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Abstract

In the last decade or so the meteorological community has seen the successful development
and application of new and improved forecast verification methods for numerical prediction of
the Earth system. Verification methods to evaluate ensemble forecasts have become essential
because of the prominent role of Ensemble Prediction Systems as sources of numerical
guidance in operational centres. Moreover, coupled atmosphere-land-ocean models are now
routinely run in major centres to provide operational predictions on seasonal and multi-week
time frames. This chapter focus on advances in methods for evaluation of forecasts of several
different types of phenomena, as well as methods for different types of forecasts and different
timescales.

21.1 INTRODUCTION

Numerical Weather Prediction (NWP) model forecasts have been verified since the 1950s when
they first started providing reasonable predictions. Several World Meteorological Organization
(WMO) Lead Centres for forecast verification® now coordinate the routine production of verification
results for NWP and seasonal climate predictions from major national centres. Moreover, WMO's
Commission for Basic Systems (CBS) encourages the exchange of standard verification scores for
NWP models. In the case of NWP, these score included bias, root mean square error (RMSE), S1
skill score, and anomaly correlation of forecast fields on selected pressure levels. Recently,
verification scores for surface parameters have been added to the exchange in recognition that the
accuracy of surface parameter forecasts has improved as a consequence of scientific and
technical advances in NWP capabilities and increased horizontal spatial resolution of many global
models, which is below 20 km in many cases.

Verification methods to evaluate ensemble forecasts have become essential because of the
prominent role of Ensemble Prediction Systems (EPSs) as sources of numerical guidance in
operational centres. Moreover, coupled atmosphere-land-ocean models are now routinely run in
major centres to provide operational predictions on seasonal and multi-week time frames. The
benefits of this coupling at shorter ranges have also been recognized, and it is being applied by
some centres; for example, the European Centre for Medium Range Weather Forecasting
(ECMWF) EPS is now coupled from day 1. NWP and climate models are routinely used to drive
downstream impact models for emergency management, hydrology, agriculture, energy, and many
other applications. These downstream developments highlight the need for users to be involved in
the evaluation process.

This volume describes the many advances made in numerical prediction and the challenges to be
addressed in coming years. Improvements in numerical prediction require improved methods to
verify these forecasts. This has been an active area of research in the last decade or two. The
World Weather Research Programme (WWRP)/Working Group on Numerical Experimentation
(WGNE) Joint Working Group on Forecast Verification Research (JWGFVR) was established in
2003 to promote work in this area. This group coordinates workshops, tutorials, and verification
method intercomparisons, and is the focal point for verification of WWRP Forecast and Research
Demonstration Projects (FDPs and RDPs).

* The Lead Centre for Deterministic Forecast Verification is located at the European Centre for Medium Range Weather
Forecasts (ECMWE). the Lead Centre for Ensemble Forecast Verification is located at the Japan Meteorological Agency
(JMA), and the Lead Centres for Long Range Forecast Verification are located at the Australian Bureau of Meteorology
and the Meteorological Service of Canada.
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This paper describes some of the recent successes as well as current challenges facing the
verification community, as reflected in recent workshops and other presentations and papers. The
following sections focus on advances in methods for evaluation of forecasts of several different
types of phenomena, as well as methods for different types of forecasts and different time scales.
Remaining research and challenges associated with each of these topics are also considered. The
final section summarizes the current state-of-the-art in forecast verification and describes some
additional challenges in verification research and applications.

21.2 SPATIAL VERIFICATION METHODS

Short and medium-range NWP models have improved considerably over the years, while they
have also been evolving toward ever-higher resolution. Moreover, the prediction of surface
weather parameters has greatly improved. The spatial variability and intensity distributions of
model variables increasingly resemble the variability and distributions of observations, and the
ability to simulate the extreme values that are very important in a forecast and warning context is
also improving. Traditional verification against standard observations may suggest that high
resolution forecasts are less accurate than the lower resolution ones (e.g. Mass et al. 2002). The
spatial and temporal scales of the verification have a strong influence on the measured
performance with finer scales more prone to the "double penalty" associated with small errors in
the location and intensity of a forecast feature.

To measure the performance of high resolution forecasts in a way that is more consistent with how
they are used, several new spatial verification approaches have been proposed. Gilleland et al.
(2010) describe these methods as neighbourhood (crediting "closeness" in space, time, and/or
intensity, often through probabilistic approaches), scale separation (quantifying error at various
scales), features-based (comparing attributes of forecast and observed weather features such as
their location, size, intensity, etc.), and field deformation (measuring the distortion required to make
the forecast resemble the observed field). Gilleland et al. (2010) compare more than a dozen
spatial verification methods and their respective ability to measure location, intensity, and structure
errors, distinguish skilful scales, and verify the predicted occurrence of events. Table 1 gives a
summary of these capabilities by the type of verification approach. While all methods measure
intensity bias, no single method addresses all types of errors. Therefore, it is necessary to either
prioritise which types of errors are most important to the user and choose the appropriate
verification approach, or preferably apply more than one type of verification method. More complex
verification methods could be developed that address a greater range of error types.

Table 1. Intercomparison of traditional and spatial verification methods (after Gilleland et al. 2010). A
tick indicates that the method addresses the given type of error, a cross indicates that it does not.

Category Scafes_ with Location Intensity Structure (f?ffgugigzg

skill errors errors errors false alarms)
Traditional (gridpoint) x x v x v
Neighbourhood v x v x v
Scale separation v X v x v
Features based x v v v v
Field deformation x v v 5 X

Neighbourhood and feature-based methods are becoming mature enough to be used routinely in
many NWP cenfres to verify high resolution models. For example, the Met Office uses the fractions
skill score (FSS; Roberts and Lean, 2008) and neighbourhood Brier score (Mittermaier, 2014a) to
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measure the scales at which the model shows useful skill for predicting rainfall and clouds. The
Method for Object-based Diagnostic Evaluation (MODE) and the Contiguous Rain Area {CRA)
method are used to characterize performance of rainfall forecasts in many national centres (Ebert
and McBride, 2000; Davis et al. 2009, http:/www.hpc.ncep.noaa.goviverification/mode/mode. php
page=page 1. These methods can be applied to other parameters (for example, wind, moisture,
cloud) and can evaluate timing errors, though more research is needed to explore these
possibilities further.

Advanced verification methodologies have mostly focused on rainfall, due in large part to the
availability of spatially and temporally complete quantitative precipitation estimates from radar.
These methodologies must be tested for their ability to provide useful performance information for
other variables such as wind, waves, pollutants and other hazards, as well as for more benign
variables like temperature, humidity and cloud cover. The second spatial verification method
intercomparison project, called MesoVICT (Mesoscale Verification In Complex Terrain; Dorninger
et al. 2013) focuses on testing spatial verification methods on precipitation and wind forecasts from
both deterministic and ensemble NWP, and for the first time includes ensemble analyses as
reference data to simulate uncertainty associated with observation fields. Verification researchers
are encouraged to participate in this project to test existing and newly developed spatial verification
approaches and to explore how to account for observational uncertainty.

In light of growing reliance on high resolution NWP models for predicting high-impact weather,
work must continue on characterizing location and intensity forecast errors for small scale intense
features - features for which small errors can have large impacts on decision-making and impacts.
It may be possible in some circumstances to correct for systematic forecast biases, particularly
where intensity biases are related to model resolution. Moreover, with short-range forecasts now
being used to produce graphical (spatial) warnings, there is a strong need to extend spatial
verification methods to evaluate timing (lead time, onset, cessation) and intensity performance of
spatial warnings.

Spatial verification approaches also have potential to provide valuable insights on the performance
of longer lead time (multi-week to seasonal) forecasts through their use to evaluate anomaly
predictions (e.g. for temperature and precipitation). Neighbourhood methods are used to assess
the value of downscaling (De Haan et al. 2014), while features-based approaches can be used to
characterize errors in anomaly or other patterns (e.g. mean, variance, extreme fields) to provide
more intuitive information for users and service providers. This topic is a current area of research.

21.3 METHODS FOR EXTREME EVENTS

A strong mativation for high resolution NWP is to predict extreme values associated with
dangerous weather. One challenge in verifying predictions of extremes is the limited frequency of
opportunities to observe them and, thus, collecting enough forecast-observation pairs to compute
meaningful and robust statistics. Thus, the accuracy of extreme event forecasts can be challenging
to assess. Moreover, in cases of extreme weather the observations themselves may be less
trustworthy; for example, instruments may be destroyed by floods or windstorms or measurements
may be compromised by the weather conditions.

Some common categorical contingency table-based verification metrics behave badly for rare
events, making them ineffective at distinguishing variations in performance among multiple
forecasting systems. In particular, Ferro and Stephenson (2011) show that for imperfect forecasts,
the threat score and the Gilbert, Heidke, and Peirce skill scores asymptote to zero for rare events.
Many of these scores are strongly affected by the number of correct non-events and provide little
useful information on the model performance for rare events. Ferro and Stephenson have
proposed a new class of scores called extremal dependence scores (EDSs) that reward hits and
penalize misses and false alarms, and also behave much more consistently with the forecast
performance observed for less rare events. The simplest EDS is the extremal dependence index
(EDI), defined as
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(InF—InH)

EDI = ;
(InF+InH)

where F is the false alarm rate and H is the hit rate (both of which must be non-zero). While the
interpretation of the EDI is less clear cut than for the threat score, it has the strong advantage of
being able to better distinguish the performance of competing models for rare binary events.
Extreme value theory, widely used to analyze extremes in the climate context, offers some promise
for evaluating the performance of extreme weather forecasts of continuous variables (Prates and
Buizza, 2011). A threshold-weighted continuous ranked probability score (CRPS) was recently
proposed by Gneiting and Ranjan (2011) as a strictly proper score for evaluating probability
forecasts for extremes.

Forecasters increasingly rely on guidance from numerical predictions to issue watches and
warnings for severe and high-impact weather. In contrast to routine forecast verification with fixed
base times and valid times, warning verification requires the evaluation of lead time and warning
duration relative to the onset and cessation of the event being warned for. Trade-offs between lead
time and warning accuracy need to be assessed in order to inform user-focused studies of warning
effectiveness in the face of false alarms (Wilson and Giles, 2013).

The spatial extent of a warning also influences the verification; it is easier to accurately warn for an
event somewhere within a large area (e.g. a county or state) than in a small area like a town.
Similar to neighbourhood verification, it may be desirable to apply "soft” criteria to warning
verification - within X km, within ¥ minutes, within 1 intensity category, etc., as well as "hard"
criteria, to understand better the warning performance as function of scale and other factors (Neal
etal. 2014). This is particularly true when observations are incomplete, as in the case of tornado
sightings, in which case it may be necessary to treat observations in a probabilistic manner
(Brooks et al. 1998; Hitchens et al. 2013).

With improving forecasts and warnings for extreme weather and its impacts becoming increasingly
the focus of operational meteorology, greater efforts must be made to develop methods for
objectively evaluating and communicating their performance in terms that users can understand.
Relevant metrics might measure lead time, accuracy of predictions for "unsafe" and "all-clear"
conditions, and dollars saved or losses averted relative to the no-forecast case or some other
standard. Section 21.7 discusses user-oriented verification in more detail. A useful metric in this
context is the relative (or potential) economic value (Richardson, 2000), which translates forecast
skill into potential economic gain for users with different cost/loss ratios. It has been also found to
be a useful framework for assessing the benefit of probabilistic vs. deterministic forecasts for
extreme events (Haiden et al. 2014; Magnussen et al. 2014).

21.4 METHODS FOR ENSEMBLE AND PROBABILISTIC PREDICTIONS

Ensemble prediction is now being used at all scales to explicitly account for forecast uncertainty
related to initial conditions and model uncertainties. EPSs can be evaluated in several different
ways with the choice of approach dependent on how the forecast is intended to be used.
Specifically, the ensemble members can be evaluated individually as deterministic forecasts or the
ensemble can be summarized using a representative member such as the ensemble mean; they
can be evaluated as probabilistic forecasts (e.g. by translating the ensemble prediction to a
probability distribution or by estimating probabilities for specific events); or they can be evaluated
as a distribution. While methods focused on the first two options are relatively well-established,
methods for evaluation of a whole distribution are still relatively new, and improved diagnostic and
intuitive approaches for evaluation of EPSs are still needed.

Traditional verification of probabilistic and distribution forecasts from EPSs is based primarily on
metrics such as the Brier skill score (for probability forecasts) and CRPS (for the whole
distribution), and diagnostics such as reliability and relative operating characteristic (ROC)
diagrams and rank histograms, to assess spread-error consistency and reliability and
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discrimination of probability and ensemble forecasts. The ignorance score (Roulston and Smith,
2002) is also becoming more commonly applied as a single number to evaluate the quality of an
ensemble distribution without inferring the preferences of a particular user. This measure has
recently been decomposed to represent attributes that are similar to the attributes of reliability and
resolution represented by the Brier Score (Weijs et al. 2010; Todter and Ahrens, 2012).

The “spread-skill” relationship is often relied upon to determine the adequacy of the ensemble in
appropriately capturing the forecast uncertainty; yet the methods for doing so are varied and the
interpretations often not completely clear. A proposed new error-spread score (ES) verifies the
moments of the forecast and is able to distinguish between dynamically reliable forecasts from an
ensemble prediction system and the statistically reliable (but non-varying) dressed deterministic
forecasts (Christensen et al. 2015). Hopson (2014) explores the nuances associated with different
approaches to estimating and comparing spread and skill.

Ferro (2014) considers the "fairness” of scores such as the Brier Score and CRPS for evaluation of
ensemble predictions. In Ferro’s study a score is defined to be fair if "the expectation of the score
with respect to the distributions of both the ensemble members and the verifying observation is
optimized when these distributions coincide”. Ferro's work indicates that the Brier, ranked
probability and continuous ranked probability scores are unfair. However, appropriately adjusted
versions of these scores are fair. Meta-studies like this - related to properties of scores - provide
valuable guidance for the application of the scores and the interpretation of the results. They are
important contributions to the verification knowledge base as new scores gain wider use.

Spatial methods are now starting to be used to evaluate ensemble predictions - this is a promising
area of research and application, especially as convection-permitting ensembles become a routine
tool for high-impact weather prediction in some national centres. Neighbourhood verification
methods are easily extended to include an ensemble dimension (e.g. Duc et al. 2013; Ben
Bouallégue and Theis, 2014; Mittermaier, 2014a), and scores such as the FSS can be used to
characterize the ensemble spread (Dey et al. 2014). Approaches for feature-based ensemble
verification are still being investigated (e.g. Gallus, 2010; Johnson et al. 2013). Suggested
approaches include verifying objects in probability maps, verifying the "ensemble mean" using
spatially averaged forecast objects (possibly with histogram recalibration) or objects generated
from average object properties, and evaluating distributions of object properties.

Because the field of ensemble verification is still relatively young, there is a continuing need for
more intuitive and informative methods. This will be an important area of research in the future.

21.5 UNCERTAINTY IN VERIFICATION RESULTS

Uncertainty in verification results arises from many sources. Perhaps most importantly,
observations are inherently uncertain due to measurement as well as spatial and temporal
representativeness errors, and application of forecast verification to limited samples of forecasts
leads to uncertainty related to sampling variability. Sampling variability is somewhat more
straightforward to account for than observation-related uncertainty, and methods for estimating
statistical confidence intervals have been defined for many verification measures (e.g. Jolliffe,
2007; Gilleland, 2010) and are included in at least some verification packages (e.g. the Model
Evaluation Tools (MET): hitp //www dicenter org/met/users/). These approaches generally take
into account the effects of temporal correlations; accounting for the impacts of spatial correlations
on the confidence intervals is somewhat more problematic and is generally not adequately
addressed. Methods for applying confidence intervals to differences in performance for paired
samples lead to more powerful statistical comparisons of model forecast performance.

While taking into account observation uncertainty in verification studies is still a research topic,
some knowledge has been gained in recent years. However, much more knowledge and new
capabilities are required. Fundamentally, as models have improved, it is no longer appropriate to
ignore observation error; in fact, as models improve, the apparent error in forecasts will become
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closer and closer to the error in the observations. Ideally, biases in observations can be removed
(when they are known) but it is more difficult to account for the random errors, which lead to poorer
verification scores for deterministic forecasts. Verification results for ensemble forecasts are
characterised by poorer reliability and ROC area in the presence of observation error.

A few solutions have been suggested for accounting for observation error in verification analyses
to try to estimate the "true" forecast performance against perfect observations. A simple example is
to include error bars in scatterplots of forecasts vs. observations. Ciach and Krakewski (1999)
proposed approaches for coping with observation errors in computation of RMSE values; and
Bowler (2008) considered how to incorporate observation uncertainty into categorical scores. In
addition, Santos and Ghelli (2011) have looked at a version of the Brier Skill Score that accounts
for observation uncertainty. A difficulty with these approaches is that in the absence of a "gold
standard" of the true value of the observed parameter, the observation errors are themselves only
estimates and can lead to unrealistic estimates of forecast error. Triple collocation analysis can
potentially provide estimates of error variances for three or more products that retrieve or estimate
the same geophysical variable using mutually independent methods; however, a recent study
suggests that cross-correlation of errors causes the true random error to be underestimated
(Yilmaz and Crow, 2014). Mittermaier (2014b) explored the impact of temporal sampling on the
representativeness of hourly synoptic observations by considering 1 minute surface observations
of temperature. Though information on the variance of the residuals can be derived, it is less clear
how these should be applied, and this is an area of current research. Initial results would suggest
that there may be a limit to achievable forecast accuracy.

Another area of concern is the difference in forecast performance that is apparent when
comparisons are made with multiple observation sources (e.g. different analyses; gauges vs.
radars) (Tollerud et al. 2014). Accounting for this variability is difficult but important. Differences in
analyses provide another representation of the uncertainty associated with observations and their
appropriateness for matching to specific forecasts. Gorgas and Dorninger (2012) investigated the
use of an ensemble of objective analyses as verification for NWP forecasts of surface variables, to
quantify the uncertainty in verification results associated with the spatial treatment of the
observations. The MesoVICT project will provide an opportunity to test the sensitivity of different
traditional and spatial verification methods to choice of analysis, and ways to potentially exploit this
analysis variability to provide useful insights on forecast performance (see Section 21.2 for more
on this project).

The wisdom of using a model's own analyses (i.e. the model state at its initial time, following data
assimilation) to verify its forecasts has come under increasing scrutiny following recent findings
that such results may lead to incorrect conclusions about the nature of model errors (Yamaguchi et
al. 2014). Model biases carry over into the analysis from the model-based background field,
especially where observations are sparse, leading to underestimates of model error and over-
estimates of ensemble dispersion in the short range. Members of WGNE investigated this problem,
verifying NWP models from each centre against its own and others' analyses, and found some
surprising behaviours including model errors sometimes improving with lead time when verified
against other centres' analyses (WGNE, 2014). As a result WGNE recommended putting greater
emphasis on verification against observations.

When spatially complete observation fields are required for verification, model-independent
analyses such as the Vienna Enhanced Resolution Analysis (VERA; Steinacker et al. 2000) may
be used confidently where the observation density supports regular gridding. In regions where
observation density is highly variable, such as Canada, it may be possible to use a modified grid.
Casati et al. (2014) proposed a wavelet-based objective analysis scheme in which the size of each
grid box varies according to observation support; verification is then performed at different scales
according to the observation availability. Further efforts are needed to test this approach and refine
it for sensitivity to observation type, network density, error characteristics, and other factors.
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21.6 LONGER TIMESCALES AND SEAMLESS PREDICTION

Numerical prediction beyond the medium range requires coupled atmosphere-land-ocean
modelling to account for the more slowly varying processes associated with land surface
processes, ocean circulation, and sea ice evolution. Coupling may benefit the shorter ranges as
well. In 2008, ECMWF introduced operational coupled ensemble prediction starting at day 11 inits
variable resolution EPS system (VAREPS), and in 2014 introduced coupling starting at day 1,
representing truly seamless prediction across time scales from the short- to sub-seasonal range.
Other major NWP centres are expected to follow suit in due course.

Evaluation of seamless numerical prediction requires verification approaches that allow for
consistent interpretation across time scales. This is tricky because short- and medium- range
forecasts tend to be deterministic or ensemble predictions of instantaneous® "absolute” weather
variables at fine spatial and temporal scales, whereas extended range forecasts are based on
coarser resolution ensembles, are typically given as probabilistic predictions of weekly or
fortnightly anomalies being in a particular category (e.g. highest tercile), and rely on large hindcast
datasets for forecast calibration. The variables of greatest interest in the extended range include
surface precipitation and temperature, features such as tropical storms and monsoon onset, and
indices for modes of variability such as the Madden-Julian Oscillation (MJO).

The verification approach should reflect the way the forecasts are used. In research mode
verification of extended range forecasts is generally done against independent observations from
surface networks or satellite, or against the hindcast dataset using cross-validation, using standard
ensemble and probabilistic diagnostics and metrics like spread-skill plots, reliability and ROC
diagrams, and Brier skill score. Real-time verification may compute these metrics for the most
recent set of V (e.g. 30) forecasts. A challenge for real-time long range forecast verification is
estimating robust statistics when the number of forecasts issued in a month or season is relatively
small - much smaller than for NWP. For reporting forecast quality to users, simple verification
approaches such as percent correct for forecasts above/below the median are often used, but this
is not sufficient for model development and improvement.

Seamless verification methods to evaluate medium and extended range models in a consistent
way are in their infancy and much more research is needed. A few proposed approaches are
mentioned below.

Since the coupled model starts with a set of initial conditions and integrates forward in time, it
predicts weather en route to predicting climate. Therefore, verification approaches that are
appropriate for weather forecasting can be applied to the shorter-range predictions from coupled
models to assess the ability of the model to correctly represent processes. The Transpose-
Atmospheric Model Intercomparison Project (AMIP) strategy of verifying climate models in NWP
mode is an efficient way to detect errors in model processes that become apparent as biases early
in the forecast period (Williams et al. 2013). Modelling centres should include this powerful
approach in their programme of model evaluation activities, using as reference data not only
standard meteorological observations but also satellite radiances, surface flux measurements, sea
surface temperatures, and other non-standard observations.

The real-time multivariate MJO index (RMM) phase plot (Gottschalck et al. 2010) is a climate-
focused verification approach that can also be applied to medium-range NWP. There is a need for
additional metrics to diagnose other modes of sub-seasonal climate variability in NWP and coupled
models.

A seamless approach for comparing forecasts from an extended range prediction system across
time scales was proposed by Zhu et al. (2014). They verified 1 day ahead forecasts of 1 day rain
accumulation, 2 day ahead forecasts of 2 day accumulation, and so on, out to 4 week ahead

forecasts of 4 week rain accumulation. They computed the temporal correlation of observed and

® Rainfall is an exception; short-range quantitative precipitation forecasts (QPFs) are typically accumulated over scales of
1 or more hours
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forecast ensemble mean rainfall at each grid box and found little change in the results whether
they used total rainfall or rainfall anomalies. This approach of equivalent lead and aggregation time
would also be amenable to verification metrics for categorical, probabilistic, and ensemble
forecasts. Depending on the chosen metric (and the verification question it addresses), one could
determine the temporal scales with useful prediction skill according to that metric - this would be a
promising avenue to explore.

The generalized discrimination score (GDS) described by Mason and Weigel (2009) provides a
consistent verification approach across different types of forecasts. Also known as the two-
alternative forced choice (2AFC) approach, this method quantifies how well the forecast correctly
discriminates between the observations. It has the same meaning when applied to forecasts that
are formulated as binary, multi-category, continuous, or probabilistic variables, which can be
verified against observations that may be (any of) binary, multi-category, or continuous. The GDS
would therefore enable model performance for deterministic short-range forecasts and probabilistic
sub-seasonal forecasts of anomalies to be compared in a consistent manner.

Weather represents the rapidly varying flow within a larger scale (climate) regime. Verification of
extended range predictions conditional on the climate regime has led to identification of periods of
enhanced predictability associated with planetary-scale teleconnections. For example, the MJO
phase of tropical convection in the initial state impacts the Northern Hemisphere conditions three
weeks later (Vitart and Molteni, 2010). These "windows of opportunity" for enhanced prediction skill
are not yet well understood, and require further conditional verification to quantify their benefit in
predicting overall weather conditions for applications such as agriculture and water resources.

New applications for extended range prediction will require appropriate verification approaches to
be developed. Some examples include windiness / storminess for renewable energy estimation,
wave regimes for beach erosion and public safety, heat and humidity conditions for tourism, and so
on. New user-relevant metrics will need to be developed in many cases, in close consultation with
the relevant sectors.

Many thresholds may be necessary to satisfy a large range of users. For this reason, and for
diagnosing and correcting errors in ensemble predictions, verification of the full distribution may be
more desirable than simple metrics based on forecasts for terciles or above/below median. The
probability integral transform (PIT) and rank histograms can be used to assess the calibration of
probabilistic and ensemble forecasts, but research is needed on the best way to evaluate forecasts
when the tails of the distribution may be more "valuable" and important to predict correctly. As
noted in Section 21.3, the research on methods for verifying probabilistic forecasts of rare extreme
events is still in its infancy. Advances in this area are needed to support evaluation of forecasts for
extremes across all time scales.

New methods and simple metrics are needed to assess model performance in simulating the
climate modes and teleconnections that enhance sub-seasonal predictability. The RMM index for
verifying MJO is already in wide use, but other features that require the development and testing of
verification metrics include blocking highs, land surface conditions, sea ice concentration and
extent, monsoon phase, and storm track variations. Many of these features are coherent structures
and may be amenable to the use of spatial verification approaches described in Section 21.2,
possibly extended or modified to include the time dimension.

To focus on some of these issues, the community can make use of knowledge gained in the
Climate and Ocean: Variability, Predictability and Change (CLIVAR) project and the MJQO working
group who have focused on the connections between larger-scale phenomena and the
performance of forecasting systems. Two of the legacy projects from the WMO's THORPEX (THe
Observing System Research and Predictability EXperiment) programme - namely, the Sub-
seasonal to Seasonal Prediction Project (528, see Chapter 20) and the Polar Prediction Project
(PPP, see Chapter 19) - will conduct and apply research on relevant verification methodologies
and observations, which should lead to advances in the verification methodologies available for
longer-range predictions. The WGNE/WGCM Climate Metrics Panel is developing and promoting a
metrics toolkit for verifying the output of coupled climate models, starting with basic quantities like
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bias and RMSE of key state variables. Diagnostic and process-oriented verification techniques will
be included in future releases; many of these techniques may be relevant for assessing extended
range predictions.

Improved verification methodologies for extended range forecasts must be tested on large
datasets comprising the output of seamless modelling systems, hindcast datasets for calibration
and cross-validation, and well-characterized high quality global observations of precipitation,
temperature, and other relevant variables. The Obs4MIPS (Observations for Model
Intercomparisons) activity, which is making observational products more accessible for climate
model intercomparisons, is a good source of non-real-time data (Teixeira et al. 2014). Routine
verification in near-real-time (relatively speaking) should leverage current operational seasonal and
NWP verification systems.

To advance these developments and applications, verification researchers will need to work with
both the short-range and long-range modelling communities who are converging on extended
range prediction but still tend to view the world somewhat differently. Verification systems must
accommodate different data formats (e.g. GRIdded Binary (GRIB) vs. network Common Data Form
(NetCDF)) and temporal/spatial aggregations. Verification of seamless modelling systems must
also provide objective evidence to inform the choice that many major centres have between
frequent model upgrades to incorporate improvements and boost short-range accuracy, versus
freezing a model to accommodate the time consuming generation of hindcasts necessary for
calibration.

21.7 ENVIRONMENTAL VARIABLES AND DOWNSTREAM PRODUCTS AND IMPACTS

Seamless prediction also refers to the coupling of weather predictions to other environmental
variables such as atmospheric composition and aerosols, streamflow, water quality, and vegetation
state. For many years the coupling was one way, but NWP systems such as ECMWF's Integrated
Forecast System (IFS) now have the ability to carry some environmental variables directly within
the model. Understanding the interfaces and identifying how error sources are propagated from
one system to another is critical if predictions are to be improved. Although verification of
environmental variables typically uses many of the same statistical metrics and approaches as
used to verify meteorological variables, it may be preferable to develop new methodologies
targeted to the problem at hand. For example, Demargne et al. (2009) describe diagnostic metrics
for verifying deterministic and ensemble hydrologic forecasts that are meaningful for users in the
water community.

Weather forecasts inform decision-making in a number of spheres (emergency management,
energy, aviation, agriculture, tourism, and many more). A focus area for WWRP is the coupling of
weather predictions to downstream impacts. Some centres are doing this automatically by using
direct or post-processed NWP model output as input to impact models. An example is the Flood
Forecasting Centre in the UK where model output from the variable resolution (UKV)
meteorological model is fed directly to the hydrological model for predicting streamflow (Pilling et
al. 2014, Lewis et al. 2014). Other examples of downstream impact models include fire spread
models and renewable energy generation models.

Impact forecasting raises some interesting challenges for verification. Many of the same issues
that arise with verifying warnings of extreme weather (timing, intensity) also apply to warnings of
impacts associated with extreme weather. Observations of the impacts may be difficult to obtain for
a variety of reasons relating to how they are collected, and by whom, how they are stored and
disseminated, and whether they measure something that can be predicted and verified or are only
indirectly related to the impact. In some cases that data is purposefully unavailable for commercial
or national security reasons. It will be necessary in many cases to strengthen or form relationships
with the organizations holding the relevant impact data in order to understand and obtain the data.
The opportunities for partnering of meteorological and other agencies can lead to more effective
services for the public and other stakeholders.
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Communication between the meteorological and various downstream communities is often
challenging, with each sector "speaking their own language" and having their own priorities for
what makes a forecast useful to them. To enable the benefits of improved weather forecasting to
be translated into improvements in downstream impact forecasts, it is necessary to develop and
apply verification metrics that are meaningful to the downstream users. The best way to do this is
through direct engagement with the users to produce “user-relevant” metrics.

The aviation industry is a heavy user of meteorological forecasts. An example of a jointly
developed aviation-oriented verification metric is the flight time error, a measure of forecast upper-
air wind accuracy that computes the difference between the observed flight time and the forecast
flight time calculated by replacing the actual winds along the flight track with the forecast winds
(Rickard et al. 2001). Other examples of user-relevant approaches include the application of
spatial techniques to track the occurrence of low-pressure systems, the development of measures
to evaluate wind “ramps” for the renewable energy industry, and the measurement of forecast
consistency for tropical cyclone track forecasts (Hodges, 1999; Bossavy et al. 2013; Fowler et al.
2015). Methods are also needed to translate verification information into socioeconomic benefits
through the application of appropriate cost-loss and other models.

Crowdsourcing and data mining of mobile phone networks, Twitter, Facebook, and other social
media, are emerging and promising sources of information that may be used to infer the
occurrence, coverage, and impacts of hazardous weather (Hyvirinen and Saltikoff, 2010, Muller et
al. 2015). The use of these data for verification is only beginning to be explored. A 2013 study
comparing crowdsourced hail observations to official hail reports and severe warning polygons in
the United States suggested that, due to biases and inaccuracies related to population density and
observer engagement, these crowdsourced data should only be used in conjunction with other
databases in order to ensure quality (Pehoski, 2013).

The propagation of errors from the meteorological forecast into the downstream impact forecast
needs to be quantified and understood. This requires sensitivity testing, including of the
assumptions made by the impact model (i.e. understanding its output errors given perfect input).
The longer the chain of models, the more opportunity there is to compound errors. The area that
has received by far the greatest attention is the propagation of uncertainty from NWP into
hydrological prediction (e.g. Zappa et al. 2010), where it has been shown that the major source of
error in hydrological predictions is due to uncertainties in the predicted rainfall. Similar work is
required for other hazards to allow greater understanding of the relationships in performance along
the forecasting chain.

The application of meteorological verification in additional - but often related - fields also
represents a challenge. Just as weather forecast verification methodologies are more advanced
than the techniques applied in climate forecast evaluation, these methods are also relevant for
other physical and social phenomena for which verification has not traditionally been a key activity.
For example, weather forecast verification techniques are being adapted for application in areas
such as ocean current and earthquake prediction. Extending our efforts into these areas will
undoubtedly lead to new challenges related to users, observations, and methodologies.

21.8 LINKAGES TO OTHER ACTIVITIES

Verification is a critical component of any prediction research and application, and applies to all
variables, space and time scales that can be predicted and observed. Each project of the WWRP
has a strong verification component that includes both traditional approaches and new improved
verification methods that may address some of the more challenging questions about forecast
performance. Although the JWGFVR is a focal point for verification research and supports the
WWRP in this aspect, there is great interest and innovation in verification throughout the weather
and climate community. Some verification research linkages within WWRP and with other activities
are noted below.
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The Polar Prediction Project (PPP) aims to improve operational forecasting at high latitudes. The
baseline forecast performance must first be established through increased attention to verification
in the Arctic and Antarctic regions. There are significant observational challenges associated with
the sparseness and quality of standard observations, especially in extreme conditions. It is likely
that satellites will provide a very important source of data for verification, with model evaluation in
"observations space” (simulated satellite radiances) likely to be more robust than using retrieved
atmospheric variables for verification. PPP has identified sea ice prediction as one of its priorities,
so methods for verifying ice extent and concentration will need to be tested and improved, for both
large (basin) and very fine (seaport) scales. Spatial verification methods may prove to be quite
beneficial for application to these kinds of predictions. In addition, development of user-relevant
methods to verify key polar weather and climate phenomena (e.qg. blizzards and fog/visibility) is an
important need for this project.

The verification sub-project of the Sub-seasonal to Seasonal Prediction Project (S23) will
recommend verification metrics and datasets for assessing forecast quality of $S2S forecasts, and
provide guidance for a potential centralized verification effort for comparing forecast quality of
different S28 forecast systems, including the comparison of multi-model and individual ensemble
systems. Verification research is required to develop user-relevant metrics for sub-seasonal to
seasonal forecasts and downstream applications, and to determine how to cope with short
hindcast periods and the reduced numbers of ensemble members in hindcasts (compared to real-
time forecasts) when constructing probabilistic skill measures. Spatial verification of coherent
structures in the anomaly fields will also be explored.

The High-Impact Weather (HIWeather, see Chapter 24) project focuses on weather hazards and
their impacts, including how improved high-impact weather predictions can lead to enhanced
community resilience through better understanding of risk and vulnerability and more effective
communication. Verification research in this project will develop methodologies for verifying
predictions of hazard impacts (e.g. floods, transport delays, damage to property, injuries, etc.), and
explore the use of new types of observations for verification. The potential utility of crowdsourced
and third-party data from social media, sensor networks, and other new technologies is of great
interest. With help from the Societal and Economic Research and Applications (SERA) working
group, the translation of accuracy improvements into socioeconomic benefit (for example,
increased forecast lead time leading to greater opportunities to protect assets and thereby reduce
losses) will be investigated for different sectors. Verification methods for nowcasts and high
resolution NWP ensembles, especially for predictions of extreme values, will also be tested in this
project.

Urban meteorology is receiving increasing attention as numerical models and understanding of
urban micrometeorology and atmospheric chemistry enable more accurate very fine scale
prediction of weather and environmental conditions. The Global Atmosphere Watch (GAW) Urban
Research Meteorology and Environment (GURME) project helps national meteorological centres
deal with urban issues, especially air pollution. Traditional verification of forecast concentrations of
chemical species and particulates against observations from monitoring sites could be augmented
by spatial verification approaches using satellite aerosol optical depth measurements, application
of new methods to verify extreme values, and development of user-oriented verification metrics for
public health applications. Obtaining adequate observations in the complex urban environment
poses a significant challenge for advancing urban meteorology (Carmichael et al. 2014).

Forecast and Research Demonstration Projects (FDPs and RDPs) are useful testbeds for new
verification techniques, providing opportunities for verification researchers, nowcast developers,
modellers, forecasters, and downstream users to interact closely to improve their respective
capabilities. They have provided valuable insights on the utility of real-time verification, and further
efforts in this direction should be strongly encouraged.



414
SEAMLESS PREDICTION OF THE EARTH SYSTEM: FROM MINUTES TO MONTHS

WGNE has a long history of promoting verification research to help the major numerical modelling
centres with model evaluation and intercomparison, and to support WGNE experimentation (recent
examples include the Transpose-AMIP, Grey Zone and Analysis Verification projects; WGNE,
2014). WGNE's interest in verification methodologies will remain strong as the capability of
numerical modelling systems and data assimilation systems evclve, and new observations become
available for data assimilation and verification. The THORPEX Interactive Grand Global Ensemble
(TIGGE) dataset will continue to be an important resource for exploring new approaches for
verifying ensembles and products derived from ensembles (e.g. tropical cyclone strike probability,
heavy rainfall probability, storm tracks, etc.), and addressing issues related to the use of model
analyses in verification.

Finally, training and education through workshops and conferences, tutorials and courses,
websites, WMO documents, journal articles and other literature, are vital to promote the science
and practice of verification. WMO has supported much good work in this area and it is hoped that
this can continue.

21.9 SUMMARY AND PROSPECTS FOR THE FUTURE

In the last decade or so the meteorological community has seen the successful development and
application of new and improved forecast verification methods for numerical prediction of the earth
system; yet many challenges remain.

o Spatial verification methods are becoming mainstream and are in some cases applied
operationally as well as in research settings. New research is needed to understand how
well these methods apply in regions of complex terrain, for ensemble forecasts, for
variables other than precipitation, and how they can be extended into the temporal domain
to address timing errors.

¢ New scores have been developed that provide better ways to compare the ability of
forecasting systems to predict extreme events; more experience with application of these
scores will lead to their wider use and also to development of additional approaches for this
difficult challenge, particularly in the context of ensemble and probabilistic prediction.

¢ Although standard approaches for evaluation of ensembles have matured and are generally
applied in a consistent way, ensemble prediction is still an evolving science and new
verification metrics for ensembles continue to be developed. These require testing and
refinement for meteorological and downstream applications.

e The development and application of user-relevant approaches for forecast evaluation, as
well as the application of methods for downstream forecasts and impacts have blossomed
in the last decade; the breadth of possible applications will require some consideration and
prioritization in the community, in consultation with relevant external users.

» Development of verification approaches for longer range and seamless predictions have
become increasingly important to support new prediction capabilities.

e Incorporation of information about observation uncertainty into forecast verification
methodologies remains one of the greatest challenges for our community.

Efforts in these areas are likely to dominate verification research over the next decade.
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