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ABSTRACT

The National Centers for Environmental Prediction have generated an 18-yr (1999–2016) subseasonal

(weeks 3 and 4) reforecast to support the Climate Prediction Center’s operational mission. To create this

reforecast, the subseasonal experiment version of the GEFS was run every Wednesday, initialized at

0000 UTCwith 11 members. The Climate Forecast SystemReanalysis (CFSR) and Global Data Assimilation

System (GDAS) served as the initial analyses for 1999–2010 and 2011–16, respectively. The analysis of 2-m

temperature error demonstrates that the model has a strong warm bias over the Northern Hemisphere (NH)

and NorthAmerica (NA) during the warm season. During the boreal winter, the 2-m temperature errors over

NA exhibit large interannual and intraseasonal variability. For NA and the NH, weeks 3 and 4 errors are

mostly saturated, with initial conditions having a negligible impact. Week 2 errors (day 11) are ;88.6% and

86.6% of their saturated levels, respectively. The 1999–2015 reforecast biases were used to calibrate the 2-m

temperature forecasts in 2016, which reduces (increases) the systematic error (forecast skill) for NA, the NH,

the Southern Hemisphere, and the tropics, with a maximum benefit for NA during the warm season. Overall,

analysis adjustment for the CFSR period makes bias characteristics more consistent with the GDAS period

over the NH and tropics and substantially improves the corresponding forecast skill levels. The calibration of

the forecast using week 2 bias provides similar skill to using weeks 3 and 4 bias, promising the feasibility of

using week 2 bias to calibrate the weeks 3 and 4 forecast. Our results also demonstrate that 10-yr reforecasts

are an optimal training period. This is particularly beneficial considering limited computing resources.

1. Introduction

To provide seamless numerical guidance to a broad

range of users and partners, the National Oceanic and

Atmospheric Administration (NOAA) is extending its

services from weather forecasts (week 1) and extended

forecasts (week 2) to subseasonal forecasts (weeks 3 and 4)

through the Next Generation Global Prediction System

(NGGPS) project. The lack of memory of the atmospheric

initial conditions and the effects of the atmosphere–land

and ocean–sea ice interactions, which benefit weather

forecasts and seasonal and longer forecasts, respectively,

create particular challenges to the subseasonal forecasts

(Johnson et al. 2014; Li et al. 2018). On the subseasonal

time scale, the numerical model is a major driver for

forecast error and skill. Thus, improvement in theCorresponding author: Dr. Hong Guan, hong.guan@noaa.gov
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dynamical forecast system is critical to improving sub-

seasonal forecast skill. In addition, statistical postprocess-

ing improves the forecast quality after calibration and can

also improve the forecast skill. Postprocessing is especially

important for the subseasonal time scales due to larger

forecast errors that exists at longer lead times.

Regarding the potential improvement of forecast skill

in a dynamical forecast system, recent studies demonstrate

that improvement in forecast skill can be derived from

improved sea surface temperature (SST) forcing (Zhu et al.

2017), updated convection parameterization schemes

(Vitart 2009; Zhu et al. 2018; Li et al. 2018), and new sto-

chastic physics (Zhu et al. 2018; Li et al. 2018). These efforts

have significantly improved the Madden–Julian oscillation

(MJO) forecast skill and 500-hPa geopotential height fore-

cast skill. Although the subseasonal forecast skill in the

tropics and the large-scale circulation is improving, the

weeks 3 and 4 forecasting of near-surface variables is still

challenging. For example, the improvement in raw forecast

skill for 2-m temperature and accumulated precipitation is

marginal (Zhu et al. 2018). This suggests that developing a

suitable postprocessing technique to calibrate the raw

forecasts and further improve the forecast skill of near-

surface variables is important on subseasonal time scales.

Various postprocessing techniques have been proposed

and applied to reduce systematic errors and improve the

skill levels of probabilistic forecasts on weather and ex-

tended weather time scales. These techniques include

Kalman filtering (Cheng and Steenburgh 2007), decaying

averaging methods (Cui et al. 2012), logistic regression

(Wilks and Hamill 2007), nonhomogeneous Gaussian

regression (Gneiting et al. 2005), Gaussian ensemble

dressing (Roulston and Smith 2003; Wang and Bishop

2005; Bishop and Shanley 2008), Bayesian model aver-

aging (Raftery et al. 2005; Wilson et al. 2007), artificial

neural networks (Yuan et al. 2007), and analog tech-

niques (Hamill et al. 2013). Previous studies (Hamill et al.

2004, 2008; Cui et al. 2012; Guan et al. 2015; Guan and

Zhu 2017; Ou et al. 2016) have revealed the importance

of a hindcast (i.e., reforecast) for extreme weather fore-

casts or bias correction duringweek 1 orweek 2. Thus, the

hybrid decaying and reforecast bias-correction method

(Guan et al. 2015) is being operationally applied to the

North American Ensemble Forecast System (NAEFS;

Candille 2009) in order to improve 1–16-day forecasts.

The major focus of this study is to analyze the spatial

and temporal distributions of 2-m temperature bias and

identify the saturation characteristics of 2-m temperature

error. It is well known that numerical weather forecasting

error grows with lead time.An understanding of the error

saturation is crucial to further developing an inexpensive

reforecast configuration and an effective bias-correction

method for operational purposes. Creating a multiyear

reanalysis and reforecast datasets requires considerable

computational and human resources. It is desirable to

produce a high quality forecast using fewer resources. To

reach this goal, we determined the time scale when 2-m

temperature error reached a saturated level and then

address whether the week 2 bias in 2-m temperature can

be used to calibrate weeks 3 and 4 forecasts. We also

explore the impact of using inconsistent initial analyses

on the weeks 3 and 4 forecasts and propose a solution

(or analysis adjustment) when a consistent reanalysis

dataset is not available for the entire period of study.

The forecast system and datasets are described in

section 2. The temporal and spatial distributions of 2-m

temperature bias and error saturation follow in section

3. In section 4, we develop weeks 3 and 4 bias-correction

methods, including analysis adjustment. A summary and

conclusions are given in section 5.

2. Forecast system and data

In May 2017, the National Centers for Environmental

Prediction’s (NCEP) Environmental Modeling Center

(EMC) generated an 18-yr (1999–2016) reforecast

dataset to support the NCEP Climate Prediction Cen-

ter’s (CPC) operational mission. With the exception of

having a smaller ensemble size than the real-time fore-

cast (1 control member and 10 perturbed members for

reforecasts compared to 1 control member and 20

members for real-time forecasts), the Global Ensemble

Forecast System (GEFS) used in the present study is the

same as the one used by Zhu et al. (2018) and Li et al.

(2018). The forecast system is based on the operational

GEFSv11 (Zhou et al. 2017), but was upgraded in the

following areas: 1) improved model uncertainty repre-

sentation for the tropics through stochastic physical

perturbations, including stochastic kinetic energy back-

scatter (SKEB; Shutts and Palmer 2004; Shutts 2005),

stochastically perturbed parameterization tendencies

(SPPTs; Buizza et al. 1999; Palmer et al. 2009), and

stochastic perturbed humidity (SHUM; Tompkins and

Berner 2008); 2) consideration of the impact of the

ocean by using a two-tiered SST approach, which in-

troduces bias-corrected CFSv2 forecast SST (Zhu et al.

2017); and 3) use of updated scale-aware convective

parameterizations to improve model physics for tropi-

cal convection and MJO forecasts (Han et al. 2017).

Each simulation was integrated for 35 days starting at

0000 UTC every Wednesday. The resolution of the

model is TL574L64 (;34-km horizontal spacing) during

the first 8 days and TL382L64 (;55-km horizontal

spacing) for the remaining lead times. The forecast

dataset was bilinearly interpolated onto 18 3 18 latitude
and longitude grids from the model native resolution.
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Similar to Zhu et al. (2018), the forecast skill levels are

defined relative to an NCEP–NCAR 40-yr reanalysis

(Kalnay et al. 1996) climatology.

Creating a full set of consistent reanalysis data, in-

cluding the invariant data assimilation system (and

model) and observation systems, is an important part of

the reforecast process. A reforecast with initial condi-

tions from a different analysis system would produce a

different bias to the forecast. However, the frequent

updating of the forecast model, satellite data, or analysis

system makes running a reanalysis impractical in oper-

ations because generating a multiyear reanalysis is

computationally expensive. As illustrated in Fig. 1, this

study utilizes two major sets of existing analysis data

because a consistent 18-yr reanalysis is unavailable

during 1999–2016. The Climate Forecast System Re-

analysis (CFSR; Saha et al. 2010) andNCEP operational

Global Data Assimilation System (GDAS) [varied

generations of the hybrid Gridded Statistical Interpo-

lation (GSI)––ensembleKalman filter (EnKF)] were the

two analysis datasets used as the model’s initial condi-

tions during 1999–2010 (CFSR-12) and 2011–16

(GDAS-5), respectively. The analysis data are consis-

tent prior to 2011 and, subsequently, vary with the GFS/

GSI/EnKF upgrades after merging during the GDAS

period. Note that a new surface roughness formulation

in the Global Forecast System (GFS) upgrade of 9 May

2011 (Zheng et al. 2012) led to a significant change

in 2-m temperature analysis and forecasts for the arid

regions. The current study also provides an opportunity

to assess the impact of using initial conditions from

different analysis systems on weeks 3 and 4 forecast.

The breeding vector and ensemble transform with

rescaling (BV-ETR) technique (Wei et al. 2008) was used

to produce initial perturbations for the period of 1 January

1999–2 December 2015 and the hybrid 3D-Var–EnKF

data assimilation system was used afterward. The studies

of Zhou et al. (2016) show that the initial perturbation

could impact the ensemble spread significantly but it has

less impact on the ensemble mean errors and forecast

skills. Furthermore, the impact on the spread is only lim-

ited to the shorter forecast lead times (week 1; Zhou et al.

2016). Therefore, inconsistent perturbation schemes may

have a negligible impact on theweeks 3 and 4 forecasts due

to the short memory of the atmosphere (Zhu 2005; Song

and Mapes 2012).

The full reforecast dataset (1999–2016) will be used for

systematic error analysis. In an effort to perform the cali-

bration of the recent forecasts using historical information,

the reforecasts from 1999–2015 will be used for calibration

and the 2016 data will be withheld as an independent

dataset. Therefore, the forecasts being verified during 2016

are independent from the 17-yr training dataset.

3. Bias analysis

To calculate the bias, the analysis fields of CFSR-12

and GDAS-5 were used as an approximate truth. Bias is

defined as the difference between the 11-member en-

semble mean forecast and the analysis at the time the

FIG. 1. Evolution of the initial analyses and perturbations during the 18-yr GEFS reforecast

period (1 Jan 1999–31 Dec 2016). There were four GFS/GDAS upgrades after switching to the

GDAS analysis: 9 May 2011, 22 May 2012, 14 Jan 2015, and 11 May 2016.
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forecast is valid. The biases of week 2, week 3, week 4, and

weeks 3 and 4 are days 8–14, 15–21, 22–28, and 15–28 av-

eraged forecast errors at 0000 UTC, respectively. To cal-

culate the bias climatology from the 18-yr (1999–2016)

weekly reforecast dataset, we use a time window of

31days, centered on the day being considered and leading

to a total training dataset of 18yr 3 4–5 samples yr21 5
72–90 samples for each grid point and each forecast time.

Any forecast initiated within the 31-day time window falls

in the sample. The sensitivity test on the length of time

window inGuan et al. (2015) already shows that the 31-day

option is an optimal window.

a. Bias distribution

We show the land-only 2-m temperature errors

(i.e., bias) over the Northern Hemisphere (NH)

(Fig. 2a), North America (NA) (Fig. 2b), the Southern

Hemisphere (SH) (Fig. 2c), and the tropics (TR; 208S–208N)
(Fig. 2d). The errors over the NH (SH) and NA (the TR)

display a strong (weak) seasonal dependence. A warm bias

is prevalent for the warm season (April–September) for

both the NH and NA. It is also evident over NA that the

interannual variability of the bias is larger during boreal

winter than during other seasons; this alludes to the rela-

tively lowpredictability ofwinter-related physical processes.

During winter, the ability of the model to forecast 2-m

temperature depends significantly on its ability to deter-

mine (or assimilate) snow characteristics (Kazakova and

Rozinkina 2011; Lavaysse et al. 2013). It has been found that

the northern Great Plains, southern Canadian prairies, and

the northeastern United States experience high inter-

annual and intraseasonal variability in snowcover anddepth

(Robinson 1996; Frei and Robinson 1999; Robinson and

Frei 2000; Klingaman et al. 2008). Therefore, it is possible

that the large interannual variability of 2-m temperature

bias over NA during boreal winter was directly associated

with the variability of the snow characteristics. It is also

noted that in the 2017 GFS upgrade, maximum snow

albedo has been adjusted and the snow cover fraction

and snow albedo have been unified in Service Change

FIG. 2. Time series of 2-m temperature forecast errors for weeks 3 and 4 over (a) the NH, (b) NA, (c) the SH, and

(d) the TR domains. Each curve represents one particular year. Red and green curves indicate the errors for the

CFSR-12 and GDAS-5 periods, respectively. Thick black curves indicate the errors for 2016.
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Notice (SCN) 1767 (NOAA 2017), which may have

some impact on 2-m temperature forecasts during

winter. These statements were not explicitly tested

in the present study and need to be confirmed in

the future.

Figure 2a reveals the tendency to have a larger

(slightly larger) warm (cool) bias during the CFSR-12

than during the GDAS-5 for the warm season (cool

season) over the NH. The systematic difference in bias

characteristics between the two assimilation periods is

also noted over the TR (Fig. 2d). The warm bias is

prevalent for theCFSR-12, while the bias is near zero for

the GDAS-5. To find the cause of the systematic dif-

ference between the two analysis system periods, we

compare the spatial distributions of global 2-m tem-

perature errors between the CFSR-12 and GDAS-5 for

July and January (monthly average) in Fig. 3. In July

(Figs. 3a,b), the large difference between the CFSR-12

andGDAS-5 periods occurs near the Sahara andMiddle

Eastern desert areas. This may be largely attributed to

themodification of the surface roughness length formula

in the 2011GFS upgrade (Zheng et al. 2012) that led to a

larger change in 2-m temperature analyses and forecasts

over arid and desert regions. This speculation will be

further discussed in section 4. In January (Figs. 3c,d),

the difference between the CFSR-12 and GDAS-5

periods is relatively small except near Kazakhstan,

where the opposite biases are noted with a positive bias

for the GDAS-5 period and a negative bias for the

CFSR-12 period.

b. Saturation analysis of 2-m temperature errors

It is well known that forecast error grows with lead time

and asymptotically reaches a saturated state. We show the

error growth of 2-m temperature forecasts with lead time

for the full reforecast period (1999–2016) over NA

(Fig. 4a), the NH (Fig. 4b), the SH (Fig. 4c), and the TR

(Fig. 4d) domains (land only). For all domains, errors

quickly grow within the first 10days and gradually saturate

over weeks 3 and 4. The absolute errors (ABSEs; dotted

curve) for NA (Fig. 4a), the NH (Fig. 4b), the SH (Fig. 4c),

and theTR(Fig. 4d) are;79%, 77%, 75%, and 73%of the

root-mean-square error (RMSE; solid curve), respectively,

at saturation (e.g., day 28 or at the end ofweek 4). Chai and

Draxler (2014) pointed out that RMSE should have the

same magnitude as ABSE when the error variance is zero

FIG. 3. Spatial distributions of 2-m temperature bias during weeks 3 and 4 (30-day running mean) for July during

(a) CFSR-12 and (b) GDAS-5 and January during (c) CFSR-12 and (d) GDAS-5.
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(i.e., the error is uniformly distributed). In the present

study, the contributions of the error variance to the

RMSE are less than ;21%, ;23%, 25%, and 27% for

NA, the NH, the SH, and the TR, respectively. In

general, the errors at saturation over NA are slightly

(significantly) larger than those over the NH and SH

(TR). On average, the ABSEs for the day 11 (midday

of week 2) forecast over NA, the NH, the SH, and the

TR are about 88.6%, 86.6%, 91.2%, and 92.5% of their

saturation values, respectively. It is understood that the

time scale of error saturation is strongly dependent on

the geographical area. For example, the time scale for

the land error saturation (weeks) is shorter than that

for the ocean error saturation (months; Song and

Mapes 2012). Our preliminary analysis shows the error

saturation time is shorter over the southern contiguous

United States (CONUS) than the northern CONUS for

both summer andwinter (not shown). A detailed diagnosis

for the reasons causing this difference is reserved for

future work.

To identify if error patterns change with forecast lead

times, the global 2-m temperature mean error is compared

amongweeks 2, 3, and4during July and January (Fig. 5). It is

evident that theerror patterns havenearlyfixedgeographical

structures with lead times in both the summer month (July;

Figs. 5a,c,e) and winter month (January; Figs. 5b,d,f). The

error magnitudes are shown to be similar during weeks 2, 3,

and 4 except over northern NA and Europe, where the er-

rors at weeks 3 and 4 are noticeably more negative than that

at week 2 during January. Longer saturation times during

FIG. 4. Domain average (land only) 2-m temperature RMSE (solid curve) andABSE (dashed curve) during 1999–2016 for (a) NA, (b) the

NH, (c) the SH, and (d) the TR from 0 to 35 days.
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the winter at the high latitudes have been linked to some

larger system (i.e., polar vortex system) with more ther-

mal or mechanical inertia (Song and Mapes 2012).

To assess the impact of using different initial condi-

tions to produce 2-m temperature forecasts, the evolu-

tion of yearly time series is examined for 24-, 120-, and

480-h forecasts for the NH (land only) in Fig. 6. During

the beginning of the model integration (24h; Fig. 6a),

the 2-m temperature forecast for the GDAS period

(green curves) is systematically warmer than for the

CFSR period (red curves) between July and October.

The impact of using different initial conditions to produce

2-m temperature forecasts is lessened by the 120-h fore-

cast (Fig. 6b) and eventually negligible by weeks 3 and 4

(480h; Fig. 6c). This also implies that the observed dif-

ference in the weeks 3 and 4 bias (Figs. 2a,d) between

the two analysis periods must mainly come from an

inconsistent reference analysis.

FIG. 5. Spatial distribution of 2-m temperaturemean error (i.e., bias) calculated using 30-day runningmeans over

18 years (1999–2016) for July during week (a) 2, (c) 3, and (e) 4 forecasts and January during week (b) 2, (d) 3, and

(f) 4 forecasts.
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4. Bias correction for weeks 3 and 4

a. Methodology and analysis adjustment

The bias-corrected forecast F for each grid point (i, j)

for weeks 3 and 4 (tw34) is obtained by subtracting the

weeks 3 and 4 average bias bi,j(tw34) at the same grid

point from the raw forecast fi,j(tw34) using the following

expression:

F
i,j
(t
w34

)5 f
i,j
(t
w34

)2b
i,j
(t
w34

) . (1)

We can also apply week 2’s average bias bi,j(tw2) to

calibrate the weeks 3 and 4 forecast. The week 2 and

weeks 3 and 4 biases are two 7-day (days 8–14) and one

14-day (days 15–28) bias at 0000 UTC to match a vali-

dated forecast period, respectively. For example, if we

want to calculate the bias to calibrate the weeks 3 and 4

forecast that initialized at 0000UTC16 January 2016 (i.e.,

validation period of 0000 UTC 31 January–0000 UTC

13 February 2016), we can either calculate the differ-

ence between the weeks 3 and 4 forecast initialized at

0000 UTC 16 January 2016 and the analysis data for the

corresponding validation period (i.e., 0000 UTC 31

January–0000 UTC 13 February 2016), or calculate the

average of two week 2 biases, which validate during

0000 UTC 31 January–0000 UTC 6 February 2016 (ini-

tialized at 0000 UTC 23 January 2016) and 0000 UTC

7 February–0000 UTC 13 February 2016 (initialized at

0000 UTC 31 January 2016), respectively. The reason

for the latter method is that when we use week 2 bias

(which is a 7-day average) to calibrate the weeks 3 and

4 forecast, we need to make sure the sample size of the

bias is consistent with the sample size of the forecast

days. In other words, we do not want to use a 7-day bias

to calibrate a 14-day forecast. The average biases of a

certain validation date for a certain lead time is the

average of biases during 1999–2015 within a time win-

dow of 31 days centered on that validation date. For

example, the average bias of the weeks 3 and 4 fore-

cast initialized on 16 January (validated on 31 January–

13 February) is the averaged difference between the

forecast and analysis for the validation period across

1999–2015. To test the sensitivity of the forecast skill

to the number of training years, we also compare the

calibrated forecast using the reforecast bias from the

most recent 5- (2011–15), 10- (2006–15), and 17-yr

(1999–2015) training datasets to evaluate the 2016

forecasts.

FIG. 6. Time series of 2-m temperature forecasts over

the NH region (land only) at (a) 24-, (b) 120-, and

(c) 480-h lead times. Each curve represents one par-

ticular year. Red curves are for CFSR-12, and green

curves are for GDAS-5.
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The calibration of the ensemble forecast system is

evaluated via the RMSE (Zhu and Toth 2008) and rank

probability skill score (RPSS; Wilks 2011). The RPSS is

frequently used for evaluating the performance of prob-

abilistic forecasts (Ou et al. 2016; Melhauser et al. 2016;

Zhu et al. 2017), which measures the improvement of a

multicategory forecast relative to a reference analysis.

The higher the RPSS, the more skillfully the probabilistic

system performs.

As noted in Fig. 2, there is a systematic difference

in 2-m temperature bias between the CFSR-12 and

GDAS-5 periods for the NH and TR domains, which

most likely arose from inconsistent reference analyses. To

test this hypothesis, we examine a land-only year-by-year

analysis for four geographic domains [1) the NH, 2) NA,

3) the SH, and 4) the TR] in Fig. 7. As expected, the

analysis difference between the two assimilation periods

is evident for the NH and TR domains, with a maximum

difference ofmore than 18C (Figs. 7a,d). The black curves

represent the averages for each analysis period. Note that

both domains encompass the desert and arid regions of

North Africa and the Middle East, the regions most af-

fected by the 2011 GFS upgrade (Zheng et al. 2012).

Figures 7a and 7d also reveal that the 2-m temperatures

are systematically warmer during the GDAS-5 period

than the CFSR-12 period for the NH and TR. A warmer

reference analysis during the GDAS-5 period (Fig. 7a)

induces a smaller forecast warm bias (Fig. 2a), assuming

that the forecast is less dependent on the initial analysis

for weeks 3 and 4.

To make a consistent reference analysis from 1999 to

2015, it is necessary to adjust the early CFSR analysis ai,j.

We first calculate the CFSR-12 and GDAS-5 averaged

analyses for each grid point (i,j) (a
12y
i,j and a

5y
i,j , re-

spectively) and then apply the difference (a0i,j) to the first

12-yr analysis as follows:

a0i,j 5 a
12y
i,j 2 a

5y
i,j and (2)

a
adj
i,j 5 a

i,j
2 a0i,j . (3)

Note that an ‘‘analysis adjustment’’ a
adj
i,j is based on

our assumption (Fig. 6c) and previous work (Zhu 2005)

that the weeks 3 and 4 forecast errors have a negligible

impact from the initial conditions. The climate trend

cannot be well estimated in this study because a full

FIG. 7. The time series of year-by-year 2-m temperature analyses for (a) the NH, (b) NA, (c) the SH, and (d) the

TR (land only). Red curves are for CFSR-12, and green curves are for GDAS-5. Black solid curves are the averages

for the CFSR-12 period, and black dashed curves are the averages for the GDAS-5 period.
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consistent set of the CFSR analysis or GDAS analysis

for the studied period (1999–2015) is not available.

However, a comparison of domain-averaged 2-m

temperatures for the North African and Middle East

regions during 1999–2015 does illustrate that the con-

siderable differences (;3.48C) between the two analysis

periods is mainly caused from the inconsistent analysis.

This is indicated by a sharp increase in 2-m temperature

in 2011 (Fig. 8). In contrast, the actual trend in 2-m

temperature during the CFSR-12 (red line) or GDAS-5

(blue line) analyses is relatively minor.

To demonstrate the consistency of forecast errors after

analysis adjustment, domain-averaged 2-m temperature

errors (i.e., bias), without and with analysis adjustment,

are presented in Fig. 9. The analysis adjustment mitigates

the inconsistency of 2-m temperature bias for the NH

(Figs. 9a,b) and TR (Figs. 9c,d). The adjustment has a

small impact for the SH and NA (not shown). In the next

section, we will examine the bias correction (i.e., cali-

bration) without and with analysis adjustment.

b. Calibrating the 2016 forecasts using the 17-yr
training dataset

The week 2 and weeks 3 and 4 biases for 0000 UTC

without and with analysis adjustment were used to

calibrate the weeks 3 and 4 forecasts. The forecast

RMSE (Fig. 10a) and RPSS (Fig. 10b) for 0000 UTC

FIG. 8. Domain-averaged 2-m temperature analyses for the

North Africa and Middle East regions during 1999–2015. Red plus

signs (1) represent individual years during the CFSR-12 period

and blue crosses (x) represent individual years during the GDAS-5

period. The red (blue) solid line represents the line of best fit for the

CFSR-12 (GDAS-5) period. Black lines are the averaged values for

the corresponding two periods.

FIG. 9. Time series of 2-m temperature forecast errors (i.e., biases) during weeks 3 and 4 for the (a),(b) NH and

(c),(d) TR domains, without and with analysis adjustments, respectively. Each curve represents one particular year. Red

curves indicate the errors for CFSR-12, and green curves indicate the errors for GDAS-5. Black lines indicate errors

for 2016.

370 WEATHER AND FORECAST ING VOLUME 34



are improved after bias correction and analysis ad-

justment for all four domains. Analysis adjustment

does an excellent job for the TR and NH (Fig. 10a),

reducing RMSEs relative to bias correction alone

by;0.38C (or 20%) and;0.258C (or 7%), respectively.

RMSE over NA is reduced by up to ;0.68C (or 20%)

through the bias correction alone, with a slight addi-

tional improvement following analysis adjustment.

Figure 10 also reveals that forecast skill is very similar

whether the week 2 or weeks 3 and 4 bias is used for the

calibration. This finding would suggest for 2-m tem-

perature that we could use the bias from week 2 to cali-

brate the weeks 3 and 4 forecasts, which would optimize

the use of computer resources without sacrificing the

effectiveness of the calibration. Although bias correc-

tion produces themost substantial improvement forNA,

it still has the lowest RPSS (Fig. 10b) even though it

has a similar RMSE to the NH (Fig. 10a). This could be

partially due to its large bias variance (Fig. 2), which

makes 2-m temperature forecasts less predictable

compared to the other domains.

To find out the seasonal dependence of the bias cor-

rections on the 2-m temperature forecast, we show the

time series of RMSE (Fig. 11) and RPSS (Fig. 12) for the

raw and bias-corrected weeks 3 and 4 forecasts without

and with analysis adjustment. The largest improvement

in RMSE occurs over NA during the warm season

(Fig. 11b) primarily from the bias correction. The RPSS

increases from a near-zero value to;0.4 overNAduring

this period (Fig. 12b), while RMSE is substantially

reduced with a maximum reduction of up to ;50%

in July (Fig. 11b). A considerable skill improvement due

to the analysis adjustment is shown for the TR (Fig. 11d

and Fig. 12d) throughout most of the year.

The distributions of RPSS for the land-only raw

(Fig. 13a) and bias-corrected and analysis-adjusted

(Fig. 13b) weeks 3 and 4 forecasts during 2016 are pre-

sented. There is negative skill relative to the climatology

for the raw forecast over a considerable portion of the

CONUS (Fig. 13a). Prediction of 2-m temperatures is

shown to be extremely challenging over the Great

Plains, consistent with the findings in Klein et al. (2006).

Both our study and Klein et al. (2006) reveal the large

warm bias over the Great Plains for the warm season,

which may partly account for the corresponding low

RPSS. The calibrated forecast (Fig. 13b) produces much

higher forecast skill over the entire CONUS domain.

Substantial improvements are detected over the Great

Plains where the maximum increase in RPSS reaches

;0.6 [from ;20.45 for the raw forecast (Fig. 13a) to

;0.15 for the calibrated forecast (Fig. 13b)] near

South Dakota.

c. Skill sensitivity to number of training years

The sensitivity of forecast skill to the number of

training years has been studied by Hamill et al. (2004),

Guan et al. (2015), and Ou et al. (2016). Using the first-

generation GEFS reforecast dataset, Hamill et al. (2004)

demonstrated that there was a significant increase in skill

from 2 to 5 years of training data for week 2 surface

temperature, but only showed small incremental

increases by 10–12 years. The sensitivity experiments of

FIG. 10. (a) RMSE and (b) RPSS of 2-m temperature forecasts during weeks 3 and 4 in 2016 (land only), averaged over NA and the NH,

SH, and TR for the raw (gray bar) and four bias-corrected forecasts: BC_BIASwk2 (red), BC_BIASwk34 (green), BC_BIASwk2adj

(blue), and BC_BIASwk34adj (purple). The BC_BIASwk2 (red) and BC_BIASwk34 (green) forecasts denote the calibration using week

2 and weeks 3 and 4 biases without analysis adjustment, whereas BC_BIASwk2adj (blue) and BC_BIASwk34adj (purple) denote the

calibration using the week 2 and weeks 3 and 4 biases with analysis adjustment.
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Guan et al. (2015) with more skillful GEFSv10 reforecast

data (Hamill et al. 2013) reveal that the improvement

from using a 5-yr training period is almost equivalent to

the improvement seen when using a 10- or 25-yr training

period for lead times up to 16days. Using the same

dataset, Ou et al. (2016) showed an 18-yr training period

is desirable for high quality week 2 calibration over

the CONUS.

To test the sensitivity of the weeks 3 and 4 forecast skill

to the number of training years, we calibrate the 2016

forecast using the 5-yr (2011–15), 10-yr (2006–15), and

17-yr (1999–2015) training datasets. These specific training

years were chosen because the forecast skill in predicting

2-m temperature displays a steady increase from the 5- to

10-yr training periods and then nears saturation (Hamill

et al. 2004; Ou et al. 2016; Guan et al. 2015). Figure 14

shows that increasing the number of training years from 5

to 10 years leads to a gain in skill of 0.016 (or ;5%),

whereas further increasing to 17 years does not yield

additional improvement. This result indicates that

a 10-yr training period should be an optimal re-

quirement for the 2-m temperature calibration during

weeks 3 and 4 of the NCEP GEFS SubX version. Our

optimal training period (10 years) for the weeks 3 and 4

forecast is similar to the 10–12-yr training period for

the week 2 forecast estimated by Hamill et al. (2004),

but less than the 18-yr training period in Ou et al.

(2016). This difference could be partially attributed

to the differences in forecast lead time, model ver-

sion, and verification period, as pointed out in

Ou et al. (2016).

5. Summary and conclusions

NCEP EMC generated an 18-yr subseasonal refor-

ecast dataset to support the CPC’s operational mission.

The GEFS-SubX version was run weekly, initialized

at 0000 UTC every Wednesday, with 11 members us-

ing the CFSR-12 and GDAS-5 models as the initial

analyses. Using this dataset, we explore the initial

FIG. 11. RMSE of 2-m temperature forecasts during weeks 3 and 4 in 2016 (land only) averaged over (a) the NH,

(b) NA, (c) the SH, and (d) the TR for the raw forecast (black) and two bias-corrected forecasts: BC_BIASwk34

(red) and BC_BIASwk34adj (blue). The BC_BIASwk34 (red) and BC_BIASwk34adj (blue) forecasts denote the

bias-corrected forecasts without and with analysis adjustment, respectively.
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analyses inconsistencies, analyses adjustments, and bias

characteristics of 2-m temperature during weeks 3 and 4

of the reforecast period. We subsequently apply the

17-yr (1999–2015) bias to calibrate the weeks 3 and 4

forecasts of 2016.

The main conclusions of the study are as follows:

1) The forecast of 2-m temperature is strongly biased over

NA and the NH with a warm bias during the warm

season. In boreal winter, there is large interannual

variability in the 2-m temperature bias over NA.

Therefore, it is a challenge to find out the correspond-

ing model systematic errors for 2-m temperature.

FIG. 12. As in Fig. 11, but for RPSS.

FIG. 13. RPSS of 2-m temperature forecasts during weeks 3 and 4 over the CONUS in 2016 for the (a) raw and (b) bias-corrected and

analysis-adjusted forecasts.

APRIL 2019 GUAN ET AL . 373



2) Forecast errors quickly grow within the first 10days of

the forecast and gradually saturate by weeks 3 and 4.

The error of the day-11 forecast (or themiddle of week

2) forNA (theNH) reaches about 88.6%(86.6%) of its

saturated value. The impact of the initial conditions on

forecast skill is negligible by weeks 3 and 4.

3) A consistent analysis is important for generating

reforecasts and real-time forecasts. Analysis adjust-

ment is an alternative method to making the bias

characteristics more consistent between the CFSR-

12 and GDAS-5 periods. An adjusted analysis can

be considered as a backup solution when a reanalysis

(or reference) spanning the entire period of interest

is not available.

4) Bias correction is important in reducing systematic

error. An increase in forecast skill following bias

correction is observed for all four domains (NH, SH,

TR, and NA). Maximum benefit was found for NA

during the warm season. Calibration using the week 2

bias gives very similar skill to using the weeks 3 and 4

bias, suggesting that the week 2 bias could be used to

correct the weeks 3 and 4 forecast. This practice

could help save computational resources and storage

in operations.

5) The 2-m temperature calibrations during weeks 3

and 4 have been performed using 5-, 10-, and 17-yr

sample datasets with the aim of determining an

optimal training period. Our results demonstrate a

10-yr training period is sufficient to obtain a more

skillful forecast of 2-m temperatures during 2016, if

the reference analyses are consistent.

The current study demonstrates the importance of

using reforecast information to improve the weeks 3

and 4 forecast skill for 2-m temperatures by evaluating

the analysis difference, as well as the temporal and

spatial distributions of the forecast errors. Analysis of

the bias characteristics of weeks 3 and 4 precipitation

forecasts and its calibration are currently being per-

formed. Since 1 July 2017, the NCEP GEFS SubX

version has generated 35-day forecasts in real time,

once per week (every Wednesday at 0000 UTC). In

the future, we will continue generating the calibration

statistics with incoming real-time SubX forecasts and

further examine the effectiveness and robustness of the

proposed calibration method with additional data. It is

also noted that the current bias correction method is

less effectual in NA for the winter season than the

summer season. This is due to large interannual vari-

ability of 2-m temperature bias, likely associated with

large variability of snow cover. It is expected that 2-m

temperature bias characteristics are quite different

with and without snow cover. Therefore, there is a

possibility of improving the calibration method in bo-

real winter by generating bias climatology with and

without snow cover and then performing a bias cor-

rection based on snow existence.
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