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ABSTRACT

A postprocessing technique is employed to correct model bias for precipitation fields in real time based on

a comparison of the frequency distributions of observed and forecast precipitation amounts. Essentially,

a calibration is made by defining an adjustment to the forecast value in such a way that the adjusted cumu-

lative forecast distribution over a moving time window dynamically matches the corresponding observed

distribution accumulated over a domain of interest, for example, the entire conterminous United States

(CONUS), or different River Forecast Center (RFC) regions in the cases examined herein. In particular, the

Kalman filter method is used to catch the flow dependence and bias information. Calibration is done on

a pointwise basis for a specified domain.Using this unique technique, the calibration of precipitation forecasts

for the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS)

was implemented in May 2004. To further satisfy various users, a recent upgrade to the May 2004 imple-

mentation has been made for higher resolution with better analyses. From this study, it was found that this

method has a positive impact on the intensity-dominated errors but has some common limitations with ex-

treme events and dry bias elimination like other precipitation calibration methods. Overall, the frequency-

matching algorithm substantially improves NCEP Global Forecast System (GFS) and GEFS systematic

precipitation forecast errors (or biases) over a wide range of forecast amounts and produces more realistic

precipitation patterns. Moreover, this approach improves the deterministic forecast skills measured by most

verification scores through applying this method to GFS and GEFS ensemble means.

1. Introduction

There aremany important applications that requiremore

accurate quantitative precipitation forecasts (QPFs) and

probabilistic quantitative precipitation forecasts (PQPFs)

(Demargne et al. 2014; Brown et al. 2012; Mascaro et al.

2010; Marty et al. 2013). For instance, water management

decisions are crucially dependent on forecast information

regarding the possible future evolution of precipitation.

The QPF- and ensemble-based PQPF forecast products

were implemented into National Centers for Environ-

mental Prediction (NCEP) operations in the late 1990s

(Zhu et al. 1998; Zhu 2005), providing crucial guidance for

water management decision makers. Furthermore, an-

other important use is for downstream applications. Hy-

drologicmodels need accurate precipitation forecasts from

numerical weather prediction (NWP) as forcing inputs.

Therefore, a realistic representation of the precipitation

field in forecasts is very important.

However, many studies have demonstrated systematic

errors (or biases) in the model precipitation products due

to model deficiencies. It has long been recognized that

model precipitation uncertainty affects the accuracy of

hydrologic modeling (Demargne et al. 2014; Brown et al.

2012), because the performance of lumped, distributed,

physically based hydrologic models depends greatly on

the quality of the precipitation input data. The in-

termittent and space–time-scale-dependent features of

precipitation fields make precipitation extremely difficult

to predict, imposing a great challenge on precipitation

forecasts (Brown et al. 2012; Yuan et al. 2008). For both

of these reasons, statistical postprocessing techniques
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have beendeveloped and applied to reduce these biases in

precipitation and better quantify the uncertainty therein.

Better-calibrated QPFs and PQPFs could benefit the

short- and medium-range forecasts, and extend the fore-

cast predictability (Eckel andWalters 1998; Zhu andToth

1999).Many studies have demonstrated some success with

precipitation forecasts through statistical postprocessing

(Hamill et al. 2008; Bentzien and Friederichs 2012). There

are several studies on calibration of PQPFs; some focus on

the methodology (Krzysztofowicz and Sigrest 1999; Primo

et al. 2009) and others use reforecast information (Hamill

et al. 2008; Fundel et al. 2010). Yuan et al. (2007) applied

an artificial neural network as a postprocessor to calibrate

PQPFs from the NCEP Regional Spectral Model (RSM)

ensemble forecast system. Voisin et al. (2010) described

two bias correction methods with spatial disaggregation

(BCSD) and an analog technique for downscaling and

calibrating errors from ensemble precipitation forecasts.

An analog method has been developed by using large

samples of reforecasts (Hamill and Whitaker 2006) and is

experimentally run at the Earth System Research Labo-

ratory (ESRL). ESRL’s products provide additional

guidance for NCEP Weather Prediction Center (WPC)

forecasters.

In this study, we have developed a method for pre-

cipitation calibration in real time called the frequency-

matchingmethod.A similar concept has been investigated

for different applications, such as multimodel ensembles

(Ebert 2001), and the relationship between radar re-

flectivity and rain rate (Rosenfeld et al. 1993). Basically,

the methodology employed here is a statistical adjust-

ment based on cumulative frequency distributions of

forecast and observed precipitation amounts. Two steps

are undertaken for calibration with frequency matching.

First, it requires an observation dataset at the same spa-

tial and temporal resolutions as themodel forecast output

and a reasonable number of days of prior forecasts to

construct the respective cumulative frequency distribu-

tions for forecasts and observations. In addition, it in-

troduces a decaying average for appropriate historical

sampling that makes the cumulative frequency distribu-

tion of forecasts match that of the observations. The

second step in this method makes use of the cumulative

frequency distributions of observations and forecasts; in

this way a frequency match is performed between prior

observations and forecasts using bilinear interpolation.

The resulting correction factor is applied to adjust a tar-

get forecast value at each grid point and each grid point is

treated individually.

In this paper,wefirst brieflydescribe the ‘‘bias correction’’

procedure implemented on 4 May 2004 at NCEP. A bias

[or frequency bias (FB)] is defined as the ratio of fore-

cast and observation frequency counts at each threshold.

A ratio equal to one means a perfect (or unbiased)

forecast. The 2004 implementation was first developed as

a pioneering version of precipitation calibration with fre-

quency matching for application in precipitation forecasts

with 24-h accumulations at 2.58 resolution (Zhu and Toth

2004). As with any other numerical weather prediction

model, QPFs from the Global Forecast System (GFS) at

NCEP suffer from biases due to model deficiencies.

PQPFs based on the Global Ensemble Forecast System

(GEFS) at NCEP are biased as well because of imper-

fections in the model and ensemble formation. Typi-

cally, model precipitation bias is dependent on the

model version, lead time, and location. In most cases,

small amounts of precipitation are overforecast while

large amounts are underforecast. By calibrating each

member of the ensemble based on verification statis-

tics accumulated over the conterminous United States

(CONUS), the bias in QPF (first moment) is practically

eliminated, and the PQPF (second moment) is sub-

stantially improved. By following the approach of the

2004 implementation with the timely availability of

higher-resolution model output and a better analysis,

named the climatology-calibrated precipitation analysis

(CCPA;Hou et al. 2014), we pursue a similar application

at 18 resolution and every 6 h out to 384 h (;16 days)

globally.

To provide a better proxy of the truth for the pre-

cipitation field over the CONUS at high spatial and

temporal resolutions, CCPA has been developed and

evaluated at NCEP by Hou et al. (2014). It is a pre-

cipitation analysis dataset generated by statistically ad-

justing the NCEP stage IV analysis to make its long-term

average and climate probability distribution closer to that

of theClimate PredictionCenter’s (CPC)UnifiedGauge-

Based Analysis of Daily Precipitation over CONUS. The

dataset takes advantage of the higher climatological

reliability of the CPC dataset and the higher temporal

and spatial resolutions of the stage IV dataset (Lin and

Mitchell 2005). Thus, CCPA is reliable and quality con-

trolled, with high spatial and temporal resolutions. It is

available as 6-h accumulations from 2002 onward. The

CCPA data are first produced on the 4-km Hydrologic

RainfallAnalysis Project (HRAP) grid, the same as in the

NCEP stage IV dataset over the CONUS, as a primary

product and then interpolated onto 18, 0.58, 0.1258, and 5-

km National Digital Guidance Database (NDGD) grids

by a volume conservation scheme as by-products. The 18
CCPA is applied in this study as it exactly matches the

model output grid.

We continue to investigate here the method that ap-

plies to the NCEP GFS/GEFS precipitation model out-

put with CCPA. Then, we analyze aspects of the bias

correction of ensemble precipitation forecasts, including
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precipitation forecast skill and reliability. Our objective is

to produce bias-corrected precipitation ensemble fore-

casts through the postprocessing for near-real-time fore-

cast applications.

The remainder of the paper is organized as follows.

Section 2 describes the frequency-matching method for

precipitation calibration. Section 3 reviews the back-

ground of the 2004 implementation. A few cases dem-

onstrating the success of this method are presented.

Section 4 applies and evaluates the bias correction ap-

proach for higher resolutions using CCPA, and in the

last section we present our conclusions with suggestions

for future work that will further improve the calibration

of precipitation.

2. Methodology

A systematic difference (or error) between forecast

and observed precipitation amounts can be progressively

removed using information provided by observations.

However, it cannot be processed directly from the accu-

mulated difference of precipitation amounts because it is

a non-Gaussian distribution. In this study, the systematic

difference information can be estimated through com-

paring forecast and observed precipitation frequency

distributions (i.e., FB). A general frequency-matching

method proceeds as follows. First, we conduct an FB as-

sessment by constructing a cumulative distribution func-

tion (CDF) for the preceding forecast and corresponding

observed precipitation amounts. Given a set of precip-

itation thresholds in ascending order, the CDF is calcu-

lated as the number of grid points over a given domain

where the forecast or observed precipitation values ex-

ceed a threshold. The CDFs for both forecast and ob-

served precipitation amounts are updated with the

Kalman filter method, which is similar to the bias cor-

rection method in the North American Ensemble Fore-

cast System (NAEFS; Cui et al. 2012; B. Cui et al. 2013,

unpublished manuscript), expressed as

FBi, j 5
FFCi, j

OFCi, j

, (1)

where FFCi,j stands for the forecast frequency counts at

threshold i for day j, while OFCi,j stands for observation

frequency counts, and FBi,j is a frequency bias. We use

FBi,j 5 1 for the perfect frequency unbiased forecast.

Variable CDFi,j is the decaying averaged CDF at

threshold i for day j, while CDFi,j21 is the prior decaying

averaged CDF for day j 2 1 in

CDFi, j5 (12W)CDFi, j21 1W(CDFi, j) . (2)

The newly countedCDF at threshold i for day j is CDFi,j,

and W is the decaying weight between 0 and 1, defined

simply by an approximated time moving window nd

(nd cannot equal zero), that is, a number of days for

decaying:

W5
1

nd
. (3)

Here, a time moving window nd (or decaying weight

1/nd) is chosen to make a weighted average of these

CDF values over the domain depending on how far it is

from the target forecast day, which is illustrated in Fig. 1.

For day j, the previous day’s j 2 1 CDFi,j21 contributes

a weight of 1 2 W to CDFi,j. From an iteration pro-

cedure following Eq. (1), the previous day’s j 2 k

CDFi,j2k contributes a weight of (1 2 W)k to CDFi,j,

which becomes smaller and smaller and eventually ap-

proaches zero as k goes toward infinity. Therefore, the

higher the decaying weight, the faster the decaying speed

(which indicates that there is a higher overall weight on

the most recent data and less on the oldest data) and vice

versa.Our strategy is to specify a number of prior forecast

days (an approximated timemoving window, or decaying

weight) for each grid point and each lead time as a pool

for sampling appropriate historical information from

forecasts and observations. For instance, a 50-day win-

dow (W5 0.02)means that training data are accumulated

over the most recent 50-day period, with the most weight

on the most recent data (see Fig. 1 for W 5 0.02). Thus,

the idea behind the adaptive method is to catch the dy-

namic flow dependence and statistics of the observations.

The time moving window (or decaying weight) can be

tuned from short (or large) to long (or small) times

(weights) to ensure the best performance of the method.

In our adaptation of the frequency-matching method,

there are twoways of constructingCDFs for forecasts and

observations. We call the CDF based on the whole

CONUS domain the CONUS CDF, and the CDFs based

on each River Forecast Center (RFC) region (see Fig. 2;

Table 1) are RFC CDFs. For each grid point within a

specific domain (e.g., CONUS or any RFC) and for each

forecast lead time, the observed and forecast CDFs are

derived using the same time moving window (or decaying

weight). To be useful for applications, this method needs

to handle the initial CDFs, which is termed spinup. For

example, one can use 1-month or 1-yr averages of CDF

pairs as a cold start, update the CDF pairs for a certain

period and throw away old results, and select new statistics

and calibrated products for evaluation of the method and

application of the products.

Second is the forecast adjustment. To keep the spatial

and temporal coherence of a forecast as similar as pos-

sible to that of the observation, wematch the cumulative
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frequency distribution of the forecast to that of the ob-

servation using a frequency-matching algorithm. Here,

the updated CDF values from Eq. (1) form cumulative

frequency distributions. As illustrated in Fig. 3, according

to this pair of distributions, for a raw forecast value

(‘‘RAW’’) we find and assign an observed value that has

the same frequency within a given domain as the forecast

value of the corresponding calibrated forecast (‘‘CAL’’).

Consequently, the information related to systematic dif-

ference is estimated based on the paired and updated

CDFs for the forecast and corresponding observed values.

For example, in Fig. 3 in the case of a CDF (forecast)

greater than the CDF (observed), model precipitation

tends to be overforecast; so to match the frequency,

a correction factor of less than one will be expected to

reduce a forecast value. In doing this matching process,

linear interpolation is applied twice in real calculations to

derive a correction factor for each grid point. Mathemat-

ically, the linear interpolation applied here is polynomial

interpolation using two data points. Given a vector of

precipitation thresholds T(n), T1, T2, . . . , Tn in ascending

order as the abscissas; and a vector of observed CDF

valuesO(n) at T(n),O1,O2, . . . ,On as ordinates; a vector

of calibrated thresholds T*(n), T1*, T2*, . . . , Tn* is derived

based on a vector of forecast CDF values F(n) at T(n), F1,

F2, . . . , Fn through the first linear interpolation. Here, n is

the length of the vector. Consequently, n source pairs

(O,T) are linearly interpolated to n targets (F, T*), which

implies that the forecast CDF Fi at Ti* (i 5 1, . . . , n) is

equal to the observedCDFOi atTi (i5 1, . . . , n), just as in

what we call frequency matching. That is,

O1(T1)5F1(T1
*) ,

O2(T2)5F2(T2*) ,

..

.

On(Tn)5Fn(Tn
*).

In practice, the selected thresholds use logarithmic

transformation in the first interpolation. Next, a correc-

tion factor Ri is calculated as the ratio of a calibrated

threshold to its related threshold (i.e., Ri 5 Ti*/Ti, i 5
1, . . . , n). Once again, given a vector of thresholds T(n),

T1, T2, . . . , Tn as the abscissas and a vector of correc-

tion factors R(n), R1, R2, . . . , Rn as ordinates, for a fore-

cast value (RAW) at any grid point a single correction

FIG. 1. Decaying averaged weight as a function of preceding days (weighting function for

decaying average of preceding days). The dashed curve denotes a weight beginning with a max

value of 0.01 at day 0. The solid curve denotes a weight beginning with a max value of 0.02 and

the dashed–dotted curve denotes a weight beginning with a max value of 0.03 at day 0. All

curves gradually approach zero depending on how far away the preceding days are from day 0.

The larger the weight at day 0, the faster the decaying speed, which indicates greater weight on

the most recent data and less on the oldest data.
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factor r, the ratio of a calibrated forecast value (CAL) to

its corresponding raw forecast value RAW, is derived by

linear interpolation from n source pairs (T, R) to one

target (RAW; r). Then, the single correction factor is

applied to the raw forecast value (RAW) to compute the

final calibrated forecast value [CAL 5 r(RAW)]. This

correction is applied to each model grid point, which

implies that the correction is a function of the forecast

value. No adjustment of a zero precipitation forecast

value is made in order to prevent an unrealistic negative

precipitation value due to interpolation. In addition,

all resulting negative precipitation values from inter-

polation become zero for the same reason.

This calibration technique with its frequency match-

ing should work with any model output as long as

observations are available and are processed to be at

model grid points. However, our experience with this

technique indicates that some important considerations

must be addressed. That is, precautions must be taken

regarding the selections of thresholds and the number of

decay days, particularly when the CDF is calculated for

each RFC rather than the CONUS because there will be

a much smaller sample size, as implied fromTable 1. For

example, an insufficient amount of nonzero sample data

is very likely to causemore than two equal values of zero

as CDFs for adjacent highest thresholds, though this

situation is not allowed in this method as it may lead to

a failure in the interpolation. To deal with this problem,

FIG. 2. The domains of the 12 RFCs. Note that the CCPA covers the 12 RFCs (acronym

expansions and index numbers associated with the scale are provided in Table 1) across the

CONUS.

FIG. 3. Schematic of the frequency-matching algorithm demon-

strated as precipitation distributions normalized by observation

frequency varying with threshold. The dashed line is for observed

and the solid line is for forecast precipitation. See text for details.

TABLE 1. Total gridpoint counts of CONUS and each RFC at 18
spacing.

Index RFC Count

1 California–Nevada RFC (CNRFC) 67

2 Colorado basin RFC (CBRFC) 83

3 Missouri basin RFC (MBRFC) 152

4 Arkansas-Red River RFC (ABRFC) 56

5 West Gulf RFC (WGRFC) 75

6 North-central RFC (NCRFC) 105

7 Lower Mississippi RFC (LMRFC) 51

8 Ohio RFC (OHRFC) 47

9 Northeast RFC (NERFC) 31

10 Mid-Atlantic RFC (MARFC) 21

11 Southeast RFC (SERFC) 61

12 Northwest RFC (NWRFC) 95

Total CONUS 844
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selecting a reasonable range of thresholds is necessary to

produce nonequal CDF values. From our precipitation

calibration practice, it is better to have closed equal

distances in a logarithm coordinate and to consider the

common thresholds as well. Another solution is found

by choosing a proper number of decaying days. If the

number of decaying days is too small, it will be prob-

lematic since there will not be sufficient sample data,

especially when dry-climate regions experience a long-

duration drought. Therefore, there is an inevitable

trade-off as to the number of decaying days when

tuning for optimal calibration performance. It is be-

lieved that potential difficulties in CDF construction in

dry regions are related to the small number of days with

precipitation, imposing a practical challenge to this

method. When the above statistical deficiencies and

operational limitations are avoided, the method should

be computationally realistic and feasible for real-time

implementation.

3. Background review of the 2004 frequency bias
correction technique

As part of the 2004 implementation (Zhu and Toth

2004), the calibration system was designed to apply all

0000 UTC forecasts (only), including high- and low-

resolution control forecasts, and all ensemble member

forecasts for 24-h amounts at 2.58 resolution.
A frequency bias assessment is approached separately

for the GFS high-resolution and ensemble control (low

resolution) forecasts at each lead time because the model

behaviors, especially for precipitation forecasts, depend

closely on the model resolutions. Data are sampled from

prior forecasts and observations with a 30-day average of

the whole CONUS domain as the cold-start sampling.

Later, the corresponding decaying weight used is 1/30 (or

W 5 0.333). The observations with 24-h accumulations

come from the RFC rain gauge network, with about

10 000 observation station reports after regridding to the

common 2.58 model grid. A set of thresholds of 0.2, 2.0,

5.0, 10.0, 15.0, 25.0, 35.0, 50.0, and 75.0mmday21 were

selected for the 24-h accumulation amount to ensure the

performance of the interpolation in the calibration pro-

cedure. The selection of thresholds is based on approxi-

mated similar distances of logarithm values, as well as on

common thresholds in the daily applications. The values of

CDF may be slight different from the selection of thresh-

olds. The frequency bias assessment based on CONUS

CDFmaybe applied to the global domain,when assuming

that the frequency bias information over the CONUS is

much the same as over other parts of the globe, whichmay

not be an optimum application. This application can be

improved when global precipitation observations become

FIG. 4. Examples from the 2004 implementation. Results were

selected for the period 1 Dec 2000–28 Feb 2001. (a) Averaged ETS

and frequency bias scores of the raw GFS (mrf) and GEFS control

(ctl) forecasts and their calibrated forecasts (mrf_br and ctl_br) at

a threshold of 2.0mmday21. (b) Reliability of the 2.5mmday21

GEFS raw (ens; red) and calibrated (ens_br; green) forecasts at 36–

60-h lead time. The inset histogram denotes the frequency of

forecast usage of each probability bin.
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FIG. 5. Comparisons of 6-hourly accumulated precipitation (mm) initialized at 0000UTC24 Jan 2010 from the (left) rawGFS and (middle)

calibrated forecasts against (right) the CCPA products that are valid at corresponding time periods.
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FIG. 6. (left) Raw GEFS probabilities, (middle) calibrated probabilities of the 6-h precipitation amount exceeding 0.01 in. initialized at

0000 UTC 24 Jan 2010, and (right) CCPA precipitation estimates for 6-h precipitation that are valid at the corresponding time periods.
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available in real time. The calibration system runs

once daily at the 0000 UTC cycle and typically the daily

runs are completed within a minute in real time on

a supercomputer.

The evaluation period for this implementation was

chosen to be from 1 December 2000 to 28 February

2001. Comparisons of the calibrated forecast against

the raw forecast in terms of some scores were made

and are shown in Fig. 4. Figure 4a presents equitable

threat scores (ETSs) and frequency bias scores (Wilks

2006; Jolliffe and Stephenson 2003) at the 2.0-mm

threshold for each forecast lead time. Figure 4b pro-

vides the 36–60-h reliability diagram at the 2.5-mm

threshold for the 20-member ensemble forecast, vali-

dated for all grid points in the CONUS. A perfectly

reliable forecast is shown by the diagonal line in

Fig. 4b. The calibrated forecast shows a remarkably

improved frequency bias score over the CONUS at all

thresholds. Not only is the frequency bias reduced,

but the postprocessing through frequency matching

helped to improve the probabilistic forecast, as well

(a full discussion of the probabilistic score/verification

is presented in section 4). There was a much reduced

ensemble mean frequency bias in the calibrated forecasts

compared to the raw forecasts, indicating a great im-

provement in the reliability for higher-probabilistic fore-

casts (Fig. 4b), but not for lower-probability values,

such as 5%. The reason for no improvement in lower-

probability values is still unclear, however, this may

affect overall reliability score due to high frequency of

lower-probability events. For this particular winter

period, the overall reliability scores are 0.016 for the

raw forecast and 0.003 for the calibrated forecast.

Ideally, the reliability curve approaches the diagonal

line, which means the forecast is perfect or more reli-

able; a smaller value of overall reliability is better.

FIG. 7. Frequency bias scores of raw (GFS_raw, black; CTL_raw, green) and calibrated

(GFS_bc, red; CTL_bc, blue) forecasts with increasing lead times for 6-h precipitation averaged

between 1Dec 2009 and 28 Feb 2010 (a) as a function of threshold (where the numbers in the plot

above the x axis are for the total number of boxes verified) and (b) at a 0.2-mm threshold.
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4. Applications and evaluations of an improved
frequency bias correction technique

In this section, earlier work is expanded to upgrade

the calibration system and make it capable of frequency

bias correction at higher temporal and spatial resolu-

tions. More specifically, the current application works at

18 resolution with 6-h accumulations. This section de-

scribes how the higher-resolution precipitation forecasts

are calibrated so that their cumulative frequency dis-

tribution matches that of the observations.

The operational NCEP GFS/GEFS forecast system

runs 4 times per day (0000, 0600, 1200, and 1800 UTC)

and produces 18 global ensemble precipitation forecast

products for 6-h accumulations. The system contains 22

ensemble members: a high-resolution GFS run, a low-

resolutionGEFS control run, and 20 perturbed runs using

the bred vector–ensemble transform with rescaling (BV-

ETR) method (Wei et al. 2006, 2008). Technical in-

formation about NCEP’s latest GEFS ensemble forecast

system is available online (Zhu et al. 2012). Unlike in the

2004 implementation, here all 6-hourly 18 forecasts for

the four cycles are directly calibrated with respect to the

gridded precipitation analysis CCPA at the same reso-

lution as the forecasts. To be more realistic and to better

sample the statistics, 12 RFC CDFs are derived for each

lead time to construct the cumulative frequency distri-

butions. For each category among the nine thresholds

[0.2, 1, 2, 3.2, 5, 7, 10, 15, and 25mm(6h)21], a CDF is

calculated as the number of grid points over each RFC

where the forecasts or observed precipitation amounts

are greater than the threshold. Again, to reduce the

computational burden, only one set of CDFs is derived

from the high-resolution GFS run, and another set of

CDFs is developed from the low-resolution GEFS con-

trol run. Then, the latter set of CDFs is applied to the 20

ensemble members since all of them are low-resolution

forecasts from the same forecast model, resulting in 2

rather than 22 sets of CDFs per lead time per threshold

per RFC region. In each calibration run, there is a total of

6912 forecast–observation CDF pairs for 64 forecast lead

times for the low-resolution runs and 3240 pairs for 30

forecast lead times for the high-resolution runs, summed

FIG. 8. As in Fig. 7, but for ETS.
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for a total of 9 thresholds and 12RFC regions.A decaying

weight coefficient of 0.02 (or 2%) has been used to ac-

cumulate historical samples to build up CDFs of forecast

and observation frequency counts (Fig. 1). The calibra-

tion process is applied 4 times per day to each 6-hourly

forecast at each grid point globally and to each forecast

lead time independently.

The operational forecasts initialized daily at 0000UTC

from 1 March 2009 through 28 February 2010 will

be assessed. These forecasts produced with the same

modeling suite were used to produce the calibrated

forecasts. Both sets of forecasts will be examined out to

384 h with precipitation accumulation output available

every 6 h. Although the method we developed can apply

to global forecasts, in this study our evaluation domain is

the CONUS, which allows evaluations of this method

using the 18 CCPA dataset. The evaluation focuses on

the frequency biases and skill levels of the calibrated

ensemble precipitation forecasts with respect to raw

forecasts. Several examples are analyzed and presented

with some verification statistics. The verification sta-

tistics will be stratified by either lead time or threshold.

Figure 5 shows one application of this calibration for

the high-resolution GFS forecast for the four selected

forecast lead times (78, 84, 90, and 96h). The comparison

is of 6-hourly accumulated precipitation (mm) initialized

at 0000 UTC 24 January 2010 for the raw GFS forecast

(left), calibrated forecast (middle), and the observa-

tions (CCPA; right). Apparently, the GFS overforecast

for the CONUS in general, and the calibrated fore-

cast reduced the forecast amount accordingly. Figure 6

shows the ensemble PQPF (same time period) for the

0.254mm(6h)21 threshold with the raw ensemble PQPF

(left), the calibrated PQPF (or CPQPF; middle), and the

observations (right). The forecast area of the PQPF is

reduced; the quantity (value) of the PQPF is diminished

FIG. 9. Comparison of raw (GFS_raw, black; CTL_raw, green) and calibrated (GFS_raw, red;

CTL_raw, blue) forecasts with increasing lead times for 6-h precipitation averaged between 1 Dec

2009 and 28 Feb 2010 and analyzed for theMBRFC region for (a) ETS and (b) frequency bias score

at a 0.2-mm threshold.
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in the calibrated PQPF, which matches better with the

observations from this case.

To demonstrate the benefits from this calibration,

several different scores have been presented for the

seasonal and yearly averages. The frequency bias scores

and ETSs for the CONUS for the period 1 December

2009–28 February 2010 (winter season) are shown in

Figs. 7 and 8. Figure 7a is for the 0–6-h forecast fre-

quency bias of the different thresholds, and Fig. 7b

shows forecast lead times out to 180 h for greater than

0.2mm(6 h)21. The numbers above the thresholds in

Fig. 7a indicate the sample size of the 18 3 18 forecast
box we have verified. Overall, the frequency bias is re-

duced and the ETS is increased in the calibrated fore-

casts for both theGFS (comparingGFS_raw toGFS_bc)

and control (comparing CTL_raw to CTL_bc) for all

lead times, and the improvement of ETS tends to be

especially more effective for shorter lead times. Similar

improvements in frequency bias scores and ETSs are

also observed for the RFC regions, such as the Missouri

basinRFC (MBRFC) and theNortheast RFC (NERFC)

shown in Figs. 9 and 10, respectively, although they ex-

hibit slightly larger diurnal variabilities. In the summer

season, the forecast skill is very limited, especially for

extended-range forecasts. The calibration of FMM

could improve the frequency bias score, but not the ETS

(figures not shown). For higher thresholds, the im-

provements are also limited due to fewer training sam-

ples and large seasonal variations (figures not shown).

The root-mean-square error (RMSE) and mean ab-

solute error (MAE) across the CONUS for the period

1 March 2009–28 February 2010 (1 yr) for every 6-h ac-

cumulated precipitation forecast are shown in Figs. 11

and 12. Figure 11 is for the GFS forecast (RMSE_raw is

for raw forecasts and RMSE_bc is for frequency-bias-

corrected forecasts) and Fig. 12 is for the GEFS control

forecast. Based on this year’s worth of statistics, RMSE is

reduced considerably for the GFS, but not for the (lower

resolution) GEFS control. This difference might be re-

lated to the model resolution and version (the opera-

tionalGFSmodel version is slightly different fromGEFS

for this period due to different implementation times). In

FIG. 10. As in Fig. 9, but for the NERFC region.
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particular, the higher-resolution model produces larger

errors compared to the lower-resolution version due to

the resolution and forecast sharpness (Figs. 11 and 12). It

may be better to separately verify the forecast intensity

and pattern (or position). The results could be different if

different verification methods are applied, such as the

Method for Object-Based Diagnostic Evaluation

(MODE;Davis et al. 2006a,b). However, theRMSEs are

FIG. 11. RMSEs with increasing lead times for 6-h precipitation from the GFS high-

resolution raw (RMSE_raw, black) and calibrated (RMSE_bc, red) forecasts, and MAEs with

increasing lead times for 6-h precipitation from theGFS raw (MAE_raw, green) and calibrated

(MAE_bc, blue) forecasts.

FIG. 12. As in Fig. 11, but for GEFS CTL forecasts.
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very similar after calibration for both the higher- and

lower-resolution model forecasts. Meanwhile, for this

1 yr of statistics, MAE is reduced for both the GFS and

GEFS control runs at all lead times.

For the ensemble forecast, RMSE and MAE of the

ensemble mean, ensemble spread (SPRD; defined as the

ensemble standard deviation from its mean), and con-

tinuous ranked probability score (CRPS; Hersbach

2000; Zhu and Toth 2008) have been calculated for the

period 1 March 2009–28 February 2010 and are dis-

played in Fig. 13. This is a year’s worth of verification

against CCPA for every 24-h accumulated precipita-

tion forecast. The results indicate that 1) the RMSE is

marginally reduced (similar to the ensemble control in

Fig. 11) and the MAE for the ensemble mean is reduced,

too; 2) CRPS is improved; and 3) ensemble spread is

increased for longer-lead-time forecasts with larger

forecast errors, but is the same (or with less change) for

short-lead-time forecasts, which may be due to reduced

RMSE. The improved spread and CRPS could be ex-

plained as a by-product of the frequency-matching

method. The algorithm not only matches the precip-

itation frequency (reducing the frequency bias), but also

adjusts the amount of precipitation forecast by each en-

semble member (adjusting the distribution). A com-

parison of the Brier scores (Wilks 2006; Jolliffe and

Stephenson 2003) between the raw and calibrated

forecasts is also shown in Fig. 14. The Brier score is

negatively oriented, which means the smaller the score

value the better the results. As expected, the score is

reduced after frequency bias correction (dotted curves)

for all lead times.

5. Conclusions and future plans

The frequency-matching method is developed and

applied to the NCEP QPF and PQPF forecasts for the

first precipitation calibration since 2004. The latest

version will be implemented in 2013 for finer temporal

(every 6 h out to 16 days) and spatial (18 3 18) resolutions.
The prior CDFs of the forecasts and observation can be

easily generated from the GFS/GEFS precipitation

forecast and CCPA through applying the Kalman filter

method (or decaying average). In real-time operations,

a postprocessing with the frequency bias correction

technique is carried out to produce calibrated ensemble

precipitation products soon after raw forecast outputs are

produced. In the postprocessing procedure, the frequency

bias statistics that include all CDF values both for ob-

servations and forecasts are updated in terms of decaying

weight on the daily basis to catch as much of the latest

frequency bias information as possible.

The performance of this method has been investigated

with respect to a year’s worth of operational GEFS

FIG. 13. The RMSE (black), MAE (red), SPRD (green), and CRPS (blue) with increasing

lead times for 24-h precipitation from the GEFS ensemble mean (RMSE and MAE) and

members (spread and CRPS) for raw (solid lines) and calibrated (dotted lines) forecasts.
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precipitation products. Results show thatmodel frequency

bias has been effectively reduced and some skill (ETS)

scores have been improved in the calibrated forecasts. The

good performance of the frequency bias correction is ob-

viously due to the fact that it can dynamically catch sys-

tematic model biases in most cases. The frequency bias

correction works effectively for both the higher- and

lower-resolution model forecasts and for wet bias elimi-

nation. Another attractive advantage of this method is

that it saves a significant amount of both computer and

human resources. Unlike other statistical postprocessing

methods, it is not heavily reliant on a huge amount of data

for model training, so it takes up much less disk space on

the computer systems and is able to update the model

frequency bias when a model is upgraded as well.

One important issue to consider is that the method has

a limitation in its frequency bias correction for extreme

events. Such seldom-happening extreme events may not

be captured by the current short-term data pooling

scheme. The method may not perform well for extreme

events, unlike the analog method that makes use of an

extensively long training set of reforecast data. Another

important issue is the validity of the frequency-matching

method. The method used in this study is based on

a certain knowledge of model information drawn from

past verification statistics. Remember that as mentioned

in section 2, this method is not perfect as it is unable to

make adjustments to areas that have no precipitation. As

a result, there is no adjustment of the forecast probability

of precipitation (PoP) although the observed PoP is

possibly higher; therefore, this kind of dry bias can never

be removed, though this is also the case with other tra-

ditional precipitation bias correctionmethods.Generally,

model forecasts include two kinds of errors; intensity and

pattern errors. This method appears to have a positive

impact on intensity-error-dominated cases.However, it has

a neutral or negative impact on pattern-error-dominated

cases (Fig. 12), causing a poorer sampling of frequency

bias information. In this case, frequency bias is reduced

at the expense of an increase in random error. Further

investigation is needed to fully understand the perfor-

mance of this method and to determine where and when

it has a significantly positive impact and the usefulness of

the calibrated products.

In this study, the decaying average weight is constantly

selected as 0.02 (except for the 2000–01 application) for all

lead times. Actually, the decaying average weights really

depend on the experiment and could range from 0.01 to

0.5. In general, the weight is varied for different forecast

lead times; a larger weight is good for short lead times,

which can catch up quick moving systems, and a smaller

weight is more favorable for long-lead-time forecasts (not

shown). Therefore, choosing an optimum weight for each

lead time could be a constructive way to improve the

calibration system in the future. Meanwhile, the weight is

varied for geographical locations and seasons. There are

two improvements we are expecting to validate through

future study. One is an optimum weight, which will

need large samples for experiments. The weights should

be a function of lead time, location, and season. The

second is a downscaling process to produce a much finer–

resolution forecast (5- and 2.5-km resolutions).
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