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ABSTRACT

In 2006, the statistical postprocessing of theNational Centers for Environmental Prediction (NCEP)Global

Ensemble Forecast System (GEFS) and North American Ensemble Forecast System (NAEFS) was imple-

mented to enhance probabilistic guidance. Anomaly forecasting (ANF) is one of the NAEFS products,

generated from bias-corrected ensemble forecasts and reanalysis climatology. The extreme forecast index

(EFI), based on a raw ensemble forecast and model-based climatology, is another way to build an extreme

weather forecast. In this work, the ANF and EFI algorithms are applied to extreme cold temperature and

extreme precipitation forecasts during the winter of 2013/14. A highly correlated relationship between the

ANF and EFI allows the determination of two sets of thresholds to identify extreme cold and extreme pre-

cipitation events for the two algorithms. An EFI of20.78 (0.687) is approximately equivalent to a22s (0.95)

ANF for the extreme cold event (extreme precipitation) forecast. The performances of the two algorithms in

forecasting extreme cold events are verified against analysis for different model versions, reference clima-

tology, and forecasts. The verification results during the winter of 2013/14 indicate that ANF forecasts more

extreme cold events with a slightly higher skill than EFI. The bias-corrected forecast performs much better

than the raw forecast. The current upgrade of the GEFS has a beneficial effect on the extreme cold weather

forecast. Using the NCEP Climate Forecast System Reanalysis and Reforecast (CFSRR) as a climate ref-

erence gives a slightly better score than the 40-yr reanalysis. The verification methodology is also extended to

an extreme precipitation case, showing a broad potential use in the future.

1. Introduction

An extreme weather event is unusual, unexpected, or

rare weather. It could be defined from a climatological

base, a forecast base, or a user specification. In general,

it results in the loss of lives, property, equipment, etc.

For example, the special report of the Intergovern-

mental Panel on Climate Change (IPCC 2011) shows the

annual losses from weather- and climate-related di-

sasters since 1980 has ranged from a few billion U.S.

dollars to more than $200 billion. Therefore, developing

accurate forecast guidance and products to warn users

about weather-related risks has an important impact on

the social economy. A good guidance product would

allow users to make early decisions and improve protection

against risks.

A number of forecast methods have been developed

and applied in identifying extreme weather events at

various world forecast centers (Zhu and Cui 2007;

Lalaurette 2003; Zsótér 2006; Dutra et al. 2013; Hamill

et al. 2013). The concept of the extreme forecast index

(EFI), originally introduced by Lalaurette (2003), is

a measure of the difference between a forecast proba-

bilistic distribution and a model climate distribution.

To increase the sensitivity of forecasts of extreme

events, this index was further adapted in 2006 (Zsótér
2006) by adding more weight to the tails of probability

distributions. This index has been applied to extreme

temperature, wind, and precipitation forecasts at the

European Centre for Medium-Range Weather Fore-

casts (ECMWF), the Canadian Meteorological Centre

(CMC), and the Earth System Research Laboratory

(ESRL) of the National and Oceanic and Atmospheric

administration (NOAA).Corresponding author e-mail: Dr. Hong Guan, hong.guan@noaa.gov
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Anomaly forecasting (ANF) is a more natural method

for forecasting extreme weather events. It measures the

forecast distribution departure from the climatological

distribution. The method has been widely applied to

forecasts of extreme heat waves, winter storms, etc.

(Grumm 2001; Graham and Grumm 2010). ANF was

implemented as a forecast product at NOAA’s National

Weather Service (NWS) inDecember 2007 (Zhu and Cui

2007). Based on the NCEP–NCAR 40-yr reanalysis, a

daily climatological distribution [probability distribution

function (PDF)] has been created for 19 atmospheric

variables such as height, temperature, winds, etc. ANF

products have been generated from a bias-corrected

ensemble forecast (or probabilistic forecast). The prod-

ucts provide 1) the ensemble mean as a percentile of the

climatological distribution and 2) each ensemble mem-

ber as a percentile of the climatological distribution.

Based on these products, users could build various

ANFs, such as greater than 1-, 2-, and 3-sigma standard

deviation ANFs for various meteorological elements.

Furthermore, by comparing the forecast PDF with the

climatological PDF, the users could easily identify an

extreme weather event.

In this paper, we develop a verification methodology

for comparing and evaluating the extreme weather

forecast products from theANF andEFI.After explaining

the verification metrics, we evaluate products from

different model versions (ormodel upgrades), different

references, and products based on a raw forecast and

bias-corrected forecast. We first introduce the model

and datasets in section 2 and then highlight the two

extreme weather forecast methods in section 3.We also

develop and apply a verification methodology to eval-

uate extreme cold weather forecasts and extreme pre-

cipitation forecasts in section 4. The summary will be

given in section 5.

2. Model and datasets

In this study, Global Ensemble Forecast System

(GEFS) version 10 (v10) (Zhu et al. 2012) and v11

(Zhou et al. 2016, manuscript submitted to Mon. Wea.

Rev.) forecasts are used to calculate the ANF and EFI.

The outputs include raw and bias-corrected ensemble

forecasts (Cui et al. 2012). The model climatology and

analysis (or observation) climatology serve as the ref-

erence climatology for the raw and bias-corrected

forecasts, respectively. For the raw forecast, GEFS v11

is tested. The model climatology is calculated using an

18-yr control-only reforecast dataset.

The GEFS v10 was implemented on 14 February 2012

at NCEP. It consists of 21 members (one control mem-

ber and 20 perturbed members) and is run four times

daily (0000, 0600, 1200, and 1800 UTC). In this study,

we use only the 0000 UTC cycle forecasts. All mem-

bers use an identical set of physical parameterizations

(Zhu et al. 2007). The model is run at a horizontal

resolution of T254 (;55 km) for the first 8 days and

T190 (;70 km) for the next 8 days, with 42 hybrid

vertical levels. The hybrid GSI–EnKF analysis (Kleist

and Ide 2015) is used as the initial condition. The

initial perturbations are created with the bred vector–

ensemble transform with rescaling (BV-ETR, Wei

et al. 2008) technique. Model uncertainty is estimated

using the stochastic total tendency perturbation

(STTP) method (Hou et al. 2008). For the bias-

corrected dataset, the model bias was removed

using a decaying averaging postprocessing technique

(Cui et al. 2012).

There are three major changes from v10 to v11. First,

in v11, Euler’s integration method is replaced by the

semi-Lagrangian method in order to save computing

time (Sela 2010). Second, the EnKF 6-h forecast is used

as the basis for the ensemble initial perturbations in-

stead of BV-ETR generation. The details of the EnKF

technique can be found in references cited by

Whitaker and Hamill (2012), Whitaker et al. (2008),

Wang et al. (2013), and Kleist and Ide (2015). Third,

the horizontal resolutions were increased to 34 km

(T574) and 55 km (T384) for the first and next 8 days,

respectively. The number of vertical levels was increased

to 64 levels.

The 18-yr (1995–2012) control-only v11 reforecast

was run at the 0000 UTC cycle every other day. The

reforecast dataset was interpolated bilinearly to 18 3 18
latitude–longitude grids from the native resolutions.

The model native resolutions are about 34 and 55 km

at midlatitudes for the first and last 8 days, respectively.

From the 18 3 18 dataset, the model climatology for

each day and each grid point was generated. In calcu-

lating the climatology, we also include eight nearby

points and use a time window of 5 days centered on

the day being considered, leading to a total sample size

of 243 data (9 yr 3 3 day yr21 3 9 points) for each

grid point.

The analysis climatology of 2-m temperature in-

cludes NCEP–NCAR 40-Year (1959–98) Reanalysis

dataset (Kalnay et al. 1996) and NCEP’s Climate

Forecast System Reanalysis and Reforecast (CFSRR)

30-yr reanalysis dataset (1979–2008) (Saha et al. 2010).

The CFSRR climatology has been generated from the

latest numerical weather prediction (NWP) model and

assimilation system. Therefore, its quality has been much

improved through various enhancements, such as the im-

proved quality of the observations, a state-of-the-art

model and assimilation system, and much higher spatial
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resolution. It has beenpointed out that for the near-surface

temperature the CFSRR produces a much finer structure

than the NCEP–NCAR reanalysis (B. Yang 2015,

personal communication).

A climatological distribution could be presented in

terms of the climatological mean and standard de-

viation if a variable has a (quasi-) normal distribution.

For the two sets of reanalyses, the first four Fourier

modes (higher smoothing) have been used to generate

daily climatological means to include annual, semi-

annual, and seasonal cycles. Climatological standard

deviations are linearly interpolated from monthly to

daily means. For the NCEP–NCAR 40-yr reanalysis,

the best analysis resolution is 2.58 3 2.58 globally. We

have to interpolate the data to 1.08 3 1.08 to match the

forecast resolution. The original resolution of the

CFSRR is 1.08 3 1.08.
The analysis climatology of precipitation was cal-

culated based on climatology-calibrated precipitation

analysis (CCPA; Hou et al. 2014) across the conti-

nental United States (CONUS). A gamma distribu-

tion was used to fit the precipitation distribution for

each day of the year and each 1 3 1 grid point. The

distribution parameters were determined via the

L-moment method (Hosking 1990; Hosking and Wallis

1997). Details on the generation of climatology can

be found online (http://www.emc.ncep.noaa.gov/gmb/yluo/

AMS_CCPA_Climatology%20[Compatibility%20Mode].

pdf, updated January 2013).

3. Forecast product generation methodology

a. ANF

ANF is defined as the difference between the en-

semble forecast Fen( p) and the expected value of the

climate distribution C:

ANF5F
en
(p)2C . (1)

In this work, we specifically calculate the ANFs for

the ensemble mean and the 50th percentile for 2-m

temperature and precipitation, respectively. For 2-m

temperature, we calculate the value of ANF divided

by one climatological standard deviation, the so-

called standardized anomaly in Grumm (2001). For

24-h accumulated precipitation, we find the location

(or value) where the 50th percentile (or median) of

the ensemble forecast lies on the climatological dis-

tribution. The climatological distribution for the 2-m

temperature and precipitation are assumed to be a

normal distribution C 5 N(x, m, s 2) and a gamma

distribution C 5 G(x, k, u), respectively. Previous

work (Hou et al. 2014) demonstrated that a gamma

distribution can well simulate the distribution of

precipitation over North America. The x, m, s 2, k, and

u represent the location, mean, variance, shape factor,

and scale parameter for the corresponding distribu-

tions, respectively.

FIG. 1. Comparisons of the ensemble mean ANF and EFI for the 96-h 2-m temperature

forecast over North America. The raw forecast and model climatology are used in producing

the ANF and EFI. The solid line represents the best-fit curve. The forecasts are initiated at

0000 UTC 1 Mar 2015.
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b. EFI

For any given variable, the EFI (Lalaurette 2003;

Zsótér 2006) may be expressed as

EFI5
2

p

ð1
0

p2F
f
(p)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p(12 p)
p dp , (2)

where p is the proportion of the ranked climate record

and Ff (p) is a function denoting the proportion of en-

semble members lying below the p quantile of the cli-

mate record. The values of EFI are between21 and 1. If

the ensemble member probability distribution agrees

with the climate probability distribution, then EFI 5 0.

In special cases where the values of all ensemble mem-

ber forecasts are above the absolute maximum in the

model climate, the EFI 5 11; if all forecast values are

below the absolute minimum in the model climate, the

EFI 5 21. The equation is solved numerically with an

increment of p equal to 0.01.

4. Verification

a. Methodology

Although various products of extreme weather fore-

casts have been generated in real time and the applica-

tions are widely used in many areas, the verification

of these products has been a challenge. To our know-

ledge, the verification methodology is mainly based on

scatterplots of analysis anomalies and EFI, hit rate,

false alarm rate, and relative operational characteristics

(ROC) area (Toth et al. 2003; Petroliagis and Pinson

2012; Matsueda and Takaya 2013). An extreme event

is often defined as occurring when verifying analysis is

in the tail(s) of the climatological distribution. In this

study, we define a threshold of the 5th (or 22s for

a normal distribution) and the 95th climatological per-

centile for extreme cold and extreme precipitation

events (high end only), respectively. The correspond-

ing thresholds are estimated from the 30-yr CFSRR

climatological data (Saha et al. 2010) and CCPA (Hou

et al. 2014), respectively.

Similarly, a forecast extreme event is also assessed

as a yes if the forecast value is above or below an ap-

propriate threshold value. We use the same threshold

as the analysis does to determine an extreme event for

the ANF method. The EFI is an integrated measure of

the difference between a forecast and its climatology.

How to compare these two measures? What EFI value

is equivalent (or close) to a specific anomaly?We would

like to address this before verification.

Figure 1 shows the comparisons of the ensemble

mean 96-h ANF and EFI for 2-m temperature on

1March 2015 over North America. The ANF and EFI

FIG. 2. Comparison of the 50th percentileANF andEFI results for accumulated precipitation

forecasts (72–96 h) over North America. The v11 raw forecast and model climatology are used

in producing theANF andEFI results. The solid line represents the best-fit curve. The forecasts

are initiated at 0000 UTC 2 Jan 2014.

TABLE 1. Contingency table used to evaluate forecasts of

extreme events.

Yes forecast No forecast Total

Yes observed A B A 1 B

No observed C D C 1 D
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were calculated using raw forecasts and model cli-

matology. The corresponding best-fit equation and

correlation coefficient are also shown. There is a highly

correlated relationship between the two forecasts.

We found that a relationship between these two mea-

sures could be fitted from the fifth-order polyno-

mial function through this sample dataset. According

to the fitting equation, an EFI value equal to 20.78

is approximately equivalent to a 22s ANF median

(50%) value. This relationship provides an equiva-

lent threshold value for identifying extreme events

from the two algorithms and consequently allows cor-

responding intercomparisons.

A very similar technique was used to find the two

corresponding thresholds for extremeprecipitation events.

Figure 2 displays a comparison of 72–96-h precipita-

tion ANF and EFI for 6 January 2014 over North

America. Similar to the 2-m temperature, ANF and

EFI are highly correlated and a fifth-order polynomial

also best fits the dataset. However, instead of using

s as the ANF unit, here we use percentiles to express

the precipitation ANF since a normal distribution

cannot represent the asymmetric character of pre-

cipitation. The thresholds for ANF and EFI are taken

as 0.95 and 0.687, respectively.

Using these criteria, for each grid point over North

America with a coincident model forecast and verifying

analysis, one set of yes/no observations for the extreme

cold events was assessed. Table 1 incorporates the

model and the observation into a 2 3 2 contingency

table associated with dichotomous forecasts. The quality

of the extreme cold event forecast was evaluated based

on signal detection theory (Mason 1982). The statistical

scores hit rate (HR), false alarm rate (FAR), frequency

FIG. 3. (a) Extreme cold weather event observations or anomaly analysis (ANA), (b) 96-h EFI forecast, (c) 96-h ANF forecast, and

(d) verification for both methods. The v11 raw forecast and v11 model climatology are used in producing the ANF and EFI results. The

forecasts are initiated at 0000 UTC 1 Mar 2015.
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bias (FBI), and equivalent threat scores (ETS) (Schaefer

1990) are defined as

HR5A/(A1B) , (3)

FAR5C/(C1D) , (4)

FBI5 (A1C)/(A1B)2 1, and (5)

ETS5 [A2R(h)]/[A1B1C2R(h)] , (6)

where

R(h)5 [(A1C)(C1B)]/(A1B1C1D) . (7)

A perfect forecast is defined by HR 5 1, FAR 5 0,

FBI 5 0, and ETS 5 1. These scores are applied widely

in weather forecast evaluations (Swets 1988; Doswell

et al. 1990; Zhu and Toth 2008).

For ease of interpreting the statistics, Roebber (2009)

developed a performance diagram that shows the POD

(or HR), success ratio (SR), bias, and critical success

index (CSI) in a single diagram. Here, CSI and SR are

defined as

CSI5A/(A1B1C) and (8)

SR5A/(A1C) . (9)

In section 4b, we also use a performance diagram

to display the verification results for extreme cold

events.

FIG. 4. (a) Extreme cold weather event observations or ANA, (b) 96-h raw EFI forecast, (c) 96-h bias-corrected EFI forecast, and

(d) verification for the v11 RAW and v11 bias-corrected forecasts. The 18-yr control-only and CFSRR climatology are used in producing

the raw and bias-corrected forecast products, respectively. The forecasts are initiated at 0000 UTC 29 Dec 2013.
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b. Verification of extreme cold event forecasts

Using the verification methodology developed in

section 4a, we compare the performance of theANF and

EFI products in forecasting extreme cold events for

different model versions and forecasts. We also exam-

ine how using different analysis climatologies (NCEP–

NCAR 40-yr reanalysis versus 30-yr CFSRR) impacts

the verification.

For 2-m temperature, verification is performed over

North America for 11 extreme cold days (events) that

occurred during the winter of 2013/14. This winter was

considered to be colder and snowier than normal, as

noted inVanOldenborgh et al. (2015) and in theNational

Weather Service seasonal review (http://www.weather.

gov/cle/climate_winter_2013-14_Review). We focus on

the two winter cold waves, which occurred during the

periods of 6–10 December 2013 and 29 December 2013–

7 January 2014. Both cold waves caused extreme cold

temperatures and broke daily precipitation and snowfall

records across a considerable portion of North America.

1) VERIFICATION OF ANF AND EFI PRODUCTS

We show verifications of the EFI (Fig. 3b) and ANF

(Fig. 3c) products against observations (Fig. 3a) across

North America for the GEFS v11 raw forecasts for

0000 UTC 5 March 2015. The four corresponding sta-

tistical scores are also shown at the bottom of the figure.

Both EFI and ANF reproduce the observed cold

anomaly pattern over the central United States. TheHR

(0.81) and ETS (0.6) values for the EFI are slightly

higher than those for the ANF (HR, 0.8; ETS, 0.58). The

EFI predicts more extreme cold events than the ANF

based on the FBI comparison. Thismay explainwhy EFI

has slightly higher HR and ETS values. The FAR values

(;0.03) are very similar for both methods. The very

low FAR value mainly results from the combination

of a large domain and a small area occupied by the

extreme cold event. In addition, the model accurately

FIG. 5. The 2-m temperature histograms of HR, FAR, FBI, and ETS for 11 days with dif-

ferent algorithms (EFI andANF) and forecasts (raw and bias corrected) across NorthAmerica.

Blue and red bars represent the v11 raw ANF and EFI results, respectively; green and purple

bars are for the v11 bias-corrected ANF and EFI results, respectively. All forecasts are 96-h

forecasts from the 0000 UTC cycle.

FIG. 6. Performance diagram summarizing the SR, POD, bias,

and CSI results. Solid and dashed lines represent CSI and bias

scores, respectively. Shown are 96-h forecasts of extreme cold

weather for 11 individual days from the raw ANF (blue dots), raw

EFI (red dots), bias-corrected ANF (green dots), and bias-

corrected EFI (purple dots) results. The four circles denote the

corresponding 11-day scores.
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identifying the extreme cold area is another reason for

the low FAR.

2) VERIFICATION OF RAW AND BIAS-CORRECTED

FORECAST PRODUCTS

The verification results for the EFI products from the

v11 raw and bias-corrected forecasts are displayed in

Fig. 4. The forecasts are initiated at 0000 UTC 29 De-

cember 2013. Both the raw and bias-corrected forecasts

predict extreme cold weather across Canada. However,

there is also some difference between the two sets of

forecasts. The bias-corrected forecast predicts observed

extreme weather over Mexico, which is completely

missed by the raw forecast. Based on the verification

scores, the bias-corrected forecast performs much better

than the raw forecasts for this particular case. TheHR and

ETS reach 0.76 and 0.6, respectively, for the bias-corrected

forecast, which is much higher than in the raw forecast

(0.53 and 0.40). The number of extreme cold events from

the bias-corrected forecast is very similar to the observed

number, which is approximately 20% higher than the raw

forecast. The FAR values, again, are very low for both

cases. The verification with a larger sample size (11 cases)

for both methods is displayed in Fig. 5. It can be seen that

increasing the sample size does not change the conclusions.

The relative performance of the raw and bias-corrected

forecasts in the ANF is also very similar to that of the EFI.

Both methods demonstrate much better performance for

the bias-corrected than the raw forecasts.

Figure 6 is the performance diagram for the above

cases. A perfect forecast should have all four measures

(HR, SR, bias, and CSI) equal to 1. In other words, a

good forecast is closer to the top-right corner of the

diagram. Obviously, the dots for the bias-corrected

FIG. 7. (a) Extreme cold weather event observations, EFI product from (b) v10 and (c) v11 96-h bias-corrected forecasts, and

(d) verification for both of the model versions. The forecasts are initiated at 0000 UTC 29 Dec 2013 and the reference climatology

is CFSRR.
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forecasts are more concentrated in the top right than for

the raw forecasts. Overall, the bias-corrected ANF for

the entire dataset marked by the green circles is closest

to the bias 5 1 (bias free) line.

One possible explanation of the lower scores for the

raw forecast is that the control-only reforecast clima-

tology may not fully represent the model climatology

very well. In particular, the produced variance does not

completely include model uncertainty. Therefore, the

model climatological forecast distribution (or variance)

could be incomplete, especially for the tail of a clima-

tological distribution. The impact of the ensemble size

on the probability forecast has been investigated by

Buizza and Palmer (1998) and Ma et al. (2012). An in-

crease in ensemble size is strongly beneficial to the

forecast when the ensemble has fewer than 40 members.

An effort is being made to create a model climatology

using multimember reforecast runs. This would provide

more robust model climatology and improve extreme

weather forecasts.

3) VERIFICATION OF V10 AND V11 FORECAST

PRODUCTS

Figure 7 shows the verification for the GEFS v10 and

v11 bias-corrected forecasts for 0000 UTC 2 January 2014

using the EFI method. In general, both of the model

versions capture the observedmajor extreme cold regions.

But there are also some differences between the two

versions. For this particular case, the v11 forecasts have a

similar number of extreme cold events as the observa-

tions, with the FBI approximately equal to 0, while the v10

underestimates the number of extreme cold events

and the FBI value is about20.26. The v11 has a higher

HR, but the ETS is slightly smaller when compared

with the v10.

The 11-day statistics are shown in Fig. 8. Overall, the

v11 performs better than the v10 version with higher HR

and ETS values. The v11 predicts more extreme events

than are observed, while the v10 underestimates the

number of events. The ANF for the new version has

the highest ETS and closest match to the observations.

The advantage of v11 over v10 can also be demonstrated

in the performance diagram (Fig. 9). Overall, v11 is

closer to the top-right corner. This suggests that the

current model upgrade has a more accurate 2-m tem-

perature forecast (Zhu 2015) and a positive impact of

extreme cold prediction.

4) VERIFICATION OF FORECAST PRODUCTS FOR A

DIFFERENT REFERENCE CLIMATOLOGY

The current NCEP GEFS ANF product uses the

40-yr reanalysis as its reference climatology. To test

the sensitivity of the ANF and EFI skill to their ref-

erence, we make verification comparisons with two

different references (30-yr CFSRR and 40-yr re-

analysis) in Figs. 10 and 11. The ANF and EFI cal-

culated relative to the CFSRR climatology have

slightly better HR, FBI, and ETS than those of the

reanalysis climatology (Fig. 10). The relative fore-

casting performance with the two references can

be also identified from the performance diagram

(Fig. 11). The plotted positions for the CFSRR reference

FIG. 8. The 2-m temperature histograms of HR, FAR, FBI, and ETS for 11 days with dif-

ferent algorithms (ANF and EFI) and model versions (v10 and v11) over North America. Blue

and red bars represent the v10 bias-corrected ANF and EFI results, respectively; green and

purple bars are for the v11 bias-corrected ANF and EFI results, respectively. All forecasts are

96-h forecasts starting at 0000 UTC and the reference climatology is CFSRR.
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are closer to the top-right corner than for the reanalysis

reference, indicating a slightly higher accuracy when a

more sophisticated analysis is used. The sensitivities

of the verification scores to the references for the

ANF and EFI are very similar. The differences in HR

and FBI caused by using different references (Fig. 10)

are less important compared to differences from the

different model versions (Fig. 8). But the sensitivity of

ETS to the model version and reference are roughly

similar.

c. Verification of heavy precipitation forecasts

The 96-h forecasts of extreme precipitation regions

from theANF (Fig. 12a) and EFI (Fig. 12b) products are

shown, initiated at 0000 UTC 6 January 2014. The

shaded areas are the corresponding 72–96-h accumu-

lated precipitation forecasts. Both products forecast

the two major extreme precipitation regions, located

over Baffin Island and from the Gulf of Mexico to the

Atlantic Ocean, respectively. Overall, the patterns

of extreme precipitation from the two products are

very similar. The definition of extreme precipitation

depends on local climatology. Figure 12 illustrates

the dependence of extreme precipitation on the geo-

graphic location. For example, the strong pre-

cipitation region over Washington State and British

Columbia is not diagnosed as an extreme precipita-

tion event. Conversely, a relatively weak precipita-

tion area over Baffin Island is predicted as an extreme

precipitation event.

Figure 13 compares the two products against the

CCPA for another case over the CONUS. The 84-h

forecasts of extreme precipitation regions were ini-

tiated at 0000 UTC 3 December 2013. Again, the

forecasts from the two products are very similar and

capture the major extreme precipitation region over

the United States. The verification scores demon-

strate that the EFI predicts more extreme events

FIG. 10. The 2-m temperature histograms of HR, FAR, FBI, and ETS for 11 days with dif-

ferent algorithms and reference climatologies overNorthAmerica. Blue and red bars represent

the v11 bias-corrected ANF results with the NCEP–NCAR reanalysis and CFSRR as a refer-

ence, respectively; green and purple bars are for the v11 bias-corrected EFI results with the

NCEP–NCAR reanalysis and CFSRR as a reference, respectively. All forecasts are 96-h

forecasts from the 0000 UTC cycle.

FIG. 9. Performance diagram as in Fig. 6, but for the comparisons

of the twomodel versions. Blue and red dots represent the v10 bias-

correctedANF andEFI results, respectively; green and purple dots

are for the v11 bias-corrected ANF and EFI results, respectively.

All forecasts are 96-h forecasts from the 0000 UTC cycle and the

reference climatology is CFSRR.
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with a slightly higher HR, FAR, and a similar ETS as

the ANF. The proposed methodology will be applied to

more cases to calculate the statistics of extreme pre-

cipitation prediction in the future.

5. Conclusions

In this work, we examine theANF andEFI algorithms

for observed extreme cold temperature and extreme

heavy precipitation during the winter of 2013/14. We

develop a verificationmethodology in order to provide a

tool to evaluate the relative performance of products

from different methods (ANF and EFI), model versions

(GEFS v10 and v11), forecasts (raw and bias corrected),

and different reanalysis climatologies as well. We find a

strong correlation between the ANF and EFI. For ex-

treme cold event forecasts, an EFI of 20.78 is approxi-

mately equivalent to22s ANF (or ANF5 0.05) and for

extreme precipitation forecasts, EFI5 0.687 corresponds

to ANF 5 0.95. This provides a threshold for evaluating

and comparing the two different forecast algorithms.

The verification results show that both the ANF and

EFI can predict extreme events. Verification statistics

for extreme cold events during the winter of 2013/14

indicate the EFI forecasts more extreme cold events

than the ANF. The ANF produces a higher ETS value.

The bias-corrected forecast shows much better perfor-

mance than the raw forecast when an 18-yr control-only

reforecast was used as an approximate reference. This

indicates a need for increasing the number of reforecast

members to improve the extreme weather forecast. The

work toward finding the optimized configuration of real-

time GEFS reforecast runs is being conducted (Hamill

et al. 2014; Guan et al. 2015). It will provide a better ref-

erence for the future applications. We also found that the

FIG. 12. The 96-h forecasts of extreme precipitation regions (red contours) from the (a) ANF and (b) EFI

products. The shaded areas are corresponding 72–96-h accumulated precipitation forecasts (mm). The contours in

(a) and (b) represent ANF 5 0.95 and EFI 5 0.687, respectively. The forecasts are initiated at 0000 UTC 6 Jan 2014.

FIG. 11. Performance diagram as in Fig. 6, but for comparisons of

the two reference climatologies (30-yr CFSRR and 40-yr reanalysis).

Blues and green dots represent ANF and EFI results using the 40-yr

reanalysis as the reference; red and purple dots are for the ANF and

EFI results using the 30-yr CFSRR as the reference.
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upgrade of the GEFS model from v10 to v11 has a bene-

ficial impact on the extreme cold weather forecast. Using a

more recently developed climatology (CFSRR) as the

reference gives a slightly better score than the 40-yr re-

analysis. A previously developed performance diagram

(Roebber 2009) is also used to illustrate the verification

results, further proving its usefulness as a visualization tool.

The current work also demonstrates that the verifi-

cation methodology can be extended to extreme pre-

cipitation. We verified an extreme precipitation case

that occurred during the winter of 2013/14. The results

indicated a potential wider application of the verifica-

tion methodology. In the future, we will examine more

extreme precipitation cases and calculate long-term

statistics. Meanwhile, we will use the methodology to

verify surface winds and surface pressure as well. The

sensitivity of the ANF–EFI relationship on forecast lead

time will also be our focus.
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