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ABSTRACT

This article introduces a method for objectively separating and validating forecast scenarios within a large

multimodel ensemble for the medium-range (3–7 day) forecasts of extratropical cyclones impacting the U.S.

East Coast. The method applies fuzzy clustering to the principal components (PCs) of empirical orthogonal

function (EOF) analysis on mean sea level pressure (MSLP) from a 90-member combination of the global

ensembles from the National Centers for Environmental Prediction, the Canadian Meteorological Center,

and the European Centre for Medium-Range Weather Forecasts. Two representative cases are presented to

illustrate the applications of this method. Application to the 26–28 January 2015 event demonstrates that the

forecast scenarios determined by the fuzzy clustering method are well separated and consistent in different

state variables (i.e.,MSLP, 500-hPa geopotential height, and total precipitation). The fuzzy clusteringmethod

and an existing ensemble sensitivity method are applied to the 26–28 December 2010 event to investigate

forecast uncertainty, which demonstrates that these twomethods are complementary to each other and can be

used in the operations together to track the evolution of forecast uncertainty. For past cases one can define a

cluster close to the analysis based on the projection of the analysis onto the PC base of clustering. This analysis

group is validated using conventional validation metrics for both cases examined, and this analysis group has

fewer errors than the other groups as well as the multimodel ensemble mean and individual model means.

1. Introduction

Extratropical cyclones along the U.S. East Coast are

often associatedwith high-impactweather events (HIWs),

such as heavy precipitation (Frankoski and DeGaetano

2011; Colle et al. 2013), strong winds (Booth et al. 2015),

and coastal flooding (Colle et al. 2008, 2010). Considering

the high population density of the eastern United States,

accurate forecasts of these storms are very important to

reducing human and economic loss.

The forecast skill of numerical weather prediction

(NWP) models for wintertime storms over U.S. East

Coast varies with different event lead times. Some

storms, such as the 24–25 January 2000 ‘‘surprise’’

snowstorm and the 26–28 December 2010 storm, have

been relatively poorly predicted even 1–2 days in ad-

vance (Zhang et al. 2002; Zheng et al. 2013). Some

previous studies have also pointed out systematic errors

and biases in the forecasting models. For instance, Colle

and Charles (2011) found that cyclones occurring off the

U.S. East Coast are underpredicted by the Global

Forecast System (GFS) model for the 72–120-h forecast

during the 2002–07 cool seasons.

With the advancement in computational resources, a

large set of ensemble output frommultiple NWPmodels

is available during the forecast process, such as 50 per-

turbed members from the European Centre for

Medium-Range Weather Forecasts (ECMWF) global

model (Molteni et al. 1996), 20 members from the Na-

tional Centers for Environmental Prediction (NCEP)

Global Ensemble Forecast System (GEFS) global
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model (Toth and Kalnay 1993), 20 members from the

Canada Meteorological Centre (CMC) global model

(Houtekamer et al. 1996), and 23members from theMet

Office (UKMO) global model (Bowler et al. 2008).

Spaghetti plots and ensemble mean/spread are often

used to display the ensemble outputs. The predictability

can be discerned when the ensemble spread is large or

small. However, the ensemble mean/spread often re-

moves useful information because the method tends to

filter out the different possible ensemble prediction

system (EPS) scenarios. Therefore, there is a need to

assess and display the ensemble uncertainty more ef-

fectively and objectively in order to consolidate the

important multimodel ensemble information. In our

previous work, we have applied an ensemble sensitivity

tool to the operational environment (Zheng et al. 2013).

Ensemble sensitivity can reveal upstream sensitive re-

gions at earlier forecast times associated with specific

forecast metrics over a verification region at a particular

lead time. However, it is difficult to verify the sensitivity

signals and provide forecasters the details of individual

ensemble members using this sensitivity tool.

Cluster analysis has been used to examine similar fore-

cast scenarios among ensemble members for the short

range [0.5–2.5 day; Johnson et al. (2011)], medium range

(Ferranti and Corti 2011), and extended range [beyond

10 days; Palmer et al. (1990)]. Brill et al. (2015) intro-

duced a new divisive clustering algorithm to medium-

range forecasting based on the one-dimensional discrete

Fourier transformation. The divisive method is easy

to develop and maintain and can efficiently produce

plausible clusters in an operational forecasting pro-

cess. One main disadvantage of this approach is that it

often excludes around a dozen of the combined 70

ensemblemembers by not including them in any cluster.

In addition, this approach reduces the geopotential

data to one spatial dimension at the large scale, which

may miss considerable two-dimensional information in

complex weather systems. Nevertheless, the application

of this method can provide meteorologically coherent

pictures of outcomes not captured sharply by ensemble

means or deterministic model output. To take full ad-

vantage of the ensemble product and provide consistent

guidance for national centers and weather forecast

offices (WFOs), the U.S. National Weather Service

(NWS) has developed a National Blend of Models

(NBM) by postprocessing and combining (blending)

guidance from models and EPSs from multiple centers

(Gilbert et al. 2016; Tew et al. 2016). To get the best

possible science, it is important to document the vari-

ability among different EPSs, and to evaluate the ben-

efit of combining models, especially in the sense of

providing a sufficient variety of forecast scenarios. The

intracluster similarity and intercluster contrasts in the

cluster analysis can be used to examine the consensus

forecast and the contrasting possibilities, respectively.

Harr et al. (2008) introduced the fuzzy clustering

method for identifying groupings of forecast scenarios of

the extratropical transitioning (ET) of tropical cyclones

within a collection of ensemble members. Keller et al.

(2011) compared the forecast scenarios associated with

10 ET cases in The Observing System Research and

Predictability Experiment (THORPEX) Interactive

Global Grand Ensemble (TIGGE; Bougeault et al.

2010) data by applying fuzzy clustering analysis and

found that some EPSs are confined to a few scenarios

while others contribute to almost all scenarios. Other

studies (e.g., Grams et al. 2011) have also shown that

fuzzy clustering is a suitable diagnostic method for de-

tecting the physical processes associated with different

weather systems. In this study, the fuzzy clustering

method of Harr et al. (2008) is applied to winter storm

cases over the U.S. East Coast to separate forecast

scenarios in an objective and efficient way and to vali-

date ensemble forecast output, with a goal of providing

guidance to forecasters to improve our understanding of

scenarios as well as interpreting model biases.

This paper will address the following motivational

questions:

d Can the fuzzy clustering method efficiently separate

forecast scenarios associated with extratropical cy-

clones and thus condense the useful information from

the large ensemble?
d How can one apply the method to the forecasting

process for a winter storm over the East Coast?
d How can the fuzzy clustering method be used as a

verification of ensemble predictions of winter storms?

This paper introduces the EOF/fuzzy clustering

method to ensemble forecasting and illustrates it with

two representative cases. Section 2 of this paper dis-

cusses the methodology and data used. Section 3 de-

scribes the synoptic evolution of an extratropical

cyclone, which brought HIW to the U.S. East Coast on

26–28 January 2015. Section 4 will explore the 2010

Christmas blizzard case and show the linkage between

fuzzy clustering analysis and the ensemble sensitivity

tool. The discussions will be provided in section 5. Sec-

tion 6 presents the conclusions.

2. Data and methodology

a. Data

This paper will analyze two East Coast winter storm

cases: the 26–28 January 2015 blizzard (case 1) and the

26–28 December 2010 blizzard (case 2). The ensemble
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data were retrieved from the TIGGE archive. Some

ensemble data for the 26–28 January 2015 case study are

missing from the TIGGE archive, and the data were

retrieved from NCEP’s Environmental Modeling Cen-

ter (EMC) archive. The three operational models con-

sidered in this study are the CMC, the ECMWF, and the

NCEP EPSs. These provide us with a large ensemble of

90 members, interpolated onto a 18 latitude 3 18 longi-
tude grid, in 12-h increments. The GFS operational

analysis interpolated onto a 18 latitude 3 18 longitude
grid is used to verify the ensemble forecasts. We have

also used the ECMWF analysis for verification, and the

results are very similar. The forecast lead times we ex-

amined are 3 and 6 days for case 1, and 3.5 days for case

2. The main forecasting parameters used are mean sea

level pressure (MSLP) and 500-hPa geopotential height

Z500. We first use the runs initialized at 1200 UTC 21

and 24 January 2015 [6 and 3 days before the verification

time (VT) of 1200 UTC 27 January 2015] as an illus-

trative example before applying the method to examine

the other cyclone case.

b. EOF analysis

Empirical orthogonal function (EOF) analysis is often

used in climate studies as a technique for determining

the spatial patterns that most efficiently explain the

variability of a multivariate dataset (Richman 1986).

Zheng et al. (2013) applied the EOF analysis to an en-

semble sensitivity study to reveal the dominant spatial

patterns of model uncertainty in an ensemble forecast of

MSLP over prescribed regions. These EOFs are calcu-

lated across themodel ensemblemember dimension—as

opposed to the more conventional time dimension—and

the resulting modes show the dominant patterns of the

difference between individual ensemble members and the

model ensemble mean. The leading principal components

(PCs) are the projections of the dominant EOF patterns

onto the difference between each of the ensemble mem-

bers and the ensemble mean. Since the leading PCs and

the associated EOF patterns contain the main uncertainty

information across the entire ensemble, we use them here

as the basis for performing cluster analysis. In this study,

each PC is normalized to have a variance of 1.

c. Fuzzy clustering analysis

Once the EOF analysis has been conducted, the first

and second PCs for the 90 ensemble members are used

as input into a fuzzy clustering routine (Scott and

Symons 1971; Harr and Elsberry 1995; Harr et al. 2008),

which is utilized to group ensemble members with sim-

ilar forecast scenarios. Other than the fuzzy clustering

method (partitional clustering), the hierarchical clustering

method has often been used to cluster data (e.g., Johnson

et al. 2011). We have found that the clustering solutions

based on the two methods are moderately consistent for

the two cases (not shown). The main advantages of the

fuzzy clustering method over the hierarchical clustering

method are the linear complexity in computation, sim-

plicity of implementation, and flexibility in cluster as-

signments (Maimon and Rokach 2005). Therefore, we

choose the fuzzy clusteringmethod to compute clusters in

this study.

Following Harr et al. (2008), the main steps of the

fuzzy clustering algorithm are as follows:

1) place a predefined number of clusters (initial guess)

in the EOF PC1–PC2 phase space,

2) assign each ensemble member represented by the

pair of PCs to the nearest group center,

3) compute new centers by minimizing an objective

function that represents the distance from each point

to each new cluster,

4) reexamine each point relative to the updated cluster

centers, and

5) repeat steps 2–4. If no points can be reassigned

because they lie closer to another center, the

iterations stop.

Each ensemble member has a weighted value that

identifies its relative strength of membership to each

cluster. For a point k, the weight associated with the ith

cluster is defined by

w
i,k
5

1

�
C

j51

d
i,k

d
j,k

 !2/(q21)
, (1)

such that di,k is the distance between point k and the

centroid of cluster i, and dj,k is the distance between

point k and the other cluster centers j. The coefficient q

determines the level of cluster fuzziness. A large q re-

sults in smaller differences between memberships wi,k

and, hence, fuzzier clusters. In the limit q 5 1, the

memberships converge to 0 or 1, which implies a clear

partitioning. The coefficient q is set to 2 in this study, as

suggested by previous studies (Ahmed et al. 2002). A

total of C clusters can be calculated using the above

equation and procedure. An ensemble member k is as-

signed to the cluster i (i5 1, . . . ,C) for whichwi,k has the

largest value.

In this study, fuzzy clustering was applied to the PCs

corresponding to the leading two EOF patterns. Con-

ceptually, there should be an optimal number of pop-

ulation clusters associated with different synoptic-scale

patterns. However, as pointed out by Harr et al. (2008),

it is often very difficult to determine this number ob-

jectively. Keller et al. (2011) tested a range of the cluster
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number C from two to eight and found that six was a

suitable cluster number for their study. We have also

tested two- to eight-cluster solutions and found that six

and five clusters tend to be optimal for cases 1 and 2,

respectively. The optimal number of clusters is the sta-

ble solution with the highest adjusted Rand index

(Yeung and Ruzzo 2001) based on 100 clustering results

using random seeding points. The results for two- to eight-

cluster solutions of each case using an adjustedRand index

are summarized in Table S1 (see supplementary material

to this paper online).When two or more cluster results are

stable, the largest number of clusters is chosen.One reason

is that we would like the clustering procedure to produce a

group that can represent the ensemble mean, which is

often hypothesized to be a good estimation of the truth

(Du andZhou 2011).Our experience suggests that a group

clustered around the ensemble mean is more likely for

larger numbers of clusters. Note that the ensemble mean

(the origin on a PC1–PC2 coordinate) is used in the clus-

tering process.

When examining past cases, after we group forecast

ensemble members based on their EOF PCs at VT, the

difference between the analysis field and the ensemble

mean at VT can be projected onto the leading EOF

patterns and hence occupies one point on the EOF PC1–

PC2 space, just like one extra ensemble member, and

this can be used to verify the scenarios in the ensemble

forecasts (see section 5).

3. 26–28 January 2015 event

The mid-Atlantic to Northeast major winter storm

during 26–28 January 2015 is used to illustrate the ap-

plication of fuzzy clustering. This storm impacted the

northeastern United States, resulting in snowfall accu-

mulations of from 30 cm (12 in.) to 91 cm (36 in.) over the

central part of Massachusetts, and blizzard conditions

were prevalent from Long Island to southern and east-

ern New England (Winkler 2015).

a. Synoptic overview

At 1200 UTC 25 January, a surface low pressure sys-

tem was located near the Iowa andMissouri border with

an associated upper-level short-wave trough approach-

ing the Ohio valley (Fig. 1a). The upper-level cyclonic

potential vorticity (PV) anomaly (2-PVU dynamic

tropopause, 305K, where 1 PVU5 1026Kkg21m2 s21)

was located over the central part of the Great Plains.

During the following 12h, the surface low progressed

eastward along the Kentucky–Tennessee border and

weakened as it approached a preexisting ridge, as in-

dicated by warm potential temperatures on the tropo-

pause (Fig. 1b). At 1200 UTC 26 January (Fig. 1c), the

short-wave trough and the associated surface low moved

eastward across the central Appalachians. A new surface

cyclone formed off the east coast of North Carolina at

1800 UTC 26 January, between the left exit of an upper-

level jet stream over the southeastern United States and

the right entrance of a downstream jet east of New En-

gland (not shown).

Between 1200 UTC 26 January and 0000 UTC

27 January, the upper-level trough became negatively

tilted as it approached the East Coast, and the surface

low intensified just off the mid-Atlantic coast (Fig. 1d).

The upper-level PV maximum was over the northwest

of the trough axis; hence, there was positive PV ad-

vection near the trough axis off the mid-Atlantic coast,

as well as the corresponding surface low pressure sys-

tem. During the following 12 h (Fig. 1e), a closed

500-hPa low developed and strengthened off of eastern

Long Island. The surface low continued tracking north-

northeastward to the western Atlantic east of Long Is-

land, and deepened rapidly from 992hPa at 0000 UTC

27 January to 980hPa at 1200 UTC 27 January. Over

the 24-h period between 1200 UTC 26 January and

1200 UTC 27 January, heavy snow fell over southeastern

New England with maximum precipitation near Boston,

Massachusetts (Fig. 2a).

At 0000 UTC 28 January (Fig. 1f), the 500-hPa low was

situated over CapeCod and became neutrally tiltedwhile

the surface cyclone was centered east of Boston with a

minimumpressure of 985hPa (Fig. 1f). An occluded front

extended northeastward from the surface low into the

Atlantic Ocean (not shown). The surface low weakened

as the upper-level low began to fill through 1200 UTC

28 January and the snowfall intensity was reduced to light

and scattered over the Northeast (not shown).

b. Ensemble forecasts at different lead times

Figure 3 shows the ensemble means from each of the

models, the multimodel mean, and the analysis verifying

at 1200 UTC 27 January 2015 for different lead times.

Between days 26 and 24 (Figs. 3a–c), all three EPSs

forecasted a mean cyclone that was east or southeast

of the analyzed cyclone. Between days 25 and 24

(Figs. 3b,c), the NCEP and ECMWF mean cyclone

shifted west-southwestward. This trend continued be-

tween days 24 and 23 (Figs. 3c,d), and during that 24 h

the CMC-forecasted cyclone also shifted westward.

From days 23 to 21 (Figs. 3d–f), the ECMWF mean

cyclone was the deepest and farthest west, while the

CMC mean cyclone was the weakest and farthest east,

with the NCEP mean cyclone located between the two.

Overall, for the short-range forecasts the multimodel

ensemble mean indicated a closer-to-shore cyclone than

the analysis, which led the forecasters at the NWS to
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predict a major snowstorm and issue a blizzard warning

for parts of seven states including NewYork City (NYC;

Fig. 2), which turned out to receive far less snow than

expected (Fanning 2015; Flegenheimer 2015).

In the following subsections, we will focus on the en-

semble forecasts at lead times of 6 and 3 days to examine

the forecast scenarios at medium range associated with this

blizzard case using EOF and fuzzy clustering analyses.

c. 6-day ensemble forecasts

1) VARIABILITY CAPTURED BY LEADING EOF
PATTERNS

For the 6-day ensemble forecasts (Figs. 4a,b) initial-

ized at 1200 UTC 21 January, the multimodel ensemble

mean cyclone was centered at 39.08N, 66.08W,which was

;280 km to the southeast of the analyzed cyclone.

FIG. 1. (a)–(f) Geopotential height (gray solid contours, 100-m interval with the 5700- and 5500-m lines labeled)

at 500-hPa level, MSLP (black dashed contour starting at 1008 hPa and decreasing in 4-hPa intervals), and potential

temperature at 2-PVU dynamical tropopause (shading; K) from 1200 UTC 25 Jan to 0000 UTC 28 Jan 2015. The

green solid box in (a) represents the verification region at valid time (1200 UTC 27 Jan 2015).
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Forecast uncertainty was mainly over the north of the

ensemble mean cyclone. Figure 4b shows the spaghetti

plot for the 1008-hPa MSLP contour. The 1008-hPa

contours from the multimodel ensemble were spread

out along the east coast of North America and the ad-

jacent Atlantic Ocean. Therefore, it could be very

difficult for forecasters to extract the possible scenarios

from the spaghetti diagram plot. Useful tools, such as

the fuzzy clustering approach, are needed to distill the

information.

Figures 4c and 4d show the leading two EOF patterns

for this 6-day MSLP forecast, which explain 62.9%

FIG. 2. (a) The CPC 24-h precipitation (shading and black contour; mm) and (b)–(d) 3-day ensemble mean

forecasts (shading and red contour; mm) from three models. The means (shading and red contour; mm) from

(e) group EM and (f) group ANA (or group 6) for 3-day multimodel ensemble. Time period is from 1200 UTC 26

Jan to 1200 UTC 27 Jan 2015. The black contours in (b)–(f) are the same as the contours in (a) and represent

observed precipitation.
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and 14.9% of the variance over the verification region,

respectively. These two patterns represent the pri-

mary variability patterns of 6-day MSLP forecasts

among the three EPSs. The first EOF (EOF1; Fig. 4c)

is a monopole pattern centered ;650 km north of the

ensemble mean position of the surface cyclone. There-

fore, a positive (negative) EOF1 pattern represents a

deeper (weaker) storm with a northward (southward)

shift compared with the ensemble-mean cyclone on

day 6. Meanwhile, EOF2 (Fig. 4d) is an asymmetric

dipole pattern that has a negative center east-northeast

of the ensemble mean cyclone position and a posi-

tive center to the northwest. Thus, positive (negative)

EOF2 represents the deepening (weakening) and east-

ward (westward) shifting of the cyclone. Figure 4 shows

that large forecast uncertainties exist over the north of

the ensemble-mean cyclone center, which are associ-

ated with the disagreement among models in fore-

casting both the amplitude and proper location of the

cyclone.

2) FORECAST SCENARIOS DETERMINED BY THE

FUZZY CLUSTERING METHOD

Fuzzy clustering is applied to the PCs corresponding

to the leading two EOF patterns. Figure 5a shows the

partitions of the 90 ensemble members into the six

clusters as determined by the clustering method. The

group including the origin is defined as groupEM. In this

case, while group EM is not centered at the ensemble

mean, its group center is still closest to the ensemble

mean compared with the other groups. The definition of

group EM has its practical applications: the members of

this group are often closer to the ensemble mean.

Groups 2 and 4 are centered on negative PC1 and rep-

resent weaker cyclone scenarios, with the former being

stronger and more south-southwestward (large negative

PC2) than the latter (slightly positive PC2). In contrast,

group 6 consists of 5 members with the largest PC1

values in all 90 members, representing the deepest cy-

clone scenario. Both groups 3 and 5 are centered on

FIG. 3. (a)–(f) Ensemble mean forecasts of MSLP from a lead time of 6 days to 1 day. Red, green, and blue represent the CMC, NCEP,

andECMWFmodelmeans, respectively. Black and gray are themultimodel mean and analysis, respectively. The contours for the analysis

range from 984 to 1008 hPa with a contour level of 8 hPa. Contours for the ensemble means in (a)–(c) range from 1008 to 1000 hPa and

in (d)–(f) they range from 1000 to 980 hPa with a contour level of 4 hPa.
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fairly positive PC1 and represent deeper cyclone sce-

narios than the ensemble mean, with the former being

more west-southwestward (small negative PC2) than the

latter (large positive PC2).

3) SYNOPTIC CHARACTERISTICS OF DIFFERENT

CLUSTERS

Figure 6 shows a summary of the six groups’ means

partitioned based on EOF PCs on day 6. The area/

position of each closed circle in Figs. 6a–d (the 1008- or

1004-hPa MSLP contour) represents the strength/

location of the surface cyclone for the mean of each group.

Meanwhile, the 5100-, 5400-, and 5700-m Z500 contours

(Figs. 6e–h) represent the mean upper-level features for

each group. On day 3 (Figs. 6a,e), the surface cyclone

forecasts in all groups seem to be similar over southwest

Canada, but the cyclone and the associated upper-level

trough for group 4 seem to be weaker than those of the

other four groups. On days 4 and 5 (Figs. 6b,c,f,g), the

surface cyclones as well as the upper-level troughs in

groups 2 and 4 are weaker than those of group EM.

Groups 3, 5, and 6, on the other hand, have deeper

cyclones than group EM has. Among the six groups,

group 6 shows the strongest and most northwestward

cyclone and upper-level trough system.

On day 6 (VT; Figs. 6d,h), the surface cyclones in

groups 3, 5, and 6 continue to be much deeper than that

of group EM. In contrast, cyclones in groups 2 and 4 are

much weaker than that of group EM. The group 5 mean

forecasts the most east-northeastward surface cyclone

and the most eastward trough among the six groups.

Group 6 has the deepest cyclone and upper-level trough

while the group 4 mean forecasts the weakest system

among the six groups (Figs. 6d,h). The synoptic features

represented by both surface and upper-level variables

match the interpretations of clusters in the previous

subsection.

Figure 7 shows the spaghetti plot of 1004-hPa MSLP

contour lines for the six groups. At this rather long lead

time, there is quite a bit of scatter within each group.

However, consistent forecasts are clearly clustered in

the same group, especially for deep cyclone scenarios,

such as group 6. By contrast, weak cyclones can be seen

in groups 2 and 4. Note that a substantial number of

FIG. 4. (a) MSLP ensemble mean (contours; hPa) and spread (shading; hPa). (b) Spaghetti plots of 1008-hPa

contour for 90 multimodel ensemble members (blue for ECMWFmembers, green for NCEPmembers, and orange

for CMC members) with the dashed magenta lines and black lines showing the ensemble mean and analyzed

contour line. (c) The regressed pattern of MSLP corresponding to EOF PC1 for a 6-day forecast (contours; hPa).

(d) As in (c), but for the EOF2 pattern (contours; hPa). TheVT is 1200UTC 27 Jan 2015, and the IT is 1200UTC 21

Jan 2015. The black (red) dot in each panel denotes the analyzed (ensemblemean) position of the surface cyclone at

VT. The dashed gray box in all panels is the verification region for calculating EOFs.
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members in group 4 do not even show the 1004-hPa

contour. Note that the cluster separations within the

verification regions are more distinct than those within

the plotting domain.

d. 3-day ensemble forecasts

1) VARIABILITY CAPTURED BY LEADING EOF
PATTERNS

The day 3 ensemble mean forecast (Figs. 8a,b)

predicts a cyclone centered at 39.08N, 69.58W with a

minimum pressure of 985 hPa, ;120km to the south-

southwest of the analyzed cyclone. The maximum en-

semble variance is;400km to the west-southwest of the

ensemble-mean cyclone center (Fig. 8a). The spaghetti

plot of the 996-hPa contour lines (Fig. 8b) suggests that

there is large forecast uncertainty regarding the position

of the cyclone. The two leading EOF patterns for this

3-day MSLP forecast explain 42.9% and 28.7% of the

variance, respectively. The positive (negative) EOF1

(Fig. 8c) pattern is a monopole centered ;260 km west

of the ensemble mean cyclone, representing a deeper

(weaker), as well as a more westward (eastward) shifted,

cyclone. The positive (negative) EOF2 (Fig. 8d) pattern

is a dipole, representing the northeastward (south-

westward) shift of the cyclone, indicating that there

is a subset of ensemble members shifted to the

northeast (as well as southwest) of the ensemble mean

cyclone at VT.

2) FORECAST SCENARIOS DETERMINED BY THE

FUZZY CLUSTERING METHOD

Figure 5b shows the six groups based on the fuzzy

clustering method. Group EM is centered close to the

ensemble mean. Group 2 represents a negative EOF1

pattern and weakly positive EOF2, with the cyclone in

this group anticipated to be weaker and more eastward

than the ensemble mean. Group 3 represents negative

EOF2 characteristics: the southwestward shift of the

cyclone position relative to the ensemblemean (Fig. 8d).

Group 4 has mainly a strong negative EOF1, suggesting a

cyclone much weaker and more eastward relative to the

ensemble mean. One of the CMC members in this group

is at (23.5,23.0), seemingly an outlier with respect to the

rest of the ensemble. Group 5 indicates a combination of

positive EOF1 and negative EOF2 anomalies. Therefore,

the cyclone in this group should be more west-

southwestward (more onshore) and deeper than the en-

semble mean. Group 6 mainly represents a positive

EOF2 pattern, indicating a northeastward shift of the

cyclone position relative to the ensemble mean.

To sum up, groups 6 and 3 represent largest positive

and negative EOF2 patterns, corresponding to more

northeastward and southwestward shifts, respectively.

Meanwhile, groups 4 and 5 represent the largest nega-

tive and positive EOF1 patterns, corresponding to

weaker/offshore and deeper/onshore cyclone scenarios,

respectively.

3) SYNOPTIC CHARACTERISTICS OF DIFFERENT

CLUSTERS

Figure 9 shows the group means of the six clusters

(partitioned based on EOF PCs on day 3) from day 1 to

day 3 using the 1008-hPa MSLP and 5100-, 5400-, and

5700-m Z500 contour lines. On day 1 (Figs. 9a,d), the

surface cyclones in all groups seem to be similar, but the

cyclone for group 6 is more intense than that of the other

five groups. The Z500 short-wave trough shows more

separations among the groups, with that of group 6 being

the strongest and most southeastward one. On day 2

(Figs. 9b,e), the surface cyclone as well as the upper-

level trough in group 6 are still the most eastward among

the six groups. Group 5, on the other hand, has the cy-

clone being the most westward. Group 4 shows the

weakest cyclone and upper-level trough, with the en-

semble mean pressure higher than 1008hPa and thus

absent from Fig. 9b.

FIG. 5. The six clusters divided using the fuzzy clustering method

on PC1–PC2 space from three models for (a) 6- and (b) 3-day fore-

casts. The VT is 1200 UTC 27 Jan 2015, and the ITs are 1200 UTC

21 Jan in (a) and 1200 UTC 24 Jan 2015 in (b).
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On day 3 (VT; Figs. 9c,f), group 6 has both the surface

cyclone and its associated upper-level trough being

;120 km more northeastward than that of group EM,

which is consistent with the earlier forecast time steps.

Group 5 has the cyclone deeper than that of group EM

and ;320 km more west-southwestward (Fig. 9c). Its

associated trough is the deepest among the six groups

and extends more west-southwestward than the en-

semble mean (Fig. 9f). By contrast, both the surface

cyclone and the upper-level trough in groups 2 and 4

(Figs. 9c,f) are weaker than that of group EM. The cy-

clone of group 4 continues to be the weakest, with the

FIG. 6. (a)–(d) A summary of six cluster means using 1008- or 1004-hPa MSLP contour lines and (e)–(h) 5100-,

5400-, and 5700-m Z500 contour lines for a 6-day forecast initialized at 1200 UTC 21 Jan 2015. The dashed gray

box in all panels is the verification region.
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center ;320 km more southeastward than the ensem-

ble mean. The cyclone of group 2 is weaker by 3 hPa

and ;170 km more southwestward than the ensemble

mean.

Figure 10 shows the spaghetti plot of 1000-hPa MSLP

contour lines for the six groups. ECMWF members are

mainly contributing to groupsEM, 3, and 5 (Figs. 10a,c,e),

forecasting a more close-to-shore cyclone. However,

FIG. 7. (a)–(e) Spaghetti diagram plot for six groups using the 1004-hPa MSLP contour line. Red, green, and blue

are contour lines from the CMC, NCEP, and ECMWF members, respectively. The dashed magenta line is for the

groupmean. The black and purple lines are the multimodel mean and the analysis, respectively. The VT is 1200 UTC

27 Jan 2015, and the IT is 1200 UTC 21 Jan 2015. The dashed gray box in all panels is the verification region.
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three ECMWF members also contribute to group 6, to-

gether with nine NCEP and two CMC members,

forecasting a deeper and more east-northeastward sce-

nario. Thirteen CMC members contribute to groups 2

and 4, together with six NCEP and one ECMWF mem-

bers, forecasting the weakest and more offshore cyclone

(Figs. 10b,d). Spaghetti plots (Figs. 7 and 10) confirm that

the clusteringmethod is able to findmembers with similar

forecast scenarios not only from the same EPS but also

from different models. Figures 2b–d show that the 24-h

total precipitation in the ECMWFmean is closer to shore

than in the other two models, with the heaviest pre-

cipitation regions including New York City and New

Jersey. Figures 2e and 2f compares the mean pre-

cipitation for group EM and group 6, suggesting the

heavy precipitation in group 6 is more northeastward and

closer to the analysis than group EM. Figure 2 again

demonstrates the consistency of the cluster scenarios

for important weather elements. We have also in-

vestigated the clustering results for other variables in-

cluding 24-h precipitation, moisture flux, and Z500 (not

shown). The adjusted Rand index suggests that the

FIG. 8. (a) MSLP ensemble mean (contours; hPa) and spread (shading; hPa), (b) spaghetti plots of the 996-hPa

contour for 90 multimodel ensemble members (blue are for ECMWFmembers, green are for NCEPmembers, and

orange are for CMCmembers) with the dashed magenta lines and black lines representing the ensemble mean and

analyzed contour line. Patterns shown for (c) EOF1 MSLP (contours; hPa) and (d) EOF2 MSLP (contours; hPa).

The VT is 1200UTC 27 Jan 2015, and the IT is 1200UTC 24 Jan 2015. The black (red) dot in each panel denotes the

analyzed (ensemble mean) position of the surface cyclone at VT.
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clustering results for the precipitation and moisture

flux are more consistent with the results using MSLP

than those using Z500, indicating that the forecast un-

certainties for the 3-day MSLP forecasts in this case

could be more closely associated with the moisture

process than the upper-level flow.

4. Linking clustering analysis to ensemble
sensitivity
Zheng et al. (2013) investigated a blizzard case during

26–28 December 2010 and examined the forecast un-

certainty associated with it using the ensemble sensi-

tivity method. Since the ensemble sensitivity approach

FIG. 9. (a)–(c) A summary of six cluster means using the 1008-hPa MSLP contour line and (d)–(f) 5100-, 5400-,

and 5700-m Z500 contour lines for the 3-day forecast. The VT is 1200 UTC 27 Jan 2015, and the IT is 1200 UTC 24

Jan 2015. The dashed gray boxes in all panels are for the verification region.
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FIG. 10. (a)–(e) Spaghetti plot for six groups using the 1000-hPaMSLP contour line. Red, green, and blue contour

lines are from CMC, NCEP, and ECMWFmembers, respectively. The dashed magenta line is for the group mean.

The black and purple solid lines are the multimodel mean and the analysis, respectively, in all panels. The VT is

1200 UTC 27 Jan 2015, and the IT is 1200 UTC 24 Jan 2015.
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also employs EOF PCs as a forecast metric and has been

applied to the operational ensemble forecasting, here we

want to relate these two methods and explore the linkage

between them in ensemble forecast uncertainty studies.

a. A brief overview of the 2010 December blizzard
and forecast uncertainty

On 26–28 December 2010, a powerful winter storm

impacted the northeast United States, resulting in bliz-

zard conditions across the region, including the New

York City metropolitan area, New Jersey, and portions

of New England (Zheng et al. 2013). The ECMWF op-

erational ensemble forecasts indicated a potential U.S.

East Coast snowstorm a week in advance (not shown),

but the ensemble mean suggested that the storm would

stay well to the east of the East Coast at the VT

(1200 UTC 27 December; see Figs. 1a and 1e in Zheng

et al. 2013). However, during the subsequent 3 days, the

ensemble-mean cyclone track shifted back and forth. By

0000 UTC 24 December, the ECMWF ensemble mean

suggested a solution for the cyclone center ;550 km to

the east of the coast (see Figs. 1c and 1g in Zheng et al.

2013). Meanwhile, between 0000 and 1200 UTC 24 De-

cember, the operational NCEP ensemble mean correctly

trended ;700km farther northwestward, indicating the

potential for heavy snowfall from New York City to

Washington, D.C. (not shown). Finally, at 0000 UTC

25 December, the operational models converged on the

storm track and indicated the New York City–Boston

corridor was in line with the potential for heavy snow and

strong winds associated with a rapidly deepening sur-

face low. This consensus for a snowstorm event emerged

only 36–48h before the onset (1200 UTC 26 December–

0000 UTC 27 December) of the heaviest snows.

In the following subsections, 1200 UTC 27 December

2010 is chosen as the VT. The 3.5-day ensemble run

initialized at 0000 UTC 24 December 2010 based on

90 multimodel members is selected to compare the clus-

tering analysis and the ensemble sensitivity tool in assess-

ing the evolution of forecast uncertainty.

b. The forecast groups partitioned by the fuzzy
clustering for 3.5-day forecast

For the 3.5-day MSLP ensemble forecasts (Fig. 11a),

the multimodel ensemble mean cyclone is centered

at 42.08N, 64.08W, and the maximum ensemble vari-

ance is over the west-southwest of the ensemble mean

cyclone. Figures 11b and 11c show the leading two

EOF patterns for this 3.5-day MSLP forecast, which

explain 53.8% and 21.4% of the variance, re-

spectively. Positive (negative) EOF1 corresponds to a

weaker (stronger) cyclone shifted eastward (west-

ward) of the ensemble-mean cyclone. Meanwhile,

positive (negative) EOF2 represents more of a

slightly weaker (stronger) and southwest- (northeast)

shifted cyclone.

For this case, the five-cluster solution is found to be

the optimal choice. Figure 11d shows the partitioning

of the 90 ensemble members into five clusters. Group

EM is centered close to the ensemble mean. Group 2

represents positive EOF1 and weak positive EOF2

characteristics; hence, there is a weaker and more

east-southeastward-shifted cyclone relative to the

ensemble mean. Group 3 has negative EOF1 and

slightly positive EOF2 characteristics, and is expected

to be more west-southwestward and stronger than the

ensemble mean. Group 4 has mainly a small positive

EOF1 anomaly and a small negative EOF2 anomaly,

which suggests a slightly weaker and more east-

northeastward cyclone relative to the ensemble

mean. Group 5 indicates a combination of negative

EOF1 and negative EOF2 anomalies. Therefore, the

cyclone in this group on average should be north-

northwestward and deeper than the ensemble mean.

Figure 11d shows that CMC forecasts mainly con-

tribute to groups 2 and 4; NCEP forecasts to groups

EM, 2, and 4; and ECMWF forecasts to groups EM, 3,

and 5.

c. Time evolution of different groups and the
ensemble sensitivity

Ensemble sensitivity has been applied to explore

the ensemble relation between a forecast metric J

and a state vector X. Zheng et al. (2013) showed that

when using the EOF PCs as a forecast metric, the

ensemble sensitivity reduces to the correlation be-

tween the state vector X and J since EOF PCs are

normalized to the unit variance. Therefore, the en-

semble sensitivity for an ensemble with M members is

expressed as

Ensemble Sensitivity

5
cov(J,X

i
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(X
i
)

p 5
cov(J,X

i
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(X
i
)

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
var(J)

p 5Correlation,

(2)

where J and Xi are the 13M ensemble estimates of the

forecast metric J and the ith state vectorX, respectively;

cov denotes the covariance between J and Xi across the

ensemble; and var is the variance.

To study the relation between each of these two

forecast uncertainty patterns on day 3.5 (Figs. 11b,c) and

the upstream conditions at earlier forecast times, the PC

of each EOF pattern was used as the forecast metric,

and the sensitivity in Eq. (2) was calculated using the

500-hPa geopotential height as the state vector at different
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forecast times. Positive (negative) sensitivity indicates

areas where an increase (decrease) in geopotential height

is associated with an increase in the PCs and therefore an

enhancement of each of the two EOF patterns.

Figure 12 compares the time evolution of the ensem-

ble sensitivity of EOF PC1 to Z500 and the group means

of Z500 for the five clusters determined by the cluster

analysis at VT (0h). At a lead time of 60 h, or the day 1

forecast (Fig. 12a), there are two sensitivity maxima

(.0.5) over the continental United States, one associ-

ated with an upper-level short-wave trough over Texas

and the other associated with the eastern side of an

amplified ridge spreading from the western United

States to western Canada. In addition, there is another

area with a large positive sensitivity over northeast Nova

Scotia. Meanwhile, a large negative sensitivity (,20.6)

is found over the aforementioned ridge. Another nega-

tive region (,20.5) is located over the downstream

eastern U.S. ridge. Such a distribution suggests that a

weakened wave group from western North America to

the western Atlantic Ocean is associated with an in-

crease in PC1 and thus an enhancement of the EOF1

pattern at VT, which is a weaker and eastward-shifted

cyclone.

Among the five groups, groups 2 and 3 (Fig. 11d) are

associated with the largest positive and negative EOF

PC1 values, representing the weakest/most eastward

and the strongest/most westward surface cyclones at VT,

respectively. At this time step (260h; Fig. 12a), the

differences between the five groups are subtle because

the total geopotential field is used. Nevertheless, over

regions where the sensitivity to PC1 is large, one can see

FIG. 11. (a) Mean and spread, as in Fig. 8a, but for the 3.5-day forecast initialized at 0000 UTC 24 Dec 2010. (b) EOF1 and (c) EOF2

MSLP patterns, as in Figs 8c and 8d, but for the 3.5-day forecast initialized at 0000 UTC 24 Dec 2010. (d) Five-cluster scatterplots, as in

Fig. 5a, but for the 3.5-day forecast initialized at 0000 UTC 24 Dec 2010.
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the evident differences between groups 2 and 3. For

example, the Texas short-wave trough of group 2 is

weaker and more eastward than that of group 3.

As we look forward in time from 248 to 0h

(Figs. 12b–d), the ridge–trough–ridge pattern generally

shifted eastward with the amplitude of the pattern in-

creasing especially over the trough and downstream

ridge. The sensitivity signal also generally shifted east-

ward, suggesting that a weaker ridge–trough–ridge

pattern favored positive EOF1 (a weaker and eastward-

shifted cyclone). At the VT (Fig. 12d), the sensitivity is

maximized (.0.8) near the center and the southwest of

the U.S. East Coast trough, where group 2 has the

weakest trough while group 3 has the deepest one

among the five groups. Meanwhile, the negative sensi-

tivity is over the center of its downstream ridge, where

group 2 has the weakest ridge and group 3 has the most

amplified ridge among the five groups.

The sensitivity using PC2 as the forecast metric is

shown in Fig. 13. At 260h (Fig. 13a), there is negative

sensitivity (,20.3) to the southwest of the short-wave

trough over Texas, suggesting a southwestward-shifted

trough is associated with positive EOF2, which

represents the southwestward shift of the cyclone at VT.

Groups 3 and 5 represent positive and negative EOF2,

respectively (Fig. 11d). Over regions where the sensi-

tivity to PC2 is large, the contrasts between groups 3 and

5 are identifiable, with one example being northwestern

Canada.

When going forward from 248 to 0 h (Figs. 13b–d),

the sensitivity signal moved eastward with the corre-

sponding systems and increased in amplitude. The pos-

itive sensitivity developed rapidly from.0.3 at the base

of the trough over the midwestern United States

at 248h (Fig. 13b) to .0.8 over the western Atlantic

upper-level ridge (Fig. 13d), which is consistent with the

downstream development scenario suggested by Zheng

et al. (2013). Meanwhile, the five groups showed large

differences in forecasting the downstream ridge over the

western Atlantic, again demonstrating the large down-

stream development of the forecast uncertainty. The

distribution of the sensitivity centers corresponding to

the East Coast trough and its upstream and downstream

ridges suggested that the southwest shift of the ridge–

trough–ridge system favors the EOF 2 pattern (i.e., the

southwestward shift of the cyclone). Note that over

FIG. 12. (a)–(d) Ensemble sensitivity of EOF PC1 to Z500 (gray shading and solid blue/red contours) and five

clustermeans of three Z500 contour lines (colored contours: 5300, 5500, and 5700m) from a lead time of 60 h (1-day

forecast) to VT (3.5-day forecast). Black, orange, green, blue, and magenta dashed lines are for group EM and

groups 2–5, respectively. The VT is 1200 UTC 27 Dec 2010, and the IT is at 0000 UTC 24 Dec 2010.
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regions where sensitivity to PC2 is large while sensitivity

to PC1 is small (e.g., over southern Canada between

Hudson Bay and the Great Lakes, near Alabama and

Wyoming), we can see clear differences between the

means of groups 5 and 3 (Fig. 13d).

The time evolutions based on sensitivity and cluster

means (Figs. 12 and 13) both suggest that the southern

plains short-wave trough has the most consistent and

robust signal in affecting the intensity and position shift

of the day 3.5 surface cyclone. This is consistent with the

results in Zheng et al. (2013) using the same run but only

with 50 ECMWF members. Their forward ensemble

regression results suggest that other sensitive regions,

such as the area of large sensitivity over high-latitude

Canada, only play a secondary role in modifying the

EOF2 pattern.

d. The benefits of using the two methods together

Figures 12 and 13 qualitatively compares the ensem-

ble sensitivity and the clustering analysis based on the

leading two EOF PCs. The ESA method in either cor-

relation form [Eq. (2)] or regression gradient form

(Ancell and Hakim 2007) establishes the linear relation

between a state vector (e.g., Z500) and the forecast

metric. In our applications here, the forecast PC metrics

form the basis for performing clustering calculations.

Thus, these two methods were related through the

similar forecast metrics used. The clusters at VT can be

interpreted as the rotated EOF patterns or a linear

combination of PC1 and PC2. Since we have demon-

strated that the ensemble sensitivity method can be

applied to medium-range ensemble forecasts (Chang

et al. 2013; Zheng et al. 2013), the linkage between these

two methods suggests that both methods can be utilized

in operations to investigate the forecast uncertainty

among ensemble outputs for medium-range forecasts.

Each of these two methods has its advantages and

limitations. The ensemble sensitivity can tell forecasters

where the forecast uncertainty is coming from and how

it evolves from the initial times (IT) to the VT. The

limitations for using the ensemble sensitivity include

that 1) it is difficult to verify the ensemble sensitivity,

2) it is often hard to disclose the details of individual

members, and 3) the sensitivity patterns are only asso-

ciated with either EOF1 or EOF2, and are treated sep-

arately in calculations, whereas the real forecasts can

be a combination of two patterns. The fuzzy clustering

method assigns each member to a particular cluster,

which often represents an independent scenario. This

scenario can be the positive/negative EOF1 or EOF2, or

FIG. 13. As in Fig. 12, but for EOF PC2.
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any combination of two EOF patterns. The details of

each forecast scenario (e.g., a more onshore surface

cyclone) can also be explored by examining the spa-

ghetti plots in the cluster. Also, the forecast scenarios in

the fuzzy clustering analysis can be easily verified by

projecting the analysis onto the EOF PCs coordinate

(see section 5). At the initial times, the amplitude of the

differences in the ensemble members is small. Ensemble

sensitivity highlights the linearly regressed signal, thus

removing the noise from that process; hence, the signal is

clearer. Composites based on the clusters encompass the

full field; thus, during initial timeswhen the signal is small,

cluster separations could be contaminated by noise and

become less clear. These twomethods can serve different

purposes in operations. The ensemble sensitivity method

provides an overall linear relation between the state

vectors and each of the two EOF patterns while fuzzy

clustering can show the possibility of different develop-

ment scenarios. Thus, we believe that these two methods

are complementary and should be used together.

5. Discussion

a. Applying EOF/fuzzy clustering to real-time
forecasting

The EOF/fuzzy clustering method has several benefits

when applied in real-time forecasting situations. 1) It

can quickly separate different forecast scenarios

among a large multimodel output dataset. The NBM

aims to create a ‘‘best’’ product frommultimodels in the

medium-range time frame. This objective way of sepa-

rating scenarios among multimodel EPSs could provide

another perspective for validating the best product.

2) The time evolution of different clusters can help

forecasters determine the critical systems associated

with the largest model disagreement, for example, the

short-wave trough over the Midwest on day 1 for the

January 2015 case (Fig. 9d). 3) Together with the en-

semble sensitivity method, it can indicate where the

forecast uncertainty is coming from during the initial

forecast steps, for example, the short-wave trough over

Texas on day 1 for the December 2010 case (Fig. 12a).

4) It can clearly show outlier members on the scatterplot.

For example, Fig. 5a shows most of the NCEP members

are located over positive PC2 quadrants. The CMC

model has an outlier member around (23.5, 23.0) with

respect to the rest of the ensemble. 5) It can reinforce

the ‘‘equally likely’’ nature of ensemble forecasts, which

will be further discussed in an upcoming paper. Based on

over 100 cyclone cases, we have found that the analysis

scenario does not have a strong tendency to fall into any

one of the clusters beyond the short range. This confirms

that in a well-constructed ensemble, all scenarios have an

equal chance to happen; in other words, even the scenario

away from the ensemble mean should not be ignored.

b. The analysis group for past cases

When analyzing past cases in which the analysis is

available, after the ensemble members have been

grouped into an optimal number of clusters based on

their EOF PCs at VT, the analysis field can be projected

onto the leading EOF patterns and hence occupies one

point on the EOF PC1–PC2 space to represent analysis

or validation (see the purple plus sign in Figs. 5a, 5b,

and 11d). By doing this, the cluster closest to the analysis

can be defined as the ‘‘analysis group’’ (‘‘group ANA’’).

Based on this definition, for the January 2015 case, group 6

in Fig. 5b is the analysis group.As can be seen in Figs. 9 and

10, group 6 (or group ANA) is the closest cluster to the

analysis (purple solid line in Figs. 9 and 10), which

forecasts a cyclone more north-northeastward than the

ensemble mean. The average precipitation corresponding

to group 6 is also more north-northeastward than that of

the multimodel ensemble mean (Figs. 2e,f). The heaviest

precipitation in group 6 ismuch closer to the observed than

other clusters as well as individual model means (Fig. 2).

For theDecember 2010 case, group 3 in Fig. 11d is assigned

as the analysis group. From Figs. 12 and 13, the 5400-m

Z500 contour in group 3 is the closest to the analyzed

contour over the eastern United States and the western

Atlantic Ocean. Note that in both cases, group ANA is

distinct from group EM; that is, the analyses do not lie

within the space occupied by the ensemble mean groups.

Here, the analysis group has been defined based on

the projection of the analysis onto PC1–PC2 space. Two

more conventional metrics, the root-mean-squared er-

ror (RMSE) and pattern correlation coefficient (Corr),

are used to verify that the analysis group defined this

way is indeed closest to the analysis.

Figures 14 and 15 show the RMSE and Corr values of

Z500/MSLP from IT to VT for cases 1 and 2, re-

spectively. At VT (72h for case 1 and 84h for case 2), the

analysis group (group 6 for case 1 and group 3 for case

2) has smaller RMSE errors (Figs. 14a,b and 15a,b) and

higher correlation (Figs. 14c,d and 15c,d) than the other

four groups. In addition, they also have smaller RMSE

and higher Corr values than the multimodel mean as

well as each individual model mean. The superiority of

the analysis group is significant at the 95% level based

on 100 random samplings of groups.

The superiority of the analysis group is not only lim-

ited at VT. The time range of its robustness can also be

seen from Figs. 14 and 15. For the 2015 case (Fig. 14), the

analysis group is significantly better from48h (VT2 30h;

Figs. 14a,b) to 84 h (VT 1 12 h; not shown), spanning

around 36 h. For the December 2010 case (Fig. 15), the
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analysis group is significantly better from30h (VT2 54h;

Figs. 15b,d) to 120 h (VT1 36 h; not shown), spanning

over 3.5 days. Therefore, the time range of the domi-

nant benefit of using the analysis group varies case by

case, but it can be robust, spanning as long as over

3.5 days. Nevertheless, Figs. 14 and 15 show that at early

forecast times, other groups are closer to the analysis

than the analysis group, indicating that one cannot easily

pick a ‘‘best’’ forecast group based on its agreement with

observations during early forecast hours, consistent with

the findings of Smith (2001) and Orrell et al. (2001).

The verifications using RMSE and Corr confirm that

the analysis group has relatively lower errors and higher

pattern correlations among the six (five for case 2)

groups over a time range spanning theVT. The selection

of the analysis group is hence reliable and can be applied

to event-based scenario verifications. The result also

indicates that by combining members from different

models, an optimal cluster (group ANA) can be more

valuable than both the multimodel ensemble mean and

individual model means. In operations, the optimal

cluster is not known in advance. However, the statistics

of optimal clusters for specific events (e.g., significant

winter storms) can help forecasters to sharpen their fore-

casts, whichwill be further explored in an upcoming paper.

The projection of the analysis onto the PC space and

the definition of the analysis group can be used as a

verification tool. Using TIGGE data, we have applied

this method to examine over 100 cases of East Coast

cyclones, and the results demonstrate that in the ma-

jority of cases, the analysis does not lie within group EM,

similar to the two cases discussed here, suggesting that

one should not put too much emphasis on the ensemble

mean and ignore the other groups. This and other statistics

will be discussed in more detail in an upcoming paper.

6. Conclusions

This study introduces an EOF/fuzzy clustering

method for separating different development sce-

narios when forecasting East Coast storms out to

medium range.

FIG. 14. RMSEs of (a) MSLP and (b) Z500 for each cluster mean and model means at different forecast times.

Correlations of (c)MSLP and (d) Z500 between eachmean and the analysis at different forecast times. The clusters

are selected based on the EOF PCs of the 72-h forecast initialized at 1200 UTC 24 Jan 2015. The black, red, green,

blue, purple, and cyan solid lines are for group EM and groups 2–6, respectively. The cyan solid line with dots is for

group 6 (analysis group). The black dashed line is for the multimodel ensemble mean. The green, red, and blue

dashed lines are for the NCEP, CMC, and ECMWF model means, respectively. The blue dotted line shows the

95% significance line based on 100 randomly selected clusters. The verification area is a box (208 latitude 3
248 longitude) moving with the cyclone (for MSLP) and the corresponding upper-level trough (for Z500) system.
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In real-time operations, this work can meet the fol-

lowing needs: 1) to quickly partition different forecast

scenarios, 2) to provide a new scenario-based method

for NBM to validate the ‘‘best’’ product, 3) to indicate

where and when the forecast uncertainties are from, and

4) to increase forecasters’ situational awareness of the

‘‘equal chance to happen’’ for each scenario.

Two winter storm cases are investigated. For the

January 2015 case, the separation into six groups rep-

resents storms with different locations or amplitudes.

The verified analysis group shows more of an offshore

solution, with the heaviest snowfall region not including

NYC. In the 3-day forecast, the ECMWF ensemble, which

has the largest number of members, does not contribute to

the analysis group in proportion to its number ofmembers.

The NCEP model, in contrast, has around half of its

members contributing to the analysis group.

The December 2010 case is used to compare the

clustering method and ensemble sensitivity analysis.

These two methods are complementary to each other.

Early in the forecasts, when differences among the

clusters are small, the ensemble sensitivity signals can

show the sensitive regions more clearly. However, closer

to VT, the clusters can show the evolution of forecast

uncertainty and different scenarios more clearly.

The validation using RMSE and Corr results confirms

that our definition of the analysis group is quantitatively

reasonable. Out of the scenarios represented by the

optimal number of clusters, there is in general one group

closest to the analysis. For both cases examined, the

analysis groups are distinct from the ensemble mean

group, and have fewer errors than both the multimodel

mean and individual model means.

In this paper, we have only shown the clusters using

MSLP parameter. Since high-impact weather events

(e.g., heavy precipitation, high winds) are strongly as-

sociated with the cyclone position, it has motivated us to

use the mass field as a first-step parameter for our

project. We are expanding the applications to other

fields too. We have also explored different ways of cal-

culating clustering by utilizing other meteorological

parameters, for example, the total precipitation, the

temperature at different levels, and the potential

vorticity at the dynamical tropopause. The cluster

means show physical consistency when using these

different parameters. However, more work needs to

FIG. 15. As in Fig. 14, but for the five-cluster results of case 2 initialized at 0000 UTC 24 Dec 2010 and verified at

1200 UTC 27 Dec 2010. Group 3 (green solid line with dot) is the analysis group.
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be done to combine different weather elements to

perform clustering and interpret the synoptic re-

lations among scenarios.

This tool, when applied to past cases, can also be used

as an ensemble verification tool. We have applied this

tool to examine over 100 cases involving East Coast

cyclones, and the results will be presented in an up-

coming paper. Other than winter storm events, this tool

can also be utilized to investigate scenarios in different

HIW conditions (i.e., Atlantic hurricanes or tropical

cyclones in any basin). We have successfully applied the

fuzzy clustering tool to interpreting the real-time fore-

cast uncertainty in two recent hurricanes (Hermine in

September 2016 and Matthew in October 2016). This

method can provide insights into improving our un-

derstanding of HIW predictability and model bias for

both operational and research purposes.
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