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ABSTRACT

Two perturbation generation schemes, the ensemble transformation with rescaling (ETR) and the en-

sembleKalman filter (EnKF), are compared for theNCEP operational environment for theGlobal Ensemble

Forecast System (GEFS). Experiments that utilize each of the two schemes are carried out and evaluated for

two boreal summer seasons. It is found that these two schemes generally have comparable performance.

Experiments utilizing both perturbation methods fail to generate sufficient spread at medium-range lead

times beyond day 8. In general, the EnKF-based experiment outperforms the ETR in terms of the continuous

ranked probability skill score (CRPSS) in the Northern Hemisphere (NH) for the first week. In the SH, the

ensemble mean forecast is more skillful from the ETR perturbations. Additional experiments are performed

with the stochastic total tendency perturbation (STTP) scheme, in which the total tendencies of all model

variables are perturbed to represent the uncertainty in the forecast model. An improved spread–error re-

lationship is found for the ETR-based experiments, but the STTP increases the ensemble spread for the

EnKF-based experiment that is already overdispersive at early lead times, especially in the SH. With STTP

employed, an increase in the EnKF-based CRPSS in the NH is reduced with a larger degradation in both the

probability and ensemble-mean forecast skills in the SH. The results indicate that a rescaling of the EnKF

initial perturbations and/or tuning of the STTP scheme is required when STTP is applied using the EnKF-

based perturbations. This study provided guidance for the replacement of ETR with EnKF perturbations as

part of the 2015 GEFS implementation.

1. Introduction

During integration of a numerical weather prediction

model, small errors in the initial conditions can amplify,

leading to significant forecast error (Lorenz 1969, 1982).

One method for increasing forecasting skill, sampling

system uncertainty, and improving forecast reliability is

to generate ensemble forecasts starting from perturbed

initial conditions instead of relying on a single de-

terministic forecast (Epstein 1969; Leith 1974). The

initial perturbations should sample the error probability

density functions (PDFs) of the analyzed atmospheric state

and represent the analysis uncertainty. Several schemes

have been developed and implemented at operational

forecast centers, including the singular vector method at

ECMWF (Buizza and Palmer 1995; Molteni et al. 1996),

the bred vector method at NCEP (Toth and Kalnay 1993),

and the ensemble data assimilation method at the Cana-

dian Meteorological Centre (CMC; Houtekamer et al.

1996; Houtekamer and Mitchell 1998). As a result of lim-

ited computing resources, a finite number of ensemble

members are used to sample the analysis uncertainties,

resulting in imperfect representation thereof (Buizza et al.
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2005). Furthermore, even with sufficient computing re-

sources to allow for large ensemble sizes, assumptions

made within each of the various methods result in an im-

perfect representation of the initial uncertainties.

The breeding method is a computationally inexpensive

technique for generating initial perturbations and was

implemented as part of the NCEP Global Ensemble

Forecast System (GEFS) in December 1992 (Toth and

Kalnay 1993, 1997). The bred vector (BV) perturbations

generated from 6-h breeding cycles are assumed to simu-

late the fastest-growing analysis errors. These fast-growing

BVs are expected to replicate the forecast error growth

and encompass the true forecast error. It has been sug-

gested that for simple dynamic models, BVs would be an

estimate of the leading Lyapunov vectors with rescaling

and an infinite breeding time during the breeding cycling

(Trevisan and Legnani 1995; Szunyogh et al. 1997; Toth

and Kalnay 1993, 1997). However, BVs cannot accurately

sample the true analysis uncertainty and tend to be too

similar to each other (Anderson 1997).

Wei et al. (2006, 2008) introduced the ensemble

transformation with rescaling (ETR) algorithm as a

modification to the breeding method for the NCEP

GEFS in 2005. The analysis perturbations are generated

by multiplying the 6-h forecast perturbations from the

previous cycle by a transformation matrix. This matrix is

constructed such that the perturbations are consistent

with an estimate for the analysis error covariance. The re-

sultant ensemble perturbations span more directions than

BVs.Wei et al. (2008) compared the probabilistic scores of

forecasts initialized from the BV and ETR methods and

found that the ETR had superior performance.

A hybrid variational–ensemble data assimilation sys-

tem (hereafter, hybrid system) was successfully im-

plemented as part of the NCEP GDAS using the GFS

model inMay 2012 (Whitaker andHamill 2002;Whitaker

et al. 2008; Wang et al. 2013; Kleist and Ide 2015). In the

hybrid system, a flow-dependent background error co-

variance estimate based on the 6-h ensemble forecasts

from an ensemble Kalman filter (EnKF) is combined

with a static background error covariance from the

Gridpoint Statistical Interpolation (GSI) deterministic

data assimilation system (Wu et al. 2002; Kleist et al.

2009). The implementation of an EnKF as part of the

NCEP GDAS provides an alternate method for gener-

ating ensemble initial perturbations for the operational

GEFS. However, as the perturbations are designed to

represent the short-range background error covariance, it

is necessary to test whether the EnKF-based perturba-

tions can or cannot perform as well as the ETR-based

perturbations for medium-range forecasting in theGEFS.

The level of performance of the EnKF-based and

BV initial perturbation generation schemes have been

previously compared, but many of the conclusions were

based on idealized numerical models or only are valid in

terms of the performance for entire operational systems

instead of the ensemble perturbation schemes alone.

Idealized numerical studies showed that the EnKF per-

formed better than the breeding method for generating

initial perturbations (Bowler 2006; Descamps and

Talagrand 2007). Buizza et al. (2005) compared the per-

formance of the operational global ensemble forecast

systems at three operational centers: NCEP, ECMWF,

and CMC. These three ensemble forecast systems used

the breeding of growing modes (BGM), singular vector

(SV), and EnKF schemes, respectively, to generate the

initial perturbations. The results indicated that ECMWF

had the best overall performance. However, the purpose

of the comparisonwas to evaluate the overall quality of the

three ensemble systems rather than to focus solely on the

performance of the initial perturbations. There were sub-

stantial additional differences between the three systems,

such as the data assimilation algorithms, numerical mod-

eling techniques, and model resolutions that were used

in each.

The goal of this study is to perform a clean comparison

between two perturbation generation schemes: the

ETR-based scheme and the operational NCEP hybrid

assimilation EnKF-based scheme. Section 2 describes

the general experimental setup of the study. An over-

view of verification scores is presented in section 3. An

evaluation of the two experiments covering two boreal

summer seasons is presented in sections 4 and 5, and the

verification of an ensemble tropical cyclone track is

summarized in section 6. The conclusions and general

discussions are presented in section 7.

2. Experimental setup and verification method

a. Experimental setup

The NCEP GEFS uses the stochastic total tendency

perturbation (STTP) scheme to represent the effect of

model uncertainties (Hou et al. 2006, 2008). In the STTP

algorithm, the total tendency of the model prognostic var-

iables (surface pressure, temperature, wind, and humidity)

is perturbed stochastically by using the following equation:
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where xi,t is the total tendency of the ith ensemble

member at the forecast lead time t and x0 is for the

control. The temporal change of the total tendency for

each ensemble member and the control is calculated

2058 WEATHER AND FORECAST ING VOLUME 31



within a 6-h time interval. The differences in this tem-

poral change between each ensemble member and the

control are used to perturb the total tendency after a

multiplication by a random number wi,j and the applica-

tion of an additional rescaling factor gt. The rescaling

factor is used to tune the perturbation amplitude as a

function of region [Eqs. (5) and (6) inHou et al. 2008] and

lead time [Eq. (4) in Hou et al. 2008]. The regional re-

scaling is used to enforce larger (smaller) perturbations in

the winter (summer) hemisphere. A slow decrease of the

stochastic perturbation amplitude with lead time is em-

pirically specified to ensure that the perturbation growth

matches the error growth in the ensemble mean forecast.

Two groups of experiments are presented in this

study using the ETR-based and EnKF-based schemes:

1) using solely initial perturbations (ETR_ONLY and

EnKF_ONLY) and 2) initial and model perturbations

(ETR_STTP and EnKF_STTP). The performance of

ETR_ONLY and EnKF_ONLY is examined for the

period of 1 July–25 October 2011 to study the differences

that arise solely from changing the initial perturbation

generation technique. The performance levels of ETR_

STTP and EnKF_STTP are evaluated for the period of

1 July–30 September 2012 to explore the different initial

perturbation generation schemes while attempting to

account for model error. For each group of experiments,

the same GFS model version and corresponding control

analysis are used in order to ensure that the differences

between the experiments are only due to the differences

in the initial perturbations. Furthermore, the STTP-based

experiments provide a proper benchmark for the re-

placement of ETR with EnKF perturbations within the

context of the recentGEFS implementation (2015), given

that the STTP is used to account for model uncertainty

as a part of the operational GEFS.

The forecast model used in this study is the NCEP

Global Forecast System (GFS)model, version 9.01 (http://

www.emc.ncep.noaa.gov/?branch5GFS&tab5impl).

The ensemble for each experiment consists of 1 control

and 20 perturbed members. The control member is ini-

tialized with the hybrid GSI analysis (T574L64) in-

terpolated to the lower ensemble model resolution

(T254L42). The initial conditions for ensemble mem-

bers are created by adding perturbations from either the

cycled ETR or EnKF to the control analysis. The EnKF

perturbations from the 2012 GDAS hybrid assimilation

implementation are used, which was the operational ver-

sion at the time that these experiments were performed.

Both the EnKF and ETR cycling were run four times per

day, but the medium-range ensemble forecasts in our

experiments are run only once daily (0000 UTC) because

of computational constraints. The model is integrated at

T254L42 resolution for the first 8 days (0–192h) and then

at lower resolution (T190L42) for the second 8 days (192–

384h), as is done for the operational GEFS.

For the ETR_ONLY and ETR_STTP experiments,

the generation of the initial perturbations follows the

procedure used in theNCEPGEFS that was operational

as of 2012 [see Wei et al. (2006) and Wei et al. (2008)

for a description of the ETR scheme in detail]. In the

EnKF_ONLY and EnKF_STTP experiments, 6-h en-

semble forecast perturbations are used instead of the

EnKF analysis perturbations because of data availability

issues in the NCEP operational environment. The

GDAS EnKF is run as part of the late analysis (GDAS)

cycle rather than the early one (GFS). The first analysis

is run shortly after the synoptic time (2 h 45min later)

and is used as the analysis for the GFS/GEFS forecast.

The later analysis, which is run 3h later but with the

same observation window, is presumably of slightly

better quality, since it contains late-arriving observa-

tions. As a result of the configuration of the hybrid

scheme for the GFS and GDAS, the EnKF is available

only from the previous cycle at the time the GEFS starts

following the early GFS analysis. Therefore, the EnKF

prior (6-h forecast ensemble) is used instead of the

posterior to generate the initial ensemble for the GEFS.

Another important component of the operational

GEFS is a tropical cyclone (TC) relocation scheme (Liu

et al. 2000, 2006). This scheme was originally developed

to reduce TC position errors in the background fields

(short-term forecast) in the NCEP data assimilation

system. In this vortex relocation scheme, the TC vortex

is separated from the environmental field using the

methods of Kurihara et al. (1993, 1995) and then added

back at the observed cyclone location. Liu et al. (2006)

investigated the impact of the vortex relocation scheme

on TC track forecasts in the GEFS and found that the

scheme reduced TC track spread, but had little effect on

the ensemble mean track forecast error. However, their

study evaluated only a small number of cases. In the

present study, the vortex relocation scheme is utilized in

the ETR_ONLY and ETR_STTP experiments for all

ensemble members and the control, as is done in oper-

ations for the GEFS. The EnKF-based experiments are

evaluated with and without this relocation scheme in

order to reexamine its impact on the TC track forecasts.

It should also be noted that the vortex relocation scheme

is also utilized as part of the process to generate the GSI

hybrid analysis (Liu et al. 2000; Kleist 2011), which

serves as the control analysis for all GEFS integrations.

b. Verification metrics

For all experiments, forecasts are verified against theGFS

analysis. The forecast and analysis fields are interpolated

to a 2.58 3 2.58 latitude–longitude resolution grid. The
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performance of the experiments is evaluated with the

NCEP ensemble verification system (Zhu et al. 1996; Toth

et al. 2003, 2006; Zhu and Toth 2008). The verification

system includes the calculation of traditional verification

metrics such as root-mean-square error (RMSE) and pat-

tern anomaly correlation (PAC) for the ensemble mean. It

also computesmetrics related to two important probabilistic

attributes: the reliability and resolution (Toth et al. 2003,

2006), including the continuous ranked probability skill

score (CRPSS) and the ranked probability skill score

(RPSS). CRPSS is a skill score based on the ranked prob-

ability skill (CRPS) with a reference forecast based on the

climatological distribution, measuring the difference of

the full probability distribution [cumulative distribution

functions (CDFs)] between the forecast and observations/

analysis. The CRPSS has a maximum value of one, as-

sociated with a perfect forecast, while a value of zero is

for forecasts that are no better than the reference.

A block bootstrap algorithm (Hamill 1999) is used to

test the statistical significance of the differences between

the ETR- and EnKF-based experiments. This technique

generatesmultiple datasets by selecting random samples

from the available data and can be applied to the sta-

tistical parameters regardless of the data probability

distribution. In the current study, a 95% confidence level

is derived from 20 000 random samples taken frommore

than 90 cases during the two experimental periods.

Tropical cyclone tracks are evaluated by comparing

forecast-estimated tracks with the observed track from

the best-track database for the Atlantic, western North

Pacific, and eastern North Pacific basins (http://www.

nhc.noaa.gov/data/). The ensemble mean track error is

evaluated in addition to the ensemble track spread.

3. ETR and EnKF perturbations

The handling of model errors is also an important issue

for EnKF data assimilation (Whitaker and Hamill 2002,

2012; Whitaker et al. 2008; Houtekamer et al. 2005, 2009;

Zhang et al. 2004; Meng and Zhang 2008). Ideally, an

EnKF ensemble should account for all sources of error,

including sampling errors due to the limited ensemble

size and errors in the forecast model. If the background

error covariances are underestimated, the EnKF algo-

rithm does not give sufficient weight to the observations.

This problem can become progressively worse with time

for cycled data assimilation systems, with the ensemble

variance becoming unrealistically small as the filter gives

increasing weight to its own forecast and ignores the in-

formation from observations, resulting in filter di-

vergence (Anderson 2001; Evensen 2003).

To avoid filter divergence in EnKF data assimilation

systems,multiplicative ensemble covariance (e.g.,Whitaker

and Hamill 2002, 2012) and additive noise (e.g., Whitaker

et al. 2008; Houtekamer et al. 2005) inflation are often

applied to the posterior ensemble to parameterize the

various sources of the (under) represented error. The par-

ticular versions of multiplicative (relaxation to prior

spread) and additive (using lagged forecast pairs) inflation

used in the NCEP hybrid GSI–EnKF system1 are based on

Whitaker and Hamill (2012).

The ensemble spread in terms of total dry energy

following Eq. (4) in Ma et al. (2014) is calculated for the

ETR_ONLY and EnKF_ONLY analyses after multi-

plicative and additive inflation, as well as the EnKF_

ONLY 6-h forecast, by

TE5
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where u0
i, y

0
i, and T 0

i (i51, 2, . . . , N) are the deviations of

the ith ensemble member from the mean for the wind

components and temperature, with k set to a value of

4.0 JKg21K22.

The vertical profiles of the period-averaged initial

perturbation spread in the NH, SH, and tropics (Fig. 1)

shows that the EnKF_ONLY ensemble spread de-

creases substantially in the first 6 h of model integration.

While the two inflation methods have the effect of in-

creasing the ensemble spread, they are also introducing

imbalances to the analyzed states. Although the ad hoc

methods of inflation act to stabilize the EnKF system

and maintain appropriate amplitudes for spread, they

are suboptimal in their representation of the real system

errors. Also, while SV and BV perturbations explicitly

target growing modes, perturbations based on analysis

error covariances are expected to have large projections

onto neutral or decaying modes. Without an explicit

representation of the effects of model error, the decay of

spread early in the forecasts is not unexpected.

The EnKF 6-h forecast perturbations are larger than

the ETR initial perturbations (except at the tropical

lower levels), which is consistent with the nature of these

two techniques. The breeding cycling in ETR is explic-

itly designed to generate perturbations that contain fast-

growing modes corresponding to the dynamics. As these

are targeting fast-growing modes, their initial ampli-

tudes are generally quite small and expected to grow

quickly with forecast time (Toth andKalnay 1993, 1997).

In contrast, larger-amplitude perturbations are gener-

ally more favorable for the EnKF. EnKF methods that

utilize inflation are typically somewhat overspread by

1As of January 2015, the EnKF that is part of the deterministic

hybrid system uses stochastic physics instead of additive inflation.
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design to avoid eventual filter divergence. The EnKF

posterior is designed to represent analysis errors, which

are not necessarily fast-growing modes such as BV- and

SV-based perturbations. Finally, the use of forecast

perturbations instead of analysis perturbations is gen-

erally expected to result in larger amplitudes.

Figure 2 shows that the ETR and EnKF perturbations

have significantly different geographical distributions

(Fig. 2). The amplitude of the ETR perturbations is

largest in the polar region (Fig. 2a), consistent with the

regional rescaling mask that is applied (Ma et al. 2014).

Smaller spread is found over land than over the oceans

(Wang and Bishop 2003; Ma et al. 2014), which is

predominantly a result of the assumed geographical

inhomogeneity in the density of non-satellite-based

observations. The geographic distribution of the EnKF

spread is similar to that of the forecast ensemble

(Figs. 2b and 3), which is a direct result of the initial

perturbations in the EnKF experiment coming from

6-h forecasts, as well as the posterior ensemble spread

being relaxed to the prior spread as part of the multi-

plicative inflation scheme (Whitaker andHamill 2012).

The land–sea contrast is less evident in the EnKF

spread (Fig. 2b). The initial spread is greater where the

mean kinetic energy is high. For the NH, the maximum

spread corresponds to the storm tracks over the Pacific

and Atlantic. The EnKF initial perturbations are

zonally symmetric in the SH with large amplitudes in

the baroclinic regions around 608S.
The difference between the EnKF and ETR per-

turbations exhibits a coherent zonal structure (Fig. 2c).

The EnKF initial perturbations are larger in the mid-

latitude baroclinic zones but are generally smaller at

polar latitudes. Initially, substantial differences in

spread exist between the EnKF and ETR perturba-

tions, but these differences decrease with forecast

time, especially in the baroclinic midlatitudes, where

the ETR perturbations grow rapidly. By 96 h, the

spatial patterns of the ETR- and EnKF-based ensem-

ble spread are similar, with the exception of the EnKF

perturbations exhibiting larger amplitudes in the mid-

latitude baroclinic zones (Fig. 3).

4. Experiments without STTP

Forecast skill scores are computed for geopotential

height at 500 and 1000hPa, the wind at 10m, 850 and

250 hPa, and the temperature at 2m and 850 hPa. The

NH (SH) region is defined as the area between 208N (S)

and 808N (S). The tropics are defined as the area be-

tween 208S and 208N. Scores are weighted by the cosine

of latitude f to account for the change in area with lat-

itude on a latitude–longitude grid.

In this study, the focus is on the forecast scores of

500-hPa geopotential height in the NH and SH, and

the zonal wind component at 850 hPa in the tropics.

However, results for all of the aforementioned parameters

FIG. 1. The vertical profiles of the initial perturbation spread in

terms of total dry energy in the ETR and EnKF experiments over

the (a) NH, (b) SH, and (c) tropics. Three EnKF profiles represent

the spread of EnKF perturbations after multiplicative inflation

(green curves), additive inflation (red), and 6-h forecast (blue). The

profiles are averaged from 1 Jul to 17 Oct 2011.
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are included in a scorecard (Fig. 4). Overall, the

EnKF_ONLYexperiment outperforms the ETR_ONLY

experiment in the NH and tropics, but exhibits some

degradation in the SH in terms of RMSE and PAC

(Fig. 4). The CRPSS of the EnKF_ONLY experiment

is significantly higher in the NH in the first week. The

improvement in the tropics is generally significant in

the first 1–3 days in terms of PAC, RMSE, and CRPSS.

The skill of the ensemble mean can be taken as a

first-order measure of the quality of the ensemble

(Whitaker and Loughe 1998). Figure 5a shows the

RMS error of the 500-hPa geopotential height en-

semble mean forecast and ensemble spread for the NH

of ENKF_ONLY and ETR_ONLY. The RMSE of

both experiments rapidly increases over the first week

and reaches its saturation point after 10 days. The

RMSE is significantly smaller for ETR_ONLY for the

first 2 days, but becomes similar at longer lead times in

the NH. The EnKF_ONLY experiment is significantly

better for the forecast of the low-level wind fields from

day 1 to 5 and for the low-level temperature from day 1

to 3 in the NH (Fig. 4). There appears to be some ad-

vantage to using the ETR perturbations for the forecast

skill in the SH (Fig. 5b), as the ETR_ONLY ensemble

mean is significantly more accurate than the EnKF_

ONLY ensemblemean for the first 4 days. Beyond 4 days,

the ETR_ONLY ensemble mean remains more skillful,

though the significance decreases with lead time. Similar

to the 500-hPa geopotential height ensemble mean fore-

cast, the skill degradation in EnKF_ONLY is generally

FIG. 2. Seasonally averaged kinetic energy at 500 hPa (contour) and the total energy en-

semble spread (shading) at the initial time for (a) ETR, (b) EnKF, and (c) spread difference

(ETR 2 EnKF) averaged from 1 Jul to 17 Oct 2011.
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significant for all other variables in the first 1–3 days for

the SH region.

Ideally, the spread of the ensemble forecast pertur-

bations should be similar to the RMS error of the en-

semble mean forecast at all lead times, representing

the full forecast uncertainty (Whitaker and Loughe

1998; Zhu 2005). Having an ensemble that is either

under- or overspread is not desirable for an ensemble

forecasting system. Underdispersive (overdispersive)

ensemble forecasts might lead to the underestimation

(overestimation) of the probability of extreme events.

Figure 5 shows that the growth of the ensemble spread

is slower than that of ensemble mean forecast errors in

both ETR_ONLY and EnKF_ONLY. For ETR_ONLY,

the ensemble spread is generally underdispersive for

500-hPa geopotential height in both the NH and SH

(Figs. 5a,b). The EnKF_ONLY experiment has larger

spread than ETR_ONLY at the initial time, with over-

dispersion occurring for the first 3 (6) days in the NH

(SH).With increasing lead time, this gradually transitions

to underdispersion. The ensemble spread difference be-

tween EnKF_ONLY and ETR_ONLY increases with

lead time for the first week. The decrease in spread dif-

ference in the secondweek is the result of the saturation of

the ensemble spread and the forecast error.

Having an ensemble that is slightly overspread in the

short-term forecast may actually be appropriate, as seen

for the NH 500-hPa geopotential height. The ensemble

mean forecast error is generally underestimated when

self-analysis is used for verification. The 500-hPa geo-

potential height perturbations in the EnKF-ONLY ex-

periment are overdispersive in the SH for the first week

and are more evident and longer lasting than in the

NH (Figs. 5a,b). This increased spread in the EnKF

FIG. 3. As in Fig. 2, but for a 96-h forecast.
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perturbations is consistent with the degraded skill of

the ensemble mean forecast for EnKF_ONLY. Over-

dispersion is also found in the short-range forecasts for

other variables in the SH for this period (not shown),

consistent with the corresponding forecast degradation

(Fig. 2a). As shown in Fig. 2, the large spread of the

EnKF initial perturbations is primarily located in the

strongly baroclinic regions around 608S. It may be

possible to reduce the amplitude of these perturbations

in this region at the initial time, assuming that small

initial perturbations that project onto rapidly growing

modes can result in larger spread with increasing

forecast time, as in ETR_ONLY.

Figures 5c and 5d show the time evolution of the PAC

for 500-hPa geopotential height in the NH and SH, re-

spectively. The PAC score is close to the ideal value of 1

at the initial time and then decreases with increasing

forecast lead time. There is little difference in the PAC

scores of the geopotential height at 500 hPa for the first

5 days, although the scorecard shows a statistically sig-

nificant degradation of EnKF_ONLY from day 1 to 3 in

the SH (Figs. 4 and 5c,d).

The EnKF_ONLY experiment has statistically sig-

nificantly higher CRPSS than ETR_ONLY, especially

in the NH (Fig. 4). For 500-hPa geopotential height, the

EnKF_ONLY CRPSS is significantly smaller in the NH

than the ETR_ONLY CRPSS for the first 2 days, but it

becomes larger at longer lead times (Fig. 6a). For other

variables in the NH, the improvement of EnKF_ONLY

in CRPSS is generally statistically significant in the first

week (Fig. 4). For the SH, there is statistically significant

degradation in the 500- and 1000-hPa geopotential

height from day 1 to 3, but other parameters generally

have significantly higher CRPSS in ENKF_ONLY.

The better performance for probability forecasts from

EnKF_ONLY is also validated by performing a spectral

analysis of the initial perturbations. The mean eigen-

value spectra of the ensemble covariance matrices are

shown in Fig. 7. The sizes of the bars correspond to the

eigenvalues of the covariance in terms of the normalized

geopotential height at 500 hPa, with the sum of the ei-

genvalues corresponding to the ensemble spread. The

majority of the ensemble variance for the both ETR and

EnKF initial perturbations is contained in 19 un-

correlated orthogonal directions. However, the spec-

trum of the EnKF covariance is flatter than that of the

ETR initial perturbations. The ETR ensemble has a

much larger first eigenvalue, which indicates that the

FIG. 4. Scorecards for the ETR_ONLY vs EnKF_ONLY experiments spanning the 2011 boreal summer. Green

represents where the EnKF experiment is significantly better and red is significantly worse than the ETR experi-

ment with the bootstrap significant test at 95% confidence levels. Gray means no significant difference.
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ensemble members are more similar to each other than

the EnKF ensemble members. The spectra derived from

the ETR ensemble are similar to those discussed by

Wang and Bishop (2003) for the breeding method. The

flat spectrum in the EnKF indicates a better estimation

of the analysis error variance than in the ETR (Wang

and Bishop 2003).

The EnKF initial perturbations have a limited, but

generally positive, effect on forecasts in the tropics, as

demonstrated by the RMSE for 850-hPa zonal wind

(Fig. 8a). For EnKF_ONLY, the RMSE is significantly

smaller from day 1 to 3 than for the ETR_ONLY, with

the scores becoming similar between the two ensem-

bles beyond day 4. Beyond 24 h, the spreads in both

EnKF_ONLY and ETR_ONLY are generally much

smaller than theRMSEs. This is observed despite the fact

that the ETR_ONLY exhibits very large spread at the

initial time. This initial overdispersion in ETR_ONLY is

partially due to the perturbation amplitude for all vertical

layers being rescaled with a factor based on a 500-hPa

kinetic energy regional mask. For the lower levels, a

tuning method that uses an ad hoc inflation factor is

applied to obtain sufficient ensemble dispersion. This

tuning strategy leads to an initial overdispersion at low

levels in the tropics that decays rapidly with integration.

Figures 8b and 8c show that the PAC and CRPSS scores

for the 850-hPa zonalwind in the tropics forEnKF_ONLY

are significantly higher for days 1–3 compared with

ETR_ONLY, with the scores becoming more similar

at longer lead times.

5. Experiments with STTP

The results in the previous section indicate that the

spread growth for the ETR-based and the EnKF-based

initial perturbations is not as fast as the growth of the

ensemble-mean forecast error. Both EnKF_ONLY and

ETR_ONLY are underdispersive for longer lead times.

For EnKF-ONLY, the large initial spread does not

propagate into the medium-range forecasts. This is to be

FIG. 5. Ensemble mean RMSE (solid) and ensemble standard deviation (dotted) for 500-hPa geopotential height

over the (a) NH and (b) SH. The verification scores for ETR_ONLY (black) and EnKF_ONLY (red) are averaged

during the period from 1 Jul to 17 Oct 2011. The bottom portion of each panel shows the difference in RMSE error

(EnKFminus ETR). The blue bars display the 95% confidence intervals with the bootstrap significant test. (c),(d) As

in (a),(b), but for the 500-hPa geopotential height ensemble mean predicted pattern anomaly correlations.
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expected for a model configuration that does not take

into account model uncertainty and error. In this sec-

tion, the STTP model perturbation scheme, as used in

the GEFS 2010 implementation, is included with both

EnKF and ETR initial perturbations. The two experi-

ments are named as EnKF_STTP and ETR_STTP, re-

spectively. Note that ETR_STTP is identical to the

operational GEFS that was implemented in 2012.

Consistent with the results of the experiments without

STTP, the performance of EnKF_STTP is better than

ETR_STTP in the NH and tropics. There is also a sta-

tistically significant degradation in the forecast skill in

the SH for EnKF_STTP (Figs. 4 and 9). The degradation

of the SH scores for EnKF_STTP is exacerbated for the

2012 period with the previously noted improvements in

the NH scores lost.

As the forecast lead time increases, the STTP scheme

adds spread regardless of the type of initial perturba-

tions. The relationship between the ensemble spread

and the RMS error is close to perfect for ETR_STTP

(Figs. 10a,b). The ensemble spread in EnKF_STTP re-

mains larger than that in ETR_STTP, with EnKF_STTP

being overdispersive for the first 4 days. The STTP in-

creases the ensemble spread for the EnKF_STTP ex-

periment, which is already overdispersive at early lead

times. It should be noted that the perturbations added by

STTP, to some degree, are sensitive to the amplitude of

the initial perturbation. Here, the parameters used in the

STTP scheme have been carefully tuned for use with

ETR and the associated amplitude of those initial per-

turbations. From the analysis presented later (Fig. 10), it

can be concluded that the EnKF_STTP ensemble mean

forecast is less skillful than ETR_STTP, with a larger

500-hPa geopotential height RMSE in the EnKF_STTP

experiment. The difference is statistically significant at the

95% level through day 4 in the NH and day 8 in the SH.

The aforementioned relationship between the ensemble

spread and error for EnKF_STTP and ETR_STTP with

STTP holds for other variables and levels (not shown).

To examine whether or not the degradation noticed for

the EnKF experiment in the SH is due to seasonal effects,

the EnKF experiment without STTP (EnKF_ONLY) is

also performed for the 2012 boreal summer (Figs. 10a,b).

The ensemble spread in EnKF_ONLY decreases signif-

icantly and there is no evident overdispersion in the SH.

The RMSE of 500-hPa height in the EnKF experiment

is comparable with that in ETR_STTP. However, with

the decrease of the ensemble spread, the forecast skill

of EnKF_ONLY is degraded in the second week in

NH. In general, ETR_STTP (the operational GEFS)

outperforms both EnKF_ONLY and EnKF_STTP in

terms of the RMSE.

Similar to the RMSE, the difference in PAC between

the ETR_STTP and EnKF_STTP experiments is more

FIG. 7. Seasonal mean spectra of eigenvalues of ensemble-based

initial spread of 500-hPa geopotential height for 2011 boreal

summer in NH normalized by the global spread for ETR

and EnKF.

FIG. 6. CRPSSs for 500-hPa geopotential height over the (a) NH and (b) SH for EnKF_ONLY andETR_ONLY.

The bottom portion of each panel shows the difference of CRPSS (EnKF minus ETR). The blue bars display the

95% confidence intervals with the bootstrap significant test.
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apparent than in the experiments without STTP.

Figure 10c shows the 500-hPa geopotential height PAC

becoming slightly greater with lead time in ETR_STTP

than in EnKF_STTP for the NH. Similar results can also

be found for the 1000-hPa geopotential height and for

the wind field at various vertical levels (Fig. 9). The gap

in performance between ETR_STTP and EnKF_STTP

is especially pronounced in the SH, where the PAC of

the 500-hPa geopotential height is statistically larger for

ETR_STTP out to day 14 (Fig. 10b). The ETR_STTP

experiment outperforms the EnKF_STTP experiment

for the other variables except for 2-m temperature in the

extratropics. In the tropics, EnKF_STTP outperforms

ETR_STTP, particularly for forecasts from day 1 to 5

lead times (Fig. 9), similar to the experiments without

STTP.

The 500-hPa geopotential height CRPSS scores in the

NH are similar for ETR_STTP and EnKF_STTP

(Fig. 11). For the first week, EnKF_STTP has more skill

in the troposphere for several variables (Fig. 9). How-

ever, the results are opposite for the SH, with the CRPSS

values from ETR_STTP being greater than from the

EnKF_STTP. The skill in ETR_STTP is generally sta-

tistically better for lead times from day 3 to day 12.

In the tropics, the STTP scheme does not signifi-

cantly increase the ensemble spread. For reference,

Figs. 8 and 12 are provided as examples showing the

850-hPa zonal wind. The performance of the ETR and

EnKF perturbations is similar for the 2011 and 2012

experiments, demonstrating a lack of sensitivity to STTP

in the tropics. There is again a general improvement in

the tropical forecasts resulting from the use of EnKF

perturbations even with STTP, particularly for the

forecast lead times from day 1 to day 5 (Fig. 9). The

relatively small impact from STTP on the ensemble

spread is due to the fact that the tendency perturbation

applied within the STTP scheme is proportional to the

total tendency change on the 6-h time scales [Eq. (1)],

which is generally small in the tropical troposphere.

Three alternate stochastic schemes were implemented

on the short-term EnKF-based forecasts used in the

data assimilation cycling: 1) stochastic kinetic energy

backscatter (SKEB; Shutts 2005), 2) perturbed bound-

ary layer humidity (SHUM; Tompkins and Berner

2008), and 3) stochastically perturbed physics tenden-

cies (SPPT; Buizza et al. 1999; Palmer 1997, 2001;

Palmer et al. 2005). The impact of replacing the oper-

ational STTP scheme with a combination of these three

FIG. 8. (a) Ensemble mean RMSEs and spread,

(b) ensemble mean PACs, and (c) CRPSSs for 850-hPa

zonal wind over the tropics averaged from 1 Jul to 17 Oct

2011. The bottom portion of each panel shows the differ-

ence in the statistic (EnKF minus ETR, black lines). The

blue bars display the 95% confidence intervals with the

bootstrap significant test.
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stochastic schemes for use in the GEFS medium-range

forecasts is currently under assessment.

6. Tropical cyclone track forecast

The ensemble-mean forecast of TC tracks is verified

for two seasons across three basins: western North Pa-

cific, eastern North Pacific, and North Atlantic. As in

operations for the GEFS, a tropical cyclone relocation

scheme (Liu et al. 2000, 2006) is used in the ETR ex-

periments (ETR_ONLY and ETR_STTP) and the 2012

EnKF experiment with STTP. With the relocation

scheme, the vortex for each member is mechanically

relocated to the observed position dictated by the center

responsible for advisories in the basin. For the 2011

EnKF experiment without STTP, two experiments are

carried out to evaluate the impact of including the re-

location scheme within the context of the EnKF initial

perturbations (EnKF_ONLY and EnKF_ONLY_R,

respectively). It is expected that the relocation scheme

may reduce the initial TC spread as well as the track

forecast error in the EnKF experiments, particularly for

short forecast lead times.

First, the forecasts from the 6-h EnKF perturbations

without relocation (EnKF_ONLY) are compared with

the ETR with relocation (ETR_ONLY) for the 2011

experiments (Fig. 13a). The ensemble spread of the TC

positions at the initial time is larger in EnKF_ONLY

than in ETR_ONLY but becomes similar after 72 h as

the spread growth in EnKF_ONLY is slower than in

ETR_ONLY. Meanwhile, the EnKF_ONLY ensemble

mean forecast exhibits larger forecast errors than ETR_

ONLY at all forecast times, with the differences being

statistically significant at 12-, 48-, 72-, and 120-h forecast

times.

The degradation in the track forecasts for EnKF_

ONLY is partially a result of the absence of TC reloca-

tion. When the EnKF_ONLY 6-h forecast perturbations

are centered on the analysis, misalignment of some of

themembers can occur, exacerbated when the center of

the EnKF_ONLY 6-h ensemble mean deviates from

that of the control. The use of the TC relocation scheme

in EnKF_ONLY_R reduces the track spread at the

short forecast range up to 3 days (Fig. 13a). The track

error is generally reduced in the EnKF_ONLY_R ex-

periment. The addition of the TC relocation algorithm

FIG. 9. Scorecards for the ETR_STTP vs EnKF_STTP experiments spanning the 2012 boreal summer. Green

represents where the EnKF experiment is significantly better and red is significantly worse than the ETR experi-

ment with the bootstrap significant test at 95% confidence levels. Gray means no significant difference.
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does cause EnKF_ONLY_R to behave more similarly

to ETR_ONLY, and the differences in the track error

between the ETR_ONLY and EnKF_ONLY_R (black

and green in Fig. 13a) are not statistically significant.

For the 2012 period with STTP, the TC relocation

scheme is used for both the EnKF and ETR configura-

tions (EnKF_STTP_R and ETR_STTP, respectively).

There is no statistically significant difference between

EnKF_STTP_R and ETR_STTP in the ensemble mean

TC track forecast error. The spread–error relationship for

the TC tracks is improved in the 2012 experiments rela-

tive to those in 2011 (Fig. 13). This improvement may

be attributable to seasonal variation. It is unclearwhether

the STTP plays a role in increasing the TC track spread.

As previously mentioned, STTP does not increase the

spread for the other verified forecast parameters in

the tropics. For EnKF_ONLY_R and EnKF_STTP_R,

which use the TC relocation scheme, the track spread

growth rate is larger than in all of the ETR experiments,

regardless of the use of STTP or the season evaluated

(2011 or 2012).

7. Summary and discussion

Two schemes available to generate initial ensemble

perturbations for the GEFS in the NCEP operational

environment are compared. An EnKF was imple-

mented as part of the NCEP data assimilation system in

2012 to accommodate the hybrid ensemble variational

development for the GFS. The EnKF short-range en-

semble forecasts provide flow-dependent ensemble co-

variances for the data assimilation system.One question

that came about from the implementation of the EnKF

is whether the ensemble perturbations generated by the

EnKF can replace the ensemble transform technique

(ET) perturbations for the operational GEFS or not. A

comprehensive comparison of experiments with the

ETR-based and EnKF-based schemes was performed

FIG. 10. Ensemble mean RMSE (solid) and ensemble standard deviation (dotted) for 500-hPa geopotential

height over the (a) NH and (b) SH. The verification scores for ETR_STTP (black), EnKF_STTP (red), and EnKF_

ONLY (green) are averaged during the period from 1 Jul to 30 Sep 2012. The bottom portion of each panel shows

the difference in RMSE (EnKF_STTP minus ETR_STTP and EnKF_ONLY minus ETR_STTP). The blue bars

display the 95% confidence intervals with the bootstrap significant test. (c),(d) As in (a),(b), but for the 500-hPa

geopotential height ensemble mean predicted pattern anomaly correlations for ETR_STTP and EnKF_STTP.
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to help investigate this question and inform future

implementations.

Currently at NCEP, the STTP scheme is used in the

GEFS to account for a portion of the model uncer-

tainties. In addition to initial perturbation methodology

experiments, a comparison of EnKF and ETR initial per-

turbations is performed with the use of the STTP scheme.

The comparison shows that the performance of the

EnKF perturbations is generally comparable with that

of the ETR perturbations when the ensemble forecasts

are run without STTP. The EnKF_ONLY experiment

outperforms ETR_ONLY in the NH for the trial period.

In the SH, the ensemble mean forecast in EnKF_ONLY

is slightly degraded, but EnKF_ONLY performs better

FIG. 12. As in Fig. 8, but for the experiments with

STTP (EnKF_STTP and ETR_STTP) averaged from 1

Jul to 30 Sep 2012.

FIG. 11. As in Fig. 6, but for the experiments with STTP (EnKF_STTP and ETR_STTP) averaged from 1 Jul to 30

Sep 2012.
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in terms of CRPSS and ensemble-mean RMSE for the

first week. The ensemble spread is found to be slightly

overdispersive in EnKF_ONLY for the first 3 days, which

is probably related to some degradation of the ensemble

forecast. Although the amplitude of the initial perturba-

tions in EnKF_ONLY is much larger than in ETR_

ONLY, especially in the SH, the spread growth remains

slower than the growth of the mean forecast error. For

longer lead times, the ensemble is generally found to be

underdispersive for bothEnKF_ONLYandETR_ONLY

when model uncertainty and error goes unaccounted for.

The EnKF experiment is found to be superior in terms

of CRPSS to ETR in the NH when STTP is included,

similar to the group of experiments without STTP.

However, the application of STTP increases the en-

semble spread considerably in the SH, which results in

significant degradation for short-range forecasts. The

STTP scheme seems to be exacerbating an already

overdispersive ensemble for these regions and lead

times when EnKF initial perturbations are used.

It is worth noting that the results presented in this

manuscript are based on the performance of the en-

semble forecasts during two boreal summer seasons.

Similar experiments with STTP were carried out for a

Northern Hemisphere winter season, but were excluded

from this manuscript for the sake of brevity. In general,

the conclusions from that NH cold season experiment

were similar to the findings for the summer season. The

lone exception to this was for the SH, where the deg-

radation in the EnKF_STTP was not found to be as

pronounced.

Tropical cyclone track forecast errors were verified

for two boreal summer seasons. Tropical cyclone re-

location, in which the TC vortices as represented in the

model are relocated to the same position (observed

location), was found to be beneficial for improving

ensemble mean track forecasts. With the application

of the tropical cyclone relocation scheme, tropical

cyclone track forecasts are found to be similar for ex-

periments that use ETR and EnKF initial perturba-

tions. It was noted that the spread grew faster and to

larger amplitudes in the EnKF-based experiments. The

use of mechanical relocation tends to help avoid un-

reasonable TC structure when TC perturbations cal-

culated from the ensemble forecast fields with the large

spread in TC location are added to the analysis. How-

ever, the initial TC position spread is close to zero with

the relocation scheme, which cannot represent the

uncertainty of the TC initial location. Further study is

under way to improve the TC relocation scheme for the

ensemble forecast through direct assimilation of trop-

ical storm information (position, intensity, and size)

in EnKF.

The STTP scheme that is used in the operational

GEFS is well tuned for use with the ETR initial per-

turbations, which undoubtedly has an impact on the

spread–error relationship for the ETR. Including the

STTP scheme without additional tuning proved to be

detrimental for EnKF forecasts at short lead times.

Consistent with the nature of these two schemes, the

amplitude of the initial perturbations is generally smaller

in ETR than EnKF. The inclusion of STTP in the EnKF

experiments results in an overdispersive ensemble for

short-term lead times. However, the forecast ensemble

that uses EnKF perturbations cannot alone gen-

erate sufficient ensemble spread in the medium-range

FIG. 13. (a) Ensemble mean tropical cyclone track error (solid)

and spread (dashed line) for ETR_ONLY (black), EnKF_ONLY

(red), and EnKF_ONLY_R (green) for 2011. The bottom portion

in (a) shows the difference (EnKF_ONLY and EnKF_ONLY_R

minus ETR_ONLY; green and red lines, respectively). (b) As in

(a), but for 2012. A TC relocation scheme is applied for both ETR

and EnKF for this season. The green bars display the 95% confi-

dence intervals with the bootstrap significant test.
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forecasts without model perturbations. The use of STTP

or other stochastic schemes to account for model un-

certainty remains necessary in order to generate suffi-

cient spread at the medium range.

Overall, the performance of the EnKF initial pertur-

bations with and without STTP is comparable to the

ETR initial perturbations except for the degradation in

the SH due to overdispersion. To fix this issue, a possible

solution is to rescale the EnKF initial perturbation am-

plitude when used for initialization of the GEFS. A set

of experiments was performed and results are presented

in a separate paper (Ma et al. 2014) to address this op-

tion. It was found that the EnKF initial perturbations

with rescaling outperformed the unmodified counter-

parts. Another potential solution is to reduce the EnKF

perturbation amplitudes that are used in the hybrid data

assimilation cycles while mitigating any negative impact

on the data assimilation. In a recent GDAS im-

plementation (January 2015), the EnKF perturbation

methodology was changed significantly, using three

stochastic physics schemes, namely SKEB, SPPT, and

SHUM, to account for system uncertainty instead of

additive inflation on the posterior ensemble. An as-

sessment of the performance of theGEFS by using these

newly formulated EnKF perturbations is a topic for fu-

ture work and will be discussed in a follow-up study.

For the present study, the EnKF background (prior)

ensemble (i.e., 6-h forecasts) is used as the initial per-

turbations in the EnKF experiments instead of the

EnKF posterior ensemble. The former represents the

uncertainties of the background instead of the analysis

after assimilation. Better performance would be ex-

pected if the posterior ensemble were used, but this is

not practical in the current NCEP operational environ-

ment because of timing constraints. A potential alter-

native to the current configuration is to move the EnKF

to theGFS cycle or to run a separate EnKF as part of the

early cycle with a reduced set of observations. However,

a corresponding cost–benefit analysis will be required to

assess the practicality of this approach. This will likely

be pursued in an attempt to further consolidate the ef-

forts for generating appropriate initial perturbations for

use both in the data assimilation and the medium-range

ensemble forecasting.
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