritual need to people. The ultimate goal of all scientific works has also been successful prediction. The 

success of our prediction efforts depends on two main factors: (1) our understanding and knowledge of natural 

processes and (2) the nature of these processes to be predicted. The increasing of forecast predictability is 

always corresponding to the decreasing of forecast uncertainty. The reduction of forecast error from ensemble 

forecast is greatly increasing the predictability. In addition, when considering the forecast itself and user 

community, one of the goals of the United States National Weather Service for 2000-2005 requires to provide 

weather, water and climate forecasts in probabilistic terms by the year 2005 (NWS 1999), which is the most 

achievable and practical with ensemble forecast. In the past, there were many methods to generate the 

probabilistic forecast, but the ensemble model forecasts could achieve this goal easily and accurately. As 

expected, the probabilistic forecast, such as spaghetti diagram (to describe uncertainty), PQPF (to tell the 

probabilistic forecast) (Zhu et al. 1998; Zhu and Toth 1999; Zhu 2004 and Zhu 2005), RMOP (related to 

predictability) (Toth et al. 2001), ensemble spread (similar to spaghetti diagram, but more completely) and et 

al., is more popular to users and publics in past years. 

 

3.3 Methodologies of Ensemble Forecast 
 

              As noted earlier (Buizza et al. 2005), there are two major methods to generate ensemble model forecast 

around world meteorological centers. One of them is initial perturbation method, which is adding small 

perturbations to initial analysis, such as NCEP’s breed mode method (Toth and Kalnay 1993; Tracton and 

Kalnay 1993; Toth and Kalnay 1997a) which extends linear concept of Lyapunov Vectors into nonlinear 

environment to sample subspace of most rapidly growing analysis errors, and ECMWF’s singular vector 

method (Palmer et al 1992; Molteni et al 1996) which is  characterized by the fastest growth, and measured 

using a total energy norm over a finite time interval. Methods for NCEP and ECMWF are assuming forecasting 

model is perfect, and to assimilate initial (observation and analysis/data assimilation) uncertainty by using small 

and random initial perturbation. The characteristics of Lyapunov, breeding and singular vectors are listed in 

table 4.  
In May 2006, NCEP GEFS implemented ensemble transform with rescaling (ETR) method to simulate 

the initial perturbation (Wei et al., 2008). At every 6-hour cycle, both ET and Simplex Transformation (ST) are 

carried out for all 80 perturbations. ST which is used to ensure members are centered around the analysis is only 

imposed on 20 perturbations which are used for long forecast. The remaining 60 members are integrated for 6-

hour, for cycling. As shown in figure 4, the initial perturbations are centered around the analysis to improve 

ensemble mean and have simplex structure, not paired. The perturbations have maximum number of effective 

degrees of freedom which means that the variance will be maintained in as many directions as possible within 

the ensemble subspace. They are uniformly centered and distributed in different directions. The larger the 

ensemble, the more orthogonal they become. They become orthogonal if the number of members approaches to 
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infinity. The initial perturbations have flow-dependent spatial structure if the analysis error variance is derived 

from operational DA system at every cycle. The covariance constructed from the perturbations is approximately 

consistent with the analysis covariance from the DA if the number of ensemble members is large enough.  

In order to improve the initial perturbations of hurricane ensemble forecasts, the hurricane relocation 

algorithm from the GFS model was modified to be implemented in GEFS in July 2005 (Zhu et al., 2005). 

Experiment results show that the track spread from individual members is significantly reduced. The new 

system can be summarized as follows (see figure 5): (1) Split the forecast fields from ensemble members 

(including the control) into environmental fields and hurricane components; (2) Compute global ensemble 

perturbations without the hurricane component (breeding cycle); (3) Compute hurricane perturbations (after 

relocating the hurricane to the observed location) for individual ensemble member; (4) Add the hurricane 

perturbation and global ensemble perturbation to the analysis fields to create the model initialization.  

At ECMWF, EDA-based perturbations replace evolved singular vectors in the generation of the EPS 

initial conditions in June 2010, which results in a better spread-skill relationship in the early forecast range over 

the extra-tropics, and for the whole forecast range over the tropics. The EDA perturbed members are generated 

by perturbing all observations and the sea-surface temperature field and using the stochastically perturbed 

parameterization tendency (SPPT) scheme that perturbs the total parameterized tendency of physical processes 

to simulate random model error (Buizza et al., 2010). 

              Another set of ensemble forecast is produced by using different numerical models (spectrum model and 

grid model) and different physical packages in the CMC (Houtekamer and Derome 1995; Houtekamer et al. 

1996) before July 2007. The 8 different physical packages have been used in CMC’s global EPS. There are, in 

total, 16 (2 models, 8 different physical packages) ensemble runs from 0000UTC. It is to assimilate initial (by 

different models) and forecast (by different physical schemes) uncertainties. At ECMWF, Stochastically 

Perturbed Parametrization Tendencies (SPPT) has been applied to perturb the total parameterized tendency of 

physical processes with multiplicative noise since 1998 (Buizza et al., 1999). But the random patterns which are 

constant make the perturbations aren’t continuous in space and time. The patterns which produced by the 

revised SPPT scheme implemented operationally in September 2009 vary smoothly in space and time (Palmer 

et al., 2009). NCEP GEFS also develops a Stochastic Total Tendency Perturbation (STTP) scheme to simulate 

model related uncertainties in the recent year (Hou et al. 2010). STTP sample the random errors associated with 

the total tendency, including both dynamical and physical processes, grid resolved and parameterized 

components. The general framework with stochastic presentation of model related uncertainties is to add a 

stochastic forcing term S to the conventional tendency T, for each ensemble member i, i.e., 

iii STX +=
•

. 

The stochastic forcing is linked to the total conventional forcing by sampled from the differences in the 

conventional tendency between the ensemble members and the control forecast,  

0TTP ii −= . 

The S terms are formulated by various combinations of the P vectors,  

j

j

jii PwS ∑ ,~ . 

where i and j are the index of the ensemble members. The results form experiments indicate that the application 

of STTP can increase the ensemble spread and reduce systematic error of the ensemble mean forecast. 

Moreover, it can significantly improve the ensemble based probabilistic forecast, especially in the tropical 

region. 

Meanwhile, in both research and development centers, many other ensemble forecasts have been 

studied from statistic post processes such as super-ensemble (Krishnamurti et al. 1999), poor-man ensemble 

(Ebert 2001), Monte Carlo or lagged average forecast (LAF) ensembles for climate study and et al. In the 

section 6, we will discuss the multi-center ensemble forecast by the combination of NCEP EPS and ECMWF 

EPS, as well. 

 

3.4 The Skill of Ensemble Forecast 
 

Before we discuss the skill of ensemble forecast, let’s review the effect of model initial condition and 

model resolutions. By running a one-year statistic average (June 1
st
 2003 – May 31

st
 2004) of verification 

scores, the pattern anomaly correlations (PAC) of the NCEP Global Forecasting System (GFS: high resolution 

control, T254L64 from 0-84 hours, T170L64 from 84-180 hours, T126L64 from 180-384 hours), the NCEP 
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ensemble control (CTL: low resolution control/ensemble control, T126L28 from 0-180 hours, T62L28 from 

180-384 hours) and the NCEP 10 ensemble members (5 pairs initial perturbations with the same resolution as 

ensemble control) are calculated. When comparing GFS and CTL to 10 individual ensemble members, 100% 

will be awarded if GFS/CTL is better than all individual ensemble members, otherwise, 0% will be given if 

GFS/CTL is worse than all members, 50% will be added if GFS/CTL is better than 5 of 10 ensemble individual 

members (randomly). The result is shown in figure 6 for up to 15 days lead-time, 500hPa geopotential height 

for northern hemisphere latitude band (20-80N). For the short lead-time (0-96 hours), high resolution GFS is 

best, the individual ensemble perturbation forecasts are far behind the either GFS (due to the resolution and 

initial error) or CTL (due to the initial error). After a short lead-time (120 hours), the model resolution is not as 

important as the first 96 hours to improve model forecast skills, as unexpected, CTL is slightly better than GFS 

from 144 hours to 264 hours lead-time in this experiment period. The differences between GFS/CTL and 

individual ensemble members are reduced. After 11 days lead-time, the PAC is very low (less than 50%) which 

will not be considered as a skillful forecast for the synoptic system, and then GFS is better than CTL again. 

Interestingly, both GFS and CTL are still better than any of individual ensemble members. As noted earlier, the 

difference between CTL and ensemble members is only initial condition. The difference between CTL and GFS 

is only resolution. The 50% line is a reference to consider the equality of GFS/CTL and 10 individual ensemble 

members. Based on the results presented in this section, we should point out that both resolution and initial 

condition are very important to model forecast. The resolution is playing a key role to success the short-range 

forecast while the influence of the resolution is much smaller than initial condition for medium-range forecast.  

The forecast skills could simply be measured in terms of pattern anomaly correlation (PAC) scores 

(depends on climatological information) and root mean square (RMS) errors of 500hPa (or other levels) 

geopotential height (or other variables) by considering any deterministic (control) forecast and ensemble's 

mean. The assessment of the past status (summer of 2002) for three major global ensemble prediction systems 

was presented by Buizza et al. (2005). The objective evaluation of the present status has been done by using the 

similar methodologies. The figure 7 shows the northern hemisphere extra-tropic (20N-80N) 500hPa 

geopotential height PAC scores of three different EPSs mean (solid lines, considering first 10 ensemble 

members only for each center, using NCEP/NCAR reanalysis data as climatology) comparing to their own 

deterministic/control forecast (dotted lines) from Jun-August 2004. The verified analysis is used from their own 

data assimilation system in this experiment. Similar results were obtained by Buizza et al. 2005 except for the 

improvement of all three systems. The means of ensemble forecasts do not show advantages for first 3 (up to 5, 

depends on the model and season) days due to introduced initial errors by NCEP and ECMWF. There is similar 

result of CMC’s ensemble for very short lead-time because of using one verified analysis for two different 

initial conditions (note: only one analysis is available to verification).  However, after 3 (up to 5) days lead-

time, ensemble means have 6 hours to 24 hours (or longer) advantage than their own deterministic forecast. 

Unfortunately, there are only 6 days of lead-time available for the evaluation to CMC’s control forecast. The 

differences between ensemble mean and their own deterministic forecast are very similar for three EPSs. 

Therefore, the improvement of ensemble forecast mostly depends on its analysis and forecast model from these 

experiment results. The skill of ECMWF’s deterministic forecast is slightly better than other deterministic 

forecasts, and the PAC scores of ECMWF ensemble mean are leading for all of these forecasts, too.  Of course, 

the costs of these three EPSs are slightly different. Less computation times are needed for NCEP’s breeding 

method; in contrast, it is more difficulty to maintain and develop the CMC’s method if resources are limited.  

When considering skillful forecast, usually defined 65% and above PAC scores based on the synoptic 

scale forecast (short- medium-range), the NCEP ensemble mean is offering 7 days and 8 hours useful forecast 

instead of NCEP GFS (deterministic) which has 6 days and 14 hours skillful forecast (see figure 7) by using 

approximately the same computation resource. There is an 18 hour improvement when considering ensemble 

mean only in this three-month summer period, which is huge gain compared to the improvement from 

observation system, data assimilation and forecast model.  

The RMS error is another measurement, which does not depend on the climatology. The results of the 

same period (Jun-August, 2004) for NH 500hPa geopotential height are shown in figure 8. The solid lines are 

for the ensemble’s mean, dotted lines are for their ensemble control (or deterministic forecast). ECMWF’s 

control forecast has a smaller error for first 4-day, after that, ECMWF’s ensemble mean is better than ensemble 

control. It is interesting to note that in the NCEP forecast, either ensemble mean or ensemble control, the 

forecast errors increase very rapidly in the first 24-hour, after that, the error growth rates are very similar (or 

close) to ECMWF’s. Does this indicate something we need to work on in the future?    

Another importance to evaluate ensemble forecast is to use probabilistic methods, such as Rank 

Probability Score (RPS), Continuous Ranked Probability Score (CRPS), Brier Score (BS), Hitting Rate (HR) 
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and False Alarm Rate (FAR), potential Economic Value (EV), Relative Operating Characteristics (ROC) area 

and et al (Zhu et al. 1996; Zhu et al. 2002; Toth et al. 2003; Zhu 2004; and Buizza et al. 2005), in which, CRPS 

and RPS measure the reliability and resolution. The formulas can be written as follows: 
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where P is a forecast probability, and O is for an observation or analysis. For statistics over a long period, CRPS 

is very similar to RPSS. Therefore, we consider it possible to use either one of these two measures, whichever is 

more convenient. In general, BS can be expressed as the summation of reliability, resolution and uncertainty 

(Wilks, 1995). CRP or RPS can be considered as a total integration of all probabilities. And here is the final 

formula for decomposition: BS = Reliability – Resolution + Uncertainty. The typical application for HR and 

FAR is the Relative Operational Characteristics (ROC) curve (Toth et al., 2003), or sometimes called the ROC 

area. Another application is economic value (EV) of a weather forecast by using cost-loss analysis method and 

considering user reaction (Zhu et al., 2002). The EV is an estimation of forecast resolution, which is the ability 

of a forecast system to discern sub-sample forecast periods with different relative frequencies of an event.  

 

3.5 Applications of Ensemble Forecast 
 

Many new products have been generated since global ensemble forecasts started. The typical example 

of early ensemble graphic application is spaghetti diagram (Toth et al. 1997b). Later, the PQPF for different 

threats (such as 0.1 mm/24 hours, 2 mm/24 hours and so on) has been used for operational application since 

1997 in NCEP (Zhu et al. 1998; Zhu et al. 1999; Zhu 2004). The calibrated QPF and PQPF have been 

implemented in May 4th 2004 which applied bias removed techniques (Zhu 2005). The ensemble mean and 

spread are the standard products in NCEP since 2000. Recently, precipitation type based probabilistic forecast is 

implemented for every 6-hours lead time, the products include probabilistic quantitative rain forecast (PQRF), 

probabilistic quantitative snow forecast (PQSF), probabilistic quantitative freezing rain forecast (PQFF) and 

probabilistic quantitative ice pellets forecast (PQIF). The values of the relative measure of predictability 

(RMOP) are calculated globally since 2000 (Toth et al. 2001; and Zhu 2004). Figure 9 shows a synoptic 

example of probabilistic quantitative precipitation forecast (PQPF) of the Northern American (NA) area for 

three comparable global ensemble systems (NCEP, CMC and ECMWF EPSs). The initial time is April 26 

0000UTC 2004 for NCEP and CMCs, April 26 1200UTC for ECMWFs. The lead times are 12-36 (0-24), 36-60 

(24-48), 60-84 (48-72), 84-108 (72-96) and 108-132 (96-120) hours for NCEPs and CMCs (ECMWFs). The 

contour levels are for 5%, 35%, 65% and 95% respectively. The forecasts of the main future are very close to 

each other up to 5 days. When verified to the observations (from rain gauge, not shown), all of them make very 

good forecasts. Through a number of investigations, we are expecting to have more joint ensemble products in 

the future through Northern American Ensemble Forecast System (NAEFS) project which endorsed by the 

National Weather Service of United States, the Meteorological Service of Canada and the National 

Meteorological Service of Mexico in November 2004. 

 

3.6 Multi-Center Multi-Model Ensemble 
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              The Observation, Research and Predictability Experiment (THORPEX) is a major component of the 

World Weather Research Program under the WMO, which leads to new techniques in observations, data 

assimilation, forecasting and socioeconomic applications. A key goal of THORPEX is to accelerate 

improvements in the accuracy of 1-day to 2-week high-impact weather forecasts for the benefit of humanity. 

The THORPEX Interactive Grand Global Ensemble (TIGGE) project, a main component of THORPEX, is 

initiated to enhance international collaboration research on multi-model ensemble forecast and pave the way 

towards operational implementation (Bougeault et al., 2009).  

              NAEFS is a new weather modeling system run jointly by the Meteorological Service of Canada (MSC) 

and the U.S. National Weather Service (NWS) to provide numerical weather prediction (NWP) products to 

weather forecasters in both countries for a forecast period that runs out to 16 days. The NAEFS combines the 

Canadian global forecast model ensemble and the NWS global forecast model ensemble into a joint ensemble 

that will create weather forecasts for all of North America. At present, all the national weather agencies in North 

America are participating in NAEFS - the Meteorological Service of Canada, the National Meteorological 

Service of Mexico, and the U.S. National Oceanic and Atmospheric Administration NWS. NAEFS provides 

framework for transitioning research into operations and will be a prototype for ensemble component of 

THORPEX legacy forecast system-Global Interactive Forecast System (GIFS) (Toth et al., 2005). It is very 

clear to see there is about more than days gain when comparing CRPS scores of NAEFS products to NCEP or 

CMC’s raw forecasts for Northern Hemisphere 2 meters temperature field in figure 10 and Northern 

Hemisphere 500hPa geopotential height in figure 11.   

 Multi-model super-ensemble for weather and climate application has been discussed many years ago 

(Krishnamurti and et. al. 1999). The study is mainly focused on climate prediction by applying statistic method 

and training data. After that, a poor man’s ensemble has been investigated to predict the PDF of 1-2 days 

precipitation forecast (Ebert 2001) which using a set of individual model from several operational center. 

Therefore, the ensemble size is limited. The experiment in this study tends to combine two similar ensemble 

systems from NCEP and ECMWF. The advantages of this combination could be the improvement of forecast 

skill, the less computation usage, the large ensemble size and so on. 

First, comparing two ensemble systems from NCEP and ECMWF, both of them using initial 

perturbation method and available on 1200UTC initial runs, the overall skills are very comparable to each other. 

After reviewing NCEP and ECMWF EPSs, the experiments are designed to combine two ensembles by 

selecting (1) 10 members from NCEP first 6 members and ECMWF first 4 members (verifying against NCEP 

analysis) and (2) 10 members from ECMWF first 6 members and NCEP first 4 members (verifying against 

ECMWF analysis) in order to match/compare NCEP 10 members ensemble at 1200UTC cycles. The figure 12 

is the PAC scores of ensemble mean for up to 10 days, in Jun-August 2004 of NH extra-tropic (20N-80N) 

500hPa geopotential height. The two new combined ensembles (closed cycle and open squares) are better than 

either NCEP or ECMWF original 10-member ensemble. For example, there are about 8 hours of improvement 

for a 5-day forecast when comparing NCEP ensemble (cross) to new ensemble (2) (open square). Figure 13 is 

the same as figure 12 but for ROC area verification. ROC area is calculated based on accumulative hit rate and 

false alarm rate of 10 climatologically-equally-likely intervals (Zhu et al. 1996, Mason, 2003). Both of the new 

ensembles (1) and (2) are better than NCEP ensemble for all lead-time. The new ensemble (2) is better than 

ECMWF ensemble in the all ways except for its longer lead-time. The new ensemble (1) is mixed with a short 

lead time but is slightly worse than ECMWF ensemble in this experiment. A tentative explanation for this result 

is that the systematic errors (bias) are still in both forecasts and analyses. The probabilistic skills (include 

resolution and reliability) of the new ensembles should be improved by removing bias (or related pre-process) 

before they are combined.  It is still questionable for the combined ensemble if the original ensemble systems 

are very different, such as the system design, forecast skill, and spread. The further studies are required to 

answer this question. 

 

3.7 Discussion and Conclusion 
 

Let us discuss the relationship between the RMS error of ensemble mean and ensemble spread. The 

RMS error is the distance measurement from ensemble mean (of forecasts) to truth (analysis). The spread is 

measuring the distance from ensemble mean (of forecasts) to each individual ensemble member.  Apparently, a 

perfect ensemble forecast would expect the size of ensemble spread equal (or close) to the RMS error, which 

means the ensemble spread will maximally represent forecast uncertainty. But in fact, our current ensemble 

prediction systems have less spread than RMS error for medium- and extended-range forecasts (Zhu 2004; 

Buizza et al. 2005), which means the ensemble forecasts are insufficient to capture reality systematically, or 
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none of them is able to simulate all sources of forecast uncertainties for this chaos system. In the practical, the 

medium-range forecast could be improved by reducing RMS error and increasing spread. The recent 

experiments indicate (not show here) that the RMS error could be reduced by using statistic calibration (or bias 

correction), while the spread could be increased by introducing stochastic process (or other techniques) in the 

NWP model.  

The skill of ensemble forecast relatively depends on the quality of our observing system, the data 

assimilation system (analysis/initial condition) and forecast model (dynamics, physical process and et al.). 

When the importance of developing ensemble prediction system is emphasized, it is shouldn’t be forgot to pay 

attention to improve our basic numerical weather prediction (NWP) system, which includes data assimilation 

and forecast model. The model resolution is a key to make superior forecast for the first 1-6 days. After that, the 

high resolution doesn’t take the much advantage due to lack the predictability by nonlinear interaction, physical 

parameterization and et al. The initial condition is most important to make good forecast from short-, medium- 

and extended-range. 

It is very difficulty to simulate all possible errors (or uncertainties) perfectly in present EPSs. The 

multi-model and multi-analysis may be the better one to approach, but the cost for maintenance and 

development is more expensive by any numerical center. Therefore, a tentative conclusion could be: 1) the 

effort to improve analysis and forecast model could benefit both of ensemble and deterministic forecast; 2) 

ensemble post process is another way to enhance a forecast skill by using statistic bias correction; 3) combined 

multi-center, multi-model ensemble with bias correction could approach the goal closely in the future. 

  

3.8 Future Expansion 

 
 The prediction science (Zhu, 2010) is a new way to expand modern weather-climate forecast system. 

Today, the sciences, the engineering and the arts (Zhu, 2010) are playing different roles, all serving the weather 

forecast system, to ensure that the public users are receiving accurate, reliable forecasts, to help public making 

right decisions and protecting their properties. The book COMPLETING THE FORECAST: Characterizing and 

Communicating Uncertainty for Better Decisions Using Weather and Climate Forecasts (National Research 

Council of the National Academic, USA. 2006) is introducing the concepts of modern forecast, describing the 

details of future uncertainty forecast. There are two concepts are very important to us: 1) forecast uncertainty 

which is for scientist and developer; 2) uncertainty forecast which is the future forecast we will issue for public. 

Simply from the study, the forecast has an uncertainty which gets larger when the leading time is increasing 

(Toth and et. al, 2001; Zhu and et. al, 2002; Zhu, 2005; Toth and et. al, 2007). Therefore, we need to make 

uncertainty forecast for completing service. In order to understand an uncertainty forecast for public users, we 

need to have the helps from the public education. For example, where are the uncertainties coming from? What 

is seamless forecast? Figure 14 shows United States NWS seamless suites of forecast products spanning on 

climate and weather. A couple of important points should be address here 1) global ensemble forecast system is 

a linkage between weather and climate, 2) a forecast uncertainty is growing with increasing forecast lead times.   
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Table 1.  NCEP’s GEFS configuration 
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uncert
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Forecast 
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1994.3 T62L28 
10(00UTC) 

4(12UTC) 

2000.6 
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2.5) 

T62L28(2.5-

16) 

2001.1 
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16) 

00, 

12UTC 

2004.3 

T126L28(0-
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T62L28(7.5-
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2005.8 

BV 

10 

2006.5 14 

2007.3 
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ETR 
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20 
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Table 2. ECMWF’s GEFS configuration 
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1992.12 T63L19 32 

1996.12 
SVINI 

1998.3 
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Table 3. CMC’s GEFS configuration 
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Table 4. Characteristics of Lyapunov, Breeding and Singular vectors 

 

Lyapunov vectors Breeding vectors Singular vectors 

Linear perturbation 

evolution 

Nonlinear perturbation 

evolution 

Linear perturbation 

evolution 

Fast growth Fast growth Fastest growth 

Sustainable Sustainable Transitional (optimized) 

Norm independent Norm independent Norm dependent 

Spectrum of LLVs Can orthogonal Spectrum of SVs 
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Figure 1. Schematic diagram of ensemble prediction (Buizza et al., 2001). 

 

 

 

 
 

Figure 2. 20-members, 16-day Ensemble forecast from April 23
rd

 2008 demonstrates a chaotic atmosphere 

prediction which forms bimodality (at day-5), trimodality (at day-13) and uncertainties. It is  for 500hPa 

geopotential height over Washington DC (37ºN, 77ºW). 
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Figure 3. Numerical solution of Lorenz 63 model. 

 

 

 

 
 

Figure 4. Schematic diagram of breed mode method (1992-2006) and ensemble transform with rescaling 

method (2006-current) of NCEP Global Ensemble Forecast System. 
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Figure 5. A flow chart of NCEP GEFS hurricane relocation process which was implemented in August 2005. 

 

 
 

Figure 6. June 1
st
 2003 – May 31

st
 2004 (1-year) daily PAC scores for the NCEP/GFS (high resolution control, 

cross) and the NCEP ensemble control (the same resolution as ensemble members, open circle) are better than 

(or worse than) NCEP 10 individual ensemble members. The 50% line is a reference (closed circle) to represent 

GFS/CTL is in medium of ensemble members. Values (PAC scores) refer to the 500hPa geopotential high over 

northern hemisphere latitude band 20-80N. 
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Figure 7. June-August 2004 average PAC scores for the control (dotted lines) and the ensemble mean (solid 

lines) of the NCEP-EPS (cross), CMC-EPS (open circle) and ECMWF-EPS (closed circle). Values refer to the 

500hPa geopotential high over northern hemisphere latitude band 20-80N. 

 
 

Figure 8. June-August 2004 average RMS errors for the control (dotted lines) and the ensemble mean (solid 

lines) of the NCEP-EPS (cross), CMC-EPS (open circle) and ECMWF-EPS (closed circle). Values refer to the 

500hPa geopotential high over northern hemisphere latitude band 20-80N. 
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Figure 9. The probabilistic quantitative precipitation forecast (PQPF) for the 24 hours amount is exceeding 

6.35mm (or 0.25 inch). The initial times are April 26 0000UTC for NCEP 11 ensemble members and CMC 17 

ensemble members, April 26 1200UTC for ECMWF first 11 ensemble members. The gray scale bar indicates 

the probabilities from 0 to 100 in percentage. 
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Figure 10. The average CRPS scores of theDecember 1
st
 2009 – February 28

th
 2010 for combined Products – 

NAEFS (E40n - closed circle), NCEP’s raw ensemble forecast (E20s - cross) and CMC’s raw ensemble forecast 

(E20m - open circle) . Values refer to the 2 meters temperature over northern hemisphere latitude band 20-80N. 

 

 
 

Figure 11. The average CRPS scores of theDecember 1
st
 2009 – February 28

th
 2010 for combined Products – 

NAEFS (E40n - closed circle), NCEP’s raw ensemble forecast (E20s - cross) and CMC’s raw ensemble forecast 
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(E20m - open circle) . Values refer to the 500hPa geopotential height over northern hemisphere latitude band 

20-80N 

 

 

 
 

Figure 12. June-August 2004 average PAC scores for 10-member ensemble mean of NCEP (cross, the same as 

Fig. 2), ECMWF (open circle, the same as Fig. 2), NCEP (6 members) + ECMWF (4 members) (closed circle) 

and ECMWF (6 members) + NCEP (4 members) (open square). Values refer to the 500hPa geopotential high 

over northern hemisphere latitude band 20-80N. 

 
 

Figure 13. June-August 2004 average ROC skill scores for 10-member ensemble distribution of NCEP (cross), 

ECMWF (open circle), NCEP (6 members) + ECMWF (4 members) (closed circle) and ECMWF (6 members) 

+ NCEP (4 members) (open square). Values refer to the 500hPa geopotential high over northern hemisphere 

latitude band 20-80N. 
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Figure 14. Schematic  diagram of NWS seamless suite of forecast products spanning climate and weather 


