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ABSTRACT

The National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/

ESRL) generated a multidecadal (from 1985 to present) ensemble reforecast database for the 2012 version of

the Global Ensemble Forecast System (GEFS). This dataset includes 11-member reforecasts initialized once

per day at 0000 UTC. This GEFS version has a strong cold bias for winter and warm bias for summer in the

NorthernHemisphere. Although the operational decaying average bias-correction approach performs well in

winter and summer, it sometimes fails during the spring and fall transition seasons at long lead times

(.;5 days). In this paper, 24- (1985–2008) and 25-yr (1985–2009) reforecast biases are used to calibrate 2-m

temperature forecasts in 2009 and 2010, respectively. The reforecast-calibrated forecasts for both years are

more accurate than those adjusted by the decaying average method during transition seasons. A long training

period (.5 yr) is necessary to help avoid a large impact on bias correction from an extreme year case and

keep a broader diversity of weather scenarios. The improvement from using the full 25-yr, 31-day window,

weekly training dataset is almost equivalent to that from using daily training samples. This provides an option

to reduce computational expenses while maintaining a desired accuracy. To provide the potential to improve

forecast accuracy for transition seasons, reforecast information is added into the current operational bias-

correctionmethod. The relative contribution of the twomethods is determined by the correlation between the

ensemble mean and analysis. This method improves the forecast accuracy for most of the year with a max-

imum benefit during April–June.

1. Introduction

Several weather centers worldwide routinely produce

skillful weather predictions using an ensemble forecast

system (Toth and Kalnay 1993, 1997; Wilks and Hamill

2007). The North American Ensemble Forecast System

(NAEFS), officially launched in November 2004, is a

successful example of applying amulticenter, multimodel

ensemble forecast system to estimate the uncertainty of

weather forecasts and to make high quality probability

forecasts. The NAEFS combines two ensemble forecast

systems: the Global Ensemble Forecast System (GEFS)

of the National Weather Service (NWS) and the Cana-

dian Meteorological Centre Ensemble (CMCE) of the

Meteorological Service of Canada (MSC), which

produces a more reliable forecast than either of the

forecast systems when used alone (Candille 2009).

Ensemble forecasts are contaminated by system bias

and random errors (Toth et al. 2003; Wilks and Hamill

2007). In the last decade, various statistical post-

processing methods have been developed and applied to

reduce the bias of the ensemble forecast system and

improve the skill of probability forecasts. These

methods include logistic regression (Wilks and Hamill

2007), Bayesian model averaging (BMA; Raftery et al.
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2005; Wilson et al. 2007), nonhomogeneous Gaussian re-

gression (Gneiting et al. 2005),Gaussian ensemble dressing

(Roulston and Smith 2003;Wang and Bishop 2005; Bishop

and Shanley 2008), artificial neural networks (Yuan et al.

2007), ensemble MOS (Wagner and Glahn 2010), analog

techniques (Hamill et al. 2004, 2006, 2013; Hamill and

Whitaker 2007; Monache et al. 2011, 2013; Hagedorn et al.

2012), Kalman filtering (Cheng and Steenburgh 2007), and

decaying averaging (Cui et al. 2012; Glahn 2014).

Reducing the systematic bias, for both the first and

second moments in the ensemble forecast, is a major

goal for the NAEFS Statistical Post Processing (SPP).

The current SPP includes bias correction and down-

scaling (B. Cui et al. 2012, unpublishedmanuscript). The

bias correction is mainly a first-moment adjustment by

applying the decaying average method to estimate the

bias, giving more weight to recent samples than to older

ones (B. Cui et al. 2012, unpublished manuscript). The

algorithm was developed by the NWS at the National

Centers for Environmental Prediction (NCEP) and was

implemented operationally in 2006 to reduce the bias of

the NAEFS forecasts. This method is fast and does not

need to store a large amount of sample data once ini-

tialized, which makes the application straightforward

in a daily operational system. Operational statistical

verification since 2006 reveals that the NAEFS product

is significantly enhanced by the decaying bias-correction

method. However, the method sometimes fails to im-

prove the forecast skill during the spring and fall tran-

sition seasons for long-lead-time forecasts.

It should also be mentioned that in the past, several

works (Hamill and Whitaker 2007; Monache et al. 2011,

2013; Hagedorn et al. 2012) have demonstrated that their

techniques improve raw forecasts over a simple bias

correction like decaying average and running mean bias-

correctionmethods. The analog techniques inHamill and

Whitaker (2007) and Monache et al. (2011, 2013) gener-

ally require storing large amounts of data from a past

sample dataset to find the past forecasts that are similar to

the current forecast. This is its disadvantage relative to

the decaying method. In the future, we will compare the

analogy and decaying techniques to see if we can find an

optimal analog method that fits the computing resources

of daily operations while performing better than the de-

caying technique. Hagedorn et al. (2012) show that the

nonhomogeneous Gaussian regression method improves

raw forecasts over a simple bias-correction procedure.

However, thework inGlahn (2014) demonstrates that the

decaying method wins when compared with the re-

gression method. Obviously, future study will be needed

to address the inconsistencies of the above studies.

Recently, the NOAA/Earth System Research Labo-

ratory (ESRL) generated an ensemble reforecast dataset

using the 2012 version of GEFS. This multidecadal

dataset has been applied to precipitation calibration,

diagnosis of the ability of GEFS to forecast un-

common phenomena, and the initialization of regional

reforecasts (Hamill et al. 2013). In this study, we use a

26-yr reforecast dataset to improve the current opera-

tional NAEFS bias-correction process. The decaying

average and reforecast bias-correction methods are

described in section 2. The GEFS model and refor-

ecast dataset are introduced in section 3. The evalua-

tion of the two calibration methods and the sensitivity

of the reforecast calibration to sample size are dis-

cussed in section 4. The improvement from combining

the reforecast method with the decaying method is

highlighted in section 5. Conclusions are given in

section 6.

2. Bias-correction methods

a. Bias estimation

In this study, the bias b for each lead time t (6-h in-

tervals up to 384h for the operational product) and each

grid point (i, j) is defined as the difference of the best

analysis ai,j(t0) and forecast fi,j(t) at the same valid time t0:

bi,j(t)5 fi,j(t)2 ai,j(t0) . (1)

b. Decaying average method

The details of the decaying average method can be

found in Cui et al. (2012). Here, we introduce its basic

equation. The decaying average biasBp
i,j(t) is updated by

combining the bias from the previous forecast with the

current bias by using a weighting coefficient w. Experi-

ments using different weights (0.01, 0.02, 0.05, 0.1, and

0.2) show that a weight of 0.02 gives the best overall

verification score. Recently, Glahn (2014) applied the

decaying average method to the bias correction of

station-based forecasts. Sensitivity tests with four

weights (0.025, 0.05, 0.075, and 0.1) reveal that only the

smaller weights (0.025 and 0.05) improve the bias and

mean absolute errors of MOS forecasts for the CONUS

region. The value of 0.025 is similar to the optimal

weight (0.02) used in the NCEP bias correction:

B
p
i,j(t)5 (12w)[B

p
i,j(t2 1)]1w[bi,j(t)] . (2)

c. Bias correction using reforecasts

The basic idea for this method is to use knowledge

about the forecast errors of the same model during a

similar period in previous years to calibrate the current

forecast. The average reforecast bias Bh
i,j(t) is the
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climatological mean forecast error, obtained from the

multiyear N reforecast ensemble:

Bh
i,j 5

�
N

k51

bi,j,k(t)

N
. (3)

d. Bias correction

To remove the lead-time-dependent bias from a

model grid, a new (or bias corrected) forecast F is gen-

erated by applying the decaying average bias and the

reforecast bias to the raw forecast at each grid point, for

each lead time, and each parameter:

Fi,j 5 fi,j 2 r2[B
p
i,j(t)]2 (12 r2)[Bh

i,j(t)] , (4)

where r is the correlation coefficient estimated by linear

regression from the most recent joint samples (ensemble

mean and analysis). To avoid storing a large dataset, the

mean values used in computing r were generated from a

decaying average with a weight of 0.10. The calculation

mainly uses the most recent 10–15 days of bias in-

formation. The data between the most recent 15 and

40 days is a minor contributor. The relative contribution

of the reforecast and decaying average bias was quantified

by r2. The high correlation indicates that the model can

capture the temporal variation in the 2-m temperature

analysis during the most recent period well. This implies

that bias features are likely dominated by systematic error

during the training period, which is highly predictable.

Here, we use r2 as an approximate measure of the validity

of the decaying average bias. For the two special cases of

r5 0 and r5 1, the equations represent the reforecast bias

correction and decaying bias correction, respectively.

e. Methodology of verification

The calibration of the ensemble forecast system is

evaluated via the mean forecast error (Wilks 2006),

mean absolute forecast error (Wilks 2006), root-mean-

square error (RMSE; Zhu and Toth 2008), and contin-

uous rank probability score (CRPS; Zhu andToth 2008).

The CRPS is frequently used for evaluating the perfor-

mance of probabilistic forecasts (Zhu and Toth 2008;

Glahn et al. 2009; Friederichs and Thorarinsdottir 2012).

The score represents the difference of the cumulative

distribution functions of the ensemble forecast and ob-

servation. The lower the CRPS, the better the proba-

bilistic system performs.

3. Model and reforecast data

The current operational GEFS version (10) was

implemented on 14 February 2012 at the NCEP. It

consists of 21 members (1 control member and 20 per-

turbation members) and is run four times daily (at 0000,

0600, 1200, and 1800 UTC). All members use an iden-

tical set of physical parameterizations (Zhu et al. 2007).

The model is run at a horizontal resolution of T254

(;55km) for the first 8 days and T190 (;70 km) for the

last 8 days, with 42 hybrid levels. The Climate Forecast

System Reanalysis (CFSR; Saha et al. 2010) is used to

initialize the simulation. The perturbed initial condi-

tions use the ensemble transform with rescaling (ETR)

technique (Wei et al. 2008). The model uncertainty is

estimated using the stochastic total tendency perturba-

tion (STTP) method (Hou et al. 2008).

The reforecast data were generated from the

above GEFS version but including only 11 members

(1 control member and 10 perturbation members).

The model was only run at the 0000 UTC cycle for the

10 members. The control member was run at both

0000 and 1200 UTC. The dataset used here was

bilinearly interpolated onto 18 3 18 latitude and lon-

gitude grids from the native resolution. These data

are available starting in 1985 and forward (129 yr).

We use a subset of the data from 1985 to 2010 (26 yr),

obtained from NOAA/ESRL. A more detailed de-

scription of the model and dataset can be found in

Hamill et al. (2013).

The time series of 2-m temperature errors over the

NorthernHemisphere (NH) for 120- and 240-h forecasts

are displayed in Fig. 1. It is evident that there is a warm

bias forApril–August (warm season), while a cold bias is

prevalent for the rest of the year (cold season). The

sharpest error change occurs between March and May

with change rates of ;0.58 and 0.68Cmonth21 for the

120- and 240-h forecasts, respectively. The large change

in bias during the spring season can make it difficult to

do bias correction with the current decaying average

postprocessing algorithms, because the forecast errors in

recent periods will not be fully representative of the

current forecast error. The difference in errors among

different 5-yr periods is relatively small. We did not

find a significant improvement in forecast skill from the

late 1980s to the most recent year. The bias curve for the

last 5-yr period (2005–09) shifts only slightly in the di-

rection of positive bias from the first 5-yr period (1985–

89). This suggests that the selection of sample periods

may not be a big issue in calibrating 2-m temperature

forecasts.

Figure 2 depicts the distribution of global 2-m tem-

perature errors for the cold and warm seasons. Large

bias occurs mainly over or near the continents, most

likely because of the complex topography and deficient

physical parameterizations over land. The semiannual

change in bias over the continents of the Northern
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FIG. 1. Errors in valid 2-m temperature forecasts averaged over 5-yr periods for the NH

during the reforecast period for (a) 120- and (b) 240-h projections. Black lines indicate the

errors for 1985–89, red lines indicate the errors for 1990–94, green lines indicate the errors for

1995–99, blue lines indicate the errors for 2000–04, and light blue lines indicate the errors

for 2005–09. Thick black lines indicate bias 5 0.

844 WEATHER AND FORECAST ING VOLUME 30



Hemisphere is more dramatic than that of the Southern

Hemisphere (SH), suggesting that the decaying method

faces a challengemainly in the continents of the NH. For

example, in the warm season, the positive bias (Fig. 2b)

is dominant over North America with a considerable

area having a bias exceeding 1.5K. During the cold

season (Fig. 2a), the maximum negative bias also ex-

ceeds 1.5K. In contrast, the change in bias is much

smaller in the continents of the SH. This is possibly due

to the fact that most of the landmass in the SH is in the

tropics and subtropics, while the NH has much more

landmass at higher latitudes.

4. Experiments and results

We calibrate 2-m temperature for 2009 and 2010 using

the prior 24- (1985–2008) and 25-yr biases (1985–2009),

respectively. We also calibrate the 500-hPa height for

2009 using the 24-yr bias, but a preliminary check shows

that it is very hard to improve the forecast skill of this

FIG. 2. Global 2-m temperature error averaged over the 25-yr reforecast period for 120-h

forecasts during the (a) cold season (from 1 Jan to 15 Mar and from 16 Aug to 31 Dec) and

(b) warm season (from 16 Mar to 15 Aug).
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FIG. 3. For 2-m temperature averaged over the NH during the four seasons in 2010, the (left)

ensemblemeanRMSE (solid lines) and spread (dashed lines), and (right) ensemblemean error

(solid lines) and absolute error (dashed lines). In the legends, ERAW, Ebc2%, and Erf rep-

resent the raw (black lines), decaying-bias-corrected ensemble (red lines), and reforecast-bias-

corrected ensemble (blue lines) forecasts, respectively.
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variable, possibly because of its relatively small bias or

sensitivity. Thus, our focus will be on the calibration of 2-m

temperature. We explore the sensitivity of the calibration

to the number of training years by using the bias from the

most recent 2 (2008–09), 5 (2005–09), 10 (2000–09), and

25 (1985–2009) yr of training data, and evaluate the last

year (2010) of independent forecasts. We compare the

calibrations using three different training-data win-

dows (1, 31, and 61 days) centered on the correspond-

ing forecast date in each of the training years (25 yr).

The impact of the sampling interval on the calibration

is estimated by comparing verification scores with a

sampling interval of 1 day (daily) and 7 days (weekly)

for the 31-day window. We first calculated the 2-m

temperature error for each day. From this dataset, we

created weekly sampling data by using the error every

seventh day from the starting date (1 January 1985) of

the reforecast. For each year, the daily and weekly

sampling creates 31 and 4 or 5 datasets, respectively.

Finally, we apply reforecast information to the NCEP

operational GEFS product.

a. Calibrating the 2010 forecasts using the 25-yr
training dataset

Figure 3 shows the verification for 2-m temperature

over the Northern Hemisphere for the four seasons. For

the 2009/10 winter season, only January and February

are included in the verification in order to keep the same

training sample size or the same training years. We

present a comparison of the results of the raw ensemble

forecast (ERAW) and two calibrated forecasts (Ebc2%

and Erf). Here, Ebc2% and Erf denote the decaying

FIG. 4. Mean error (solid lines) and mean absolute error (dashed lines) of 2-m temperature averaged over the NH for (a) January,

(b) February, (c) March, and (d) April 2010. In the legends, ERAW, Ebc2%, Ebc10%, and Erf represent the raw (black lines), decaying-

bias-corrected method using a 2% weight (red lines), decaying-bias-corrected method using a 10% weight (green lines), and reforecast-

bias-corrected ensemble (blue lines) forecasts, respectively.
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average and reforecast bias-correction methods, re-

spectively. A weight of 2% is used for the decaying

method.

The GEFS model is underdispersed for all seasons

and lead times (Figs. 3a,c,e,g). Our focus here is on the

first-moment adjustment. Improvement for the second-

moment adjustment will be addressed in a future spread

adjustment paper.

The raw ensemble forecast (black lines) has a cold

bias during the winter (Fig. 3b) and autumn (Fig. 3h).

Conversely, a warm bias is prevalent during the spring

(Fig. 3d) and summer (Fig. 3f). These biases are almost

completely corrected by the Erf method (blue lines).

The corrected bias is closer to zero for all forecast lead

times and the corresponding absolute error and RMSE

are also smaller than for the raw ensembles, hinting at

the effectiveness of the calibration methods in reducing

the systematic error of the ensemble forecast. The

Ebc2% also does a good job in the nontransitional

seasons (winter and summer), and even performed

slightly better than the Erf method in winter. However,

this technique does not work well in all circumstances, as

pointed out in Cui et al. (2012). Figures 3d and 3h reveal

that applying the decaying method leads to a degrada-

tion of forecast accuracy during transition seasons

throughout almost all lead times. The maximum deg-

radation occurs in spring. As indicated in Figs. 3a, 3c, 3e,

and 3g, the simple bias-correction methods do not

change the ensemble spread since the bias of the en-

semble mean is applied to each ensemble member.

Themean errors in the Ebc2%method are larger than

those of the ERAW forecast in the spring and autumn

(Figs. 3d,h). To determine the underlying reason, we

display the month-to-month evolutions of mean error

and mean absolute error of 2-m temperature for the

three experiments over the Northern Hemisphere in

Fig. 4. In addition to the above three experiments, the

results from the decaying method with a weight of 10%

are also added to the comparison. We note a persistent

cold bias of the raw forecast in the winter (January and

February). In the beginning of spring (March), the cold

bias becomes smaller and eventually turns into a warm

bias in April for almost all lead times. For example,

the bias is about218C for the day-8 forecasts in January

(Fig. 4a) and February (Fig. 4b).The corresponding

values are 20.58C in March (Fig. 4c) and 0.38C in April

(Fig. 4d), respectively. In the two winter months, the

performance by the Ebc2% method is very similar to

that for Erf, yielding a more accurate forecast than the

raw ensembles. This is due to the ensemble forecast

error being relatively consistent during the nontransi-

tional months. The 2% and 10% decaying averages in-

corporate the most recent 50–60 and 10–15 days of bias

information (Cui et al. 2012) with the highest weight for

the latest information. The Ebc2% fails to improve the

forecasts in March and April, when error characteristics

change dramatically within a period of ;50–60 days. In

April, Ebc2% uses a cold bias, accumulated from winter

and early spring, to calibrate a warm bias in spring. This

outdated information degrades the forecast (i.e., in-

creases the warm bias), which is most pronounced for

longer forecast lead times. This is likely due to a larger

separation of training data from the actual forecast day

of interest. In other words, the longer-lead-time fore-

casts are being trained on forecasts made further back

because the more recent forecasts were not used to

compute the error as their valid date has not passed yet.

During the transition seasons, Erf has an obvious ad-

vantage over Ebc2% and Ebc10%, particularly for the

long-lead forecasts. The Ebc10% method is slightly

FIG. 5. Ensemble mean RMSE (solid lines) and spread (dashed lines) of 2-m temperature averaged over the SH

for (a) spring and (b) autumn 2010. In the legends, ERAW, Ebc2%, and Erf represent the raw (black lines),

decaying-bias-corrected (red lines), and reforecast-bias-corrected ensemble (blue lines) forecasts, respectively.
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better than Ebc2% since it uses more recent error

information.

Unlike in the Northern Hemisphere, the decaying

method in the Southern Hemisphere does not degrade

the forecast skill in the spring and autumn transition

seasons as illustrated in Fig. 5. The performance of the

reforecast method is very similar to the decaying

method. This is likely due to less seasonal variation of

model bias because of the ocean (Fig. 2).

b. Comparison between 2009 and 2010

The improvement in the accuracy of the 2-m tem-

perature forecasts by Erf for 2010 is impressive. The key

question is whether this improvement is unique to the

year 2010. To answer this question, we also calibrate the

2009 forecast and compare the results to 2010. The data

prior to the validation year (2009) are used to train the

reforecast-bias-correction algorithm.

Figure 6 shows the RMSE and spread of 2-m temper-

ature for 2009 for the Northern Hemisphere. Figure 7

provides the comparisons of mean error and mean abso-

lute error between 2009 and 2010. The performance in

2009 is, qualitatively, very similar to that in 2010. The cold

bias inwinter and autumn and the warm bias in spring and

summer can also be seen in 2009 (Fig. 7). The Ebc2%

method, again, improves the forecast in the nontransi-

tional seasons for all lead times but does not improve the

forecast during the other two seasons, when Ebc2% tends

to degrade the forecasts, particularly for the longer-lead-

time forecasts. The Erf approach improves the ensemble

forecasts over Ebc2% in transition seasons, as noted in

2010. The biases for all seasons are, again,mostly removed

by Erf. However, the extent to which Erf can improve

RMSE is slightly different. The improvement in winter

and autumn for 2009 is slightly less than for 2010.

c. Calibration using various training samples

The CRPS of forecasts from the raw ensemble (black

line) and calibrated ensembles (color lines) with training

samples of various sizes are displayed in Fig. 8. The

FIG. 6. RMSE (solid lines) and spread (dashed lines) of 2-m temperature averaged over the NH during the four

seasons in 2009. In the legends, ERAW, Ebc2%, Ebc10%, and Erf represent the raw (black lines), decaying-bias-

corrected with the two weights (2% red lines and 10% green lines), and reforecast-bias-corrected ensemble (blue

lines) forecasts, respectively.
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FIG. 7. Comparisons of mean errors (solid lines) and mean absolute errors (dashed lines) of

2-m temperature over theNHbetween (left) 2009 and (right) 2010 for (a),(b)winter; (c),(d) spring;

(e),(f) summer; and (g),(h) autumn. In the legends, ERAW, Ebc2%, Ebc10%, and Erf represent

the raw (black lines), decaying-bias-corrected with the two weights (2%, red lines; 10%, green

lines), and reforecast-bias-corrected ensemble (blue lines) forecasts, respectively.
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results for RMSE are very similar to those of CRPS

(not shown). Figures 8a and 8b examine the sensitivity

of forecast skill to the number of sample years and

interval days, respectively. All calibrated forecasts

demonstrate better performance than the raw forecast.

The difference among the calibrated forecasts is rela-

tively small with only a small degradation for each

shorter period. The scores for 5, 10, and 25 yr with a

31-day window are very similar, slightly better than the

other smaller training samples (Fig. 8a), suggesting

that the 5-yr dataset is large enough to cover a wide

range of weather types or scenarios. The CRPS of the

forecasts from the calibration with the 25-yr weekly

dataset (blue line) and 25-yr daily dataset (green line)

within a 31-day window are almost identical (Fig. 8b)

and both are better than the result using a single data

value from each year (red line). A further increase in

window size from 31 to 61 days (not shown) does not

bring any obvious change. Therefore, the 25-yr, 31-day

weekly training dataset is a good option for reducing

computational expense while maintaining desired skill.

These results are consistent with the findings of pre-

vious researchers (Hamill et al. 2004; Hagedorn et al.

2008), although they used different model or GEFS

versions.

5. Using the reforecast to improve the NCEP
bias-corrected product

Having seen the remarkable value of using reforecast

information, we now combine the Erf with the opera-

tional Ebc2% method, aimed at providing an option for

improving forecast accuracy during transition seasons.

Figure 9 displays the change in r2 with forecast lead time,

averaged over the Northern Hemisphere for the four

seasons of 2010. The r2 denotes the square of the cor-

relation coefficient between the ensemble mean and

analysis. Forecast ability declines as forecast lead time

increases. The r2 values are slightly smaller in summer

than during other seasons for short lead times. Almost

equal weight is given to the two methods for ;day-5

forecasts [see Eq. (4) and Fig. 9]. Thereafter, the de-

caying method is expected to become less powerful (Cui

et al. 2012) as the reforecast method starts playing a

more important role.

FIG. 8. CRPS of 2-m temperature averaged from 1Mar to 31May

2010 over the NH. In the legends, ERAW is the raw ensemble

forecast (black lines) and Erf is the reforecast-bias-corrected en-

semble forecast with historical data at the exact forecast date (red

lines). In (a), Erf_2yr, Erf_5yr, Erf_10yr, and Erf_25yr are the

reforecast-bias-corrected ensemble forecasts with historical data

spanning a timewindow of 31 days, centered on the forecast day for

themost recent 2 (green line), 5 (blue line), 10 (cyan line), and 25 yr

(magenta line), respectively. In (b), Erf_1dy and Erf_7dy are the

reforecast-bias-corrected ensemble forecasts using all 25 yr of his-

torical data, covering a time window of 31 days centered on the

forecast day. The frequencies of the data samples for Erf_1dy and

Erf_7dy in (b) are 1 day (green line) and 7 days (blue line),

respectively.

FIG. 9. The change in the square of the correlation coefficient

between the ensemble mean and analysis with forecast lead time

for the four seasons during 2010.
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Figure 10 shows the time series of RMSE for ERAW,

Ebc2%, and Er2 for the 24- and 240-h forecasts of 2010.

Ebc2% and Er2 represent the bias-corrected forecasts

with the decaying method and combined decaying–

reforecast method, respectively. For the 24-h forecast

(Fig. 10a), the Ebc2% RMSE is smaller than the raw

forecast for the majority of the period. Including the

reforecast bias correction (Er2) does not change fore-

cast accuracy noticeably since the weight of the refor-

ecast is small at this short lead time (see Fig. 9). For

the 240-h forecast, Ebc2% does not always improve the

forecast, but shows a significant degradation in the

forecast during the spring season. Our results agree with

those in Cui et al. (2012), who found that the decaying

averaging method mainly works well for the first few

days. It is also very clear that the combined method

performs better than the decaying average method, ex-

cept at the end of January, when the reforecast degrades

the operational bias-corrected product. The combined

method leads to a maximum improvement in April–

June.

Figure 11 displays the corresponding seasonal-

average RMSE and spread. The result using the refor-

ecast bias correction is added into the comparisons to

see if there is any gain from using the decaying average

rather than just the reforecast. For the transition sea-

sons, the reforecast correction always gives the best

performance. The combined method slightly degrades

the reforecast-corrected forecast. In summer andwinter,

in general, the results are very similar between the re-

forecast and combined methods. Although the com-

bined method beats the decaying method most of the

time (Fig. 10), we still think the decaying method is a

valuable or operationally applicable method. Here, we

try to find a practical method of improving the forecast

accuracy (RMSE) and reliability (bias free). Based on

our study, large reforecast samples (at least 5 yr) will

provide relatively ideal calibrated results (although

there may not be enough cases for rare events).

Figure 10 gives a maximum benefit from our study. In

our real application, it is impossible to offer full en-

semble reforecasts for many years (because of limited

resources). In most cases, we can only provide a very

limited number of reforecast samples; therefore, the

decaying method (short hindcast training) is still a

valuable (or operationally applicable) method. For the

limited reforecast sample (25-yr, 1-day span), the re-

forecast method is not as good as decaying for the winter

season (Fig. 3a).

6. Conclusions

In this paper, we develop a method for improving the

NAEFS first-moment correction by using a 26-yr GEFS

reforecast dataset. We use 24- and 25-yr GEFS refor-

ecast bias information to calibrate 2009 and 2010 fore-

casts, respectively. We found that the forecast of 2-m

temperature is strongly biased in the Northern Hemi-

sphere, with a cold bias in the cold season and a warm

bias in the warm season. Most of the bias is removed by

the reforecast method. The decaying method improves

the forecast skill in winter and summer, as does the

reforecast method, but it degrades long-lead forecasts

during transition seasons because of dramatic changes in

the bias characteristics.

Several different methods have been examined to op-

timize the usage of the past 25-yr reforecast information.

FIG. 10. RMSE of 2-m temperature averaged over the NH

for (a) 24- and (b) 240-h forecasts between December 2009 and

November 2010. In the legends, ERAW, Ebc2%, and Er2 denote

the raw (black lines), decaying-bias-corrected (red lines), and

decaying-reforecast-bias-corrected ensemble (green lines) fore-

casts, respectively.
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This is important considering the limited computing

resources. Based on the sensitivity tests for different

reforecast samples, we found that the 25-yr weekly

training dataset is a good option for reducing compu-

tational expense while maintaining the desired skill.

To provide an option for improving forecast accuracy

during transition seasons, we add reforecast information

into the current operational bias-correction method.

The relative contribution of the two methods is quanti-

fied by using a correlation coefficient between the en-

semble mean and the analysis. In general, the combined

method performs better than the decaying average

method except at the end of January. The maximum

improvement occurs in April–June.

The current work and previous studies (Hamill et al.

2013) demonstrate the important value of using refor-

ecast information to improve forecast skill. However,

bias and its seasonal variation are model dependent.

Whether the improvement found here will occur in the

new GEFS version needs to be confirmed in the future.

Frequent model upgrades make calibration using re-

forecasting very difficult because creating reforecast

datasets requires huge computer resources. Hamill et al.

(2014) are working toward finding the most valid con-

figuration of the real-time GEFS reforecast runs. This

would make a calibration using the reforecast method

feasible in operations.
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