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ABSTRACT

The main task of this study is to introduce a statistical postprocessing algorithm to reduce the bias in the

National Centers for Environmental Prediction (NCEP) and Meteorological Service of Canada (MSC) en-

semble forecasts before they are merged to form a joint ensemble within the North American Ensemble

Forecast System (NAEFS). This statistical postprocessing method applies a Kalman filter type algorithm to

accumulate the decaying averaging bias and produces bias-corrected ensembles for 35 variables. NCEP

implemented this bias-correction technique in 2006. NAEFS is a joint operational multimodel ensemble

forecast system that combines NCEP and MSC ensemble forecasts after bias correction. According to op-

erational statistical verification, both the NCEP and MSC bias-corrected ensemble forecast products are

enhanced significantly. In addition to the operational calibration technique, three other experiments were

designed to assess and mitigate ensemble biases on the model grid: a decaying averaging bias calibration

method with short samples, a climate mean bias calibration method, and a bias calibration method using

dependent data. Preliminary results show that the decaying averaging method works well for the first few

days. After removing the decaying averaging bias, the calibrated NCEP operational ensemble has improved

probabilistic performance for all measures until day 5. The reforecast ensembles from the Earth System

Research Laboratory’s Physical Sciences Division with and without the climate mean bias correction were

also examined. A comparison between the operational and the bias-corrected reforecast ensembles shows

that the climate mean bias correction can add value, especially for week-2 probability forecasts.

1. Introduction

Over the last decade, a global forecast model–based

global ensemble forecast system [such as the National

Centers for Environmental Prediction’s (NCEP) Global

Ensemble Forecast System (GEFS)] has been found

to be useful for medium-range probabilistic forecasting.

Ensemble forecasting has been embraced as a practical

way of estimating the uncertainty of weather forecasts

and of making probabilistic forecasts (Toth and Kalnay

1993, 1997; Molteni et al. 1996; Houtekamer et al. 1996).

However, ensemble forecasts still suffer from model and

ensemble formation related shortcomings (i.e., imperfect

model physics, initial conditions, and boundary condi-

tions for regional ensembles). As Toth et al. (2003) indi-

cated, ensemble forecasts contain systematic errors and

these systematic errors remain and cause biases in the

first and second moments of the ensemble distribution.

To make a skillful medium-range forecast, it is necessary

to run postprocessing algorithms to remove these system-

atic errors before the ensemble forecasts can be used.

A large variety of numerical weather prediction post-

processing methods have been proposed and tested by

many investigators (Gel 2007; Hacker and Rife 2007;

Yussouf and Stensrud 2006; Cheng and Steenburgh

2007). These techniques are designed for deterministic

forecasts and work well for near-surface variables. There
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have been many attempts to postprocess ensemble fore-

casts to provide reliable probability forecasts. Recent work

includes ensemble model output statistics (Gneiting et al.

2005), gene-expression programming (Bakhshaii and Stull

2009), and the Bayesian model averaging method (Raftery

et al. 2005; Krzysztofowicz and Evans 2008). These meth-

ods gained broad attention in the ensemble postprocessing

community. However, these techniques are still in devel-

opment. The need remains for ensemble statistical post-

processing. Further research in this direction is desirable.

Postprocessing of ensemble forecasts is a necessary

and important step for the daily operational runs at

numerical weather prediction centers. Reliability, ac-

curacy, and efficiency are the most important issues for

daily operations. In this paper, we first introduce a statis-

tical postprocessing algorithm to adjust the first moment

of ensemble forecasts. This statistical postprocessing

method applies an adaptive [Kalman filter type (KF)]

algorithm to accumulate the decaying averaging bias. In

statistics the Kalman filter is a mathematical method

named after R. E. Kalman (Kalman 1960). It is mainly

used to estimate system states that can only be observed

indirectly or inaccurately by the system itself and its

process is carried out iteratively. The estimates pro-

duced by this method tend to be closer to the true values

than the original measurements because the weighted

average has a better estimated uncertainty than either of

the values that went into the weighted average (Kalman

1960). The basic ideas of KF are straightforward and the

KF method turns out to be useful for many applications

in science, engineering, and economics. We design

a specific algorithm based on the KF concept to estimate

ensemble forecast errors and we call the bias estimation

and correction process the decaying averaging method.

This method was developed by the National Weather

Service (NWS) at NCEP and was implemented opera-

tionally in 2006 at NCEP to reduce the bias of the NCEP

and Canadian Meteorological Centre (CMC) ensemble

forecasts. The calibrated NCEP and CMC global en-

sembles are then are merged to form a joint ensemble

within the North American Ensemble Forecast System

(NAEFS; Zhu et al. 2012b). NAEFS is an operationally

joined multimodel ensemble forecast system, which

combines the NCEP and CMC ensemble forecasts after

bias correction (Zhu et al. 2012a; Zhu and Cui 2012).

We also test three different calibration experiments

that are designed to assess and mitigate ensemble biases

in the first (mean) moment of the ensemble on the model

grid with respect to analysis fields: a decaying averaging

bias calibration method with a short sample, a climate

mean bias calibration method, and a bias calibration

method using dependent data. The decaying averaging

bias calibration method with a short sample is similar to

the technique implemented in NCEP’s GEFS, but uses

training data for a fixed long period. The second calibra-

tion method uses a climate mean bias to do the bias cor-

rection, which is supported by a 25-yr ensemble reforecast

experiment. This reforecast experiment is another en-

semble run operationally at NCEP with a frozen analysis/

modeling system developed by scientists at the Earth

System Research Laboratory’s Physical Sciences Di-

vision (ESRL/PSD; formerly the Climate Diagnostics

Center, CDC). The ESRL/PSD reforecast is run opera-

tionally to produce a dataset of historical weather fore-

casts generated with a fixed numerical model, the 1998

version of NCEP’s Global Forecast System (GFS; http://

www.esrl.noaa.gov/psd/forecasts/reforecast/). A refor-

ecast for each day since 1979 has been made with this

GFS version, which is composed of a 15-member en-

semble forecast run out to 15 days (Hamill et al. 2004,

2006). From the collected 25 yr of reforecast data, cli-

mate mean forecast errors are diagnosed and the re-

forecast data are calibrated by removing these errors to

increase the reforecast ensemble skill. The design and

usages of the second method aim at taking advantage of

week-2 forecasts from the long historical reforecast data.

The purpose of this study is to introduce and compare

several statistical postprocessing methods to assess and

mitigate ensemble biases in the first (mean) moment of

the ensemble. The decaying averaging method NCEP

runs operationally is described in section 2. How and

why a specific decaying parameter is chosen will be dis-

cussed. The three different experiments [i.e., the decaying

average method with a short sample, the ESRL/PSD re-

forecast calibration method, and the bias-correction

method using dependent data (optimal calibrated en-

semble)] are described in section 3. Some statistical

evaluation methods used in this paper are also reviewed

in section 3. Section 4 contains the evaluation of the

several calibration methods. Results from the calibrated

NCEP/GEFS and CMC/GEFS datasets will be compared

with the raw NCEP and CMC ensembles to evaluate

the performance of the operational bias-correction

method. The results from the three calibration experi-

ments (i.e., the decaying averaging bias correction of

NCEP/GEFS, the climate mean bias correction of ESRL/

PSD reforecast, and the optimal calibrated ensembles)

are also compared. The relative merits of using the cur-

rent best analysis/modeling system with a small sample,

versus the merits of an older and frozen analysis/modeling

system that has a long forecast sample for the bias

correction, will be examined. In general, these two

calibration methods for the NCEP/GEFS and ESRL/

PSD reforecast ensembles are incompatible because of

their different uses of model systems. However, these

comparisons are not of the superiority of one method over
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another but to help us illustrate the possibility of improving

the current operational decaying averaging method to im-

prove week-2 forecasts. Finally, the preliminary conclusions

of this research and our future plans are summarized in

section 5.

2. The design of the NCEP bias-correction
method—Decaying average

NCEP implemented a statistical postprocessing al-

gorithm (i.e., the decaying averaging bias-correction

method) to calibrate global ensemble forecasts in 2006.

The bias-correction method is applied to the NCEP and

CMC global ensembles. The operational NCEP/GEFS

system configuration is described in Toth et al. (2012)

and Wei et al. (2008). The 20-member ensembles are

produced at T126L28 horizontal and vertical resolutions.

The perturbations of the initial conditions are from the

ensemble transform with rescaling (ETR) technique. The

operational CMC ensemble is described in Charron et al.

(2010). A single dynamical core [i.e., the Global Envi-

ronmental Multiscale (GEM) model] is used to produce

the ensembles. A multiparameterization approach and

stochastic perturbations are used in order to sample model

error for the 20 members of the ensembles. Due to the

different ensemble configurations, the bias estimation and

correction processes of NCEP/GEFS and CMC/GEFS will

be adjusted to meet their specific characteristics.

The operational environment requires that the en-

semble postprocessing algorithms be relatively applicable

and flexible for implementation. The decaying averaging

method applies an adaptive algorithm, and its application

includes two steps. The first step is to estimate the first-

moment bias with respect to the analysis field, which is

called the decaying averaging mean error. The second

step is to remove the error from the ensemble forecasts.

Both the bias assessment step and the bias-correction

step are carried out separately at each forecast lead time,

on each individual grid point and for each initial cycle.

a. Bias estimation

The bias bi,j(t) for each lead-time t (a 6-h interval up to

384 h), and each grid point (i, j), is defined as the dif-

ference between the analysis ai,j(t) and forecast fi,j(t) at

the same valid time t0, on the latest available analysis:

bi,j(t) 5 fi,j(t) 2 ai,j(t). (1)

b. Decaying average

The average bias Bi,j(t) will be updated by considering

the prior period bias Bi,j(t 2 1) and current bias bi,j(t) by

using the decaying average with the weight coefficient w:

Bi,j(t) 5 (1 2 w)Bi,j(t 2 1) 1 wbi,j(t). (2)

This decaying average bias estimation method is a

convenient way to consider the most recent behavior of

weather systems. Once initialized, the bias estimate can

be updated by considering just the current forecast error

with regard to the stored bias fields. The weight factor w

controls how much influence to give the most recent data.

A w equal to 2% is used for the NCEP/GEFS and CMC/

GEFS bias accumulations, which include mainly the past

50–60 days of information (Fig. 1). Experiments with

a choice of 2% weight and other values (0.25%, 0.5%,

1%, and 10%, respectively) have been conducted. The

details will be discussed in section 4.

c. Bias correction

The new bias-corrected forecast Fi,j(t) will be gener-

ated by applying the decaying average bias Bi,j(t) to

current forecasts fi,j(t) at each lead time and each grid

point:

Fi,j(t) 5 fi,j(t) 2 Bi,j(t). (3)

Steps 1–3 allow users to accomplish the bias-correction

procedure for both NCEP/GEFS and CMC/GEFS. Note

that this procedure contains two options. The first is that

the NCEP/GEFS and CMC/GEFS can be grouped to-

gether before postprocessing, and then the bias correc-

tion is applied to the joint ensemble. The second option

is to apply the bias correction to the NCEP and CMC

ensembles separately and then the NCEP/GEFS and

CMC/GEFS are grouped together after postprocess-

ing. Although the first option is an easy approach, it may

not provide the best results since each participating en-

semble may have unique biases due to its own ensemble

generation configuration. Specific treatments are needed

for each participating ensemble. NCEP uses one model

and perturbed initial conditions to create its ensemble

(Toth et al. 2012; Wei et al. 2008). The model-related

systematic errors grow with lead time and it is assumed

that the forecast errors obtained from the ensemble mean

can stand in for the systematic errors. The NCEP/GEFS

biases are estimated from the ensemble mean with re-

spect to the NCEP analysis, and the same bias estimation

is applied to each ensemble member during the calibra-

tion. On the other hand, the Canadian ensemble includes

20 perturbed forecasts and 1 control forecast. All are

performed with the GEM model but use different physics

parameterizations, data assimilation cycles, and sets of

perturbed observations (http://www.weatheroffice.gc.ca/

ensemble/index_e.html). Therefore, the individual bias is

estimated and used to correct each individual member
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independently. For ease and efficiency, each partici-

pating ensemble calibrates its raw forecast against its

own analysis.

The bias-correction procedure generates ensemble

output on 18 3 18 latitude–longitude grids for 35 selected

variables. Table 1 lists all the variables that are post-

processed for both the NCEP/GEFS and CMC/GEFS.

The selection of these variables depends heavily on the

assumption that the forecast variable is well represented

by the Gaussian distribution. It will not work very well

for non-Gaussian-distributed variables, such as precip-

itation. A new method is required for non-Gaussian-

distributed variables.

3. Experiments for comparing the usage of
reforecast information

In addition to the decaying averaging bias-correction

method used operationally for the NCEP/GEFS and

CMC/GEFS, three other postprocessing methods were

designed in this study to assess and mitigate ensemble

biases in the first moment of the ensemble. The discrep-

ancies among these three methods are a way of estimating

bias, which are through using decaying averaging with

a short sample, climate mean errors from the ESRL/PSD

reforecast, and from dependent data, respectively. Dis-

crepancies contribute to the error estimation and the

differences show the amount of improvement.

a. Bias estimation from decaying averaging with short
training data

The first method applies the Kalman-filter-type al-

gorithm to get bias estimations through the following

procedure: First, a prior estimate starts the procedure. At

a given day T, we calculate the time mean forecast errors

between days T 2 46 and T 2 17 to create an initial av-

erage. Second, the average is updated by setting it to the

weighted average of the new forecast error at day T 2 16

with a weight of w, and to the previous average with a

weight of 1 2 w (0 # w , 1). Third, we repeat the second

step every day from day T 2 15 to T 2 1; we call this cycling.

Experiments with different decay weights w (1%, 2%,

TABLE 1. List of postprocessed variables for the NCEP/GEFS and

CMC/GEFS ensembles.

Ensemble

CMC/GEFS (20 members) and NCEP/GEFS

(20 members, control, and GFS)

Grid 18 3 18

Domain Global

Format World Meteorological Organization

(WMO) gridded binary (GRIB) format

Hours 6 hourly out of 384 h

GZ, TT, U, V 200, 250, 500, 700, 850, 925, 1000 hPa

MSLP, surface

pressure

Mean sea level pressure, surface pressure

TT, Tmax, Tmin,

U, V

2im temp, 2-m max and min temperature,

10-m U and V

FIG. 1. Historical information (days) used for different decaying average weights (0.01, 0.02,

and 0.05). Accumulated area (under the curve) is equal to 1.0.
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and 10%, respectively) were conducted and a detailed

discussion of these results can be found in Section 4.

This method is different from the operational decay-

ing averaging technique as it chooses a fixed-length pe-

riod of training data. The application of this method is

not applicable in operations since it requires a huge

amount of disk space to save 46 days of forecasts online.

The design and testing of this method was done before

the final operational technique was selected. The current

operational decaying averaging technique is adapted

from it and is much simpler to implement. The bias esti-

mate in operations is carried out iteratively, which takes

the use of a long training dataset but does not require

this extra dataset to be saved onto disk. The operational

method is more flexible in practice and avoids the issue

involved with the disk space required to save data for

days T–46 through T – 1. However, results from the

bias-corrected ensemble using 46 days of training data

are still useful. Comparisons between this approach and

the other calibration techniques will help to identify

their strengths and weaknesses.

b. Climate mean bias estimation from ESRL/PSD
reforecast ensemble

A second method of assessing the bias is by using the

climatological mean forecast error, which is obtained

from the ESRL/PSD 25-yr reforecast ensemble (from

1978 to 2003). Hamill et al. (2004) thought that it was not

effective to perform a bias correction with only a short

set of prior forecasts because systematic errors may not

be well established if only a few cases are used in the

tests, but that errors may be more obvious with the

larger sample afforded by a reforecast. With the model

output statistics (MOS) techniques (Glahn and Lowry

1972; Carter et al. 1989; Vislocky and Fritsch 1995) and

a frozen forecast model, their results show that dramatic

improvements in medium- to extended-range probabi-

listic forecasts are possible by using retrospective fore-

casts. Motivated by their success, especially for the week-2

probabilistic forecast, we introduced the climatological

mean forecast error into our bias correction and utilized

it as the bias estimate. Following the first-moment bias-

correction procedure mentioned above, the climatological

mean forecast error is removed from the ESRL/PSD

reforecast for each forecast lead time and individual

grid point. The reforecast ensembles with and without

the climatological bias correction are then examined and

compared to the NCEP operational ensembles calibrated

from decaying averaging with short training data. Please

note that it is only for convenience that we classify the

two ensemble datasets as the operational and reforecast

ensembles, because the reforecast is also being run op-

erationally at ESRL/PSD.

c. Bias estimate using dependent data

A third way of estimating the first-moment bias of the

ensemble is through the calculation of a 31-day running-

mean forecast error centered on day T. The imple-

mentation of this method is not feasible operationally

but is used as an optimal benchmark. The optimal sce-

narios, therefore, are compared to the raw and cali-

brated ensembles to show how large the improvement in

the ensemble forecast could possibly be when using the

first-moment adjustment technique.

The three bias-correction techniques discussed above

are applied to the NCEP/GEFS operational and ESRL/

PSD reforecast ensembles, respectively. The bias esti-

mation and bias correction are carried out separately

at each forecast lead time and for each individual grid

point. The bias correction is applied to all ensemble

member forecasts. The fields studied include the NCEP/

GEFS and ESRL/PSD reforecast ensemble 500-hPa

geopotential heights and 850-hPa temperatures for the

period 1 March 2004–28 February 2005 for the 0000 UTC

initial cycle. Other calibrated fields available from the

operational ensemble include the 2-m temperature and

10-m U and V components (not shown in this paper).

Each data source creates three different ensembles: the

raw, bias-corrected, and optimal ensembles. For the op-

erational NCEP/GEFS ensemble, the three ensembles

are named OPR_RAW, OPR_DAV2% (removing the

decaying average bias estimate), and OPR_OPT, re-

spectively. For the ESRL/PSD reforecast ensemble, the

three ensembles are named RFC_RAW, RFC_COR

(removing the climatological mean bias estimate), and

RFC_OPT, respectively. All of the ensemble forecasts

and analyses are on grid points with a spacing of 2.58 3

2.58 globally. The NCEP operational analysis is used for

the bias estimation and verification calculations.

d. Evaluation methods

Several probabilistic (for ensemble distribution) and

deterministic (for ensemble mean) verification methods

are used to evaluate the ensemble forecast performance,

such as the ranked probability skill score (RPSS), the

relative operating characteristics (ROC) skill score,

excessive outlier, the pattern anomaly correlation co-

efficient (PAC), the root-mean-square error of the

ensemble mean (RMS), and the relative economic

value.

The RPSS score is one of the most important mea-

sures for evaluating the performance of probabilistic

forecasts (Toth et al. 2003). The higher the RPSS score

(the maximum is 1), the better the probabilistic system

is by being both reliable and exhibiting high resolu-

tion. The best probabilistic system would be rewarded
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by a RPSS score of 1. The ROC skill score is a measure

of the forecast system resolution (Y. Zhu et al. 1996;

unpublished manuscript, 2002). A ROC skill score of 1

corresponds to a perfect forecast while 0 indicates no

skill above the sample climatology. The continuous

ranked probability skill score (CRPSS) measures the

reliability and resolution. For statistics over a long

period, CRPSS is very similar to RPSS (Zhu and Toth

2008). Therefore, either one of these two measures are

used, whichever is more convenient.

4. Results and discussion

Issues examined in this section include (a) the choice

of decaying averaging weight factors, (b) the results of

bias-correction techniques applied to the NCEP/GEFS

and CMC/GEFS ensembles, and (c) comparisons of the

three experimental calibration techniques.

a. Tests of different decaying averaging weights

The first issue when applying the decaying averaging

method is the choice of the decaying weight w. Different

w’s had been chosen and tested. Figure 2 shows some of

the decaying weight sensitivity test results. Among the

six curves in Fig. 2, the curve OPR_OPT is for the cali-

brated NCEP/GEFS result using dependent data and

the curve OPR_RAW is for the raw NCEP ensemble

forecast. The other four curves (OPR_RUN_DAV2%,

OPR_RUN_DAV1%, OPR_RUN_DAV0.5%, and

OPR_RUN_DAV0.25%) are for the RPSSs of 500-hPa

geopotential height that are averaged from 1 March

2004 to 28 February 2005 for the Northern Hemisphere

with decaying weights of 2%, 1%, 0.5%, and 0.25%,

respectively. All four calibrated ensembles show im-

provements compared with the raw ensemble OPR_RAW

for all lead times. There is little room for further im-

provement compared with the OPR_OPT test for short

lead times until day 4. Though the four curves are

close together, for short lead times OPR_DAV2% is

better than the other decaying weights. On the other

hand, OPR_DAV0.25% is the best for week-2 fore-

casts. Other statistics are calculated that show the 2%

ensemble produces large improvements in ROC and

BSS scores over the Northern and Southern Hemi-

spheres. The improvement of these scores in summer

is more significant than in spring. A higher decaying

weight (10%) is also investigated and compared with

2%. The choice of a 10% weight works better for the

tropics compared to 1% or 2%. In general, the 2% weight

works better for most regions and seasons (not shown).

For an optimal result, the decaying accumulated bias with

a 2% weight is used in operations and is updated every

day for all 35 selected variables.

For a better understanding and explanation of the

above results, another issue related to the postprocessing

algorithm design is quickly reviewed here—a comparison

FIG. 2. RPSS of 500-hPa geopotential height averaged from 1 Mar 2004 to 28 Feb 2005 for the

Northern Hemisphere with decaying weights of 0.25%, 0.5%, 1%, and 2%.
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FIG. 3. Mean error (solid) and mean absolute error (dashed) of 2-m temperature averaged

from 1 Jun to 31 Aug 2008 for the Northern Hemisphere for the (a) NCEP/GEFS and (b) CMC/

GEFS ensembles. E20s/E20m is for the raw ensemble forecast and E20sb/E20mb is for the bias-

corrected ensemble forecast.
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FIG. 4. CRPSS of 2-m temperature averaged from 1 Jun to 31 Aug 2008 for the Northern

Hemisphere for (a) NCEP/GEFS and (b) CMC/GEFS. E20s/E20m is for the raw ensemble

forecast, and E20sb/E20mb is for the bias-corrected ensemble forecast.
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FIG. 5. RPSS of 850-hPa temperature averaged from 1 Sep to 30 Nov 2009 for the Northern

Hemisphere for (a) NCEP/GEFS and (b) CMC/GEFS. E20s/E20m is for the raw ensemble

forecast and E20sb/E20mb is for the bias-corrected ensemble forecast.
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between the decaying average and equal weight bias

estimate approaches. The equal weight approach also

makes a first-moment bias calculation over some pre-

vious days but with equal weighting for each day. We

applied the equal weight bias estimate method to two

seasons of the 2004 operational NCEP/GEFS ensemble

and compared the results with the decaying weight

OPR_DAV2%. Results from the equal weight and de-

caying weight are very similar (less than 2% weight for

a longer forecast; not shown). The reasons to choose the

decaying weight and not the equal weight include (a) the

decay method having a higher weight for the latest in-

formation, which is good for a flow-dependent system

(short-term forecast), and (b) the application of the decay

weight method being operationally cost effective. There

is no need to save extra data on the central computer

system, and bias estimates can include more historical

information through continuous updates once the latest

analysis is available. In general, the result from the

decaying average will be better than any single average

(equal weight) method.

b. NCEP/GEFS and CMC/GEFS bias correction in
operation

Figure 3 shows the mean forecast error (solid) and the

mean absolute forecast error (dash) of 2-m temperature

for the Northern Hemisphere. Curves E20s/E20m are

for the raw ensembles and E20sb/E20mb are for the

bias-corrected ensembles. All are from 20-member en-

sembles. The NCEP/GEFS raw ensemble has a warm

bias tendency (curve E20s; see Fig. 3a) and CMC/GEFS

displays a cold bias tendency (curve E20m; see Fig. 3b)

at all lead times. After bias correction, the mean errors

of both the NCEP and CMC ensembles are very close

to zero. Meanwhile, mean absolute errors of the bias-

corrected ensembles are also reduced, indicating that

the change of the mean error does not come from the

balance of positive and negative values. This suggests

that the bias-correction technique can effectively alle-

viate the ensemble forecast system from overpredicting

(too warm) or underpredicting (too cold) temperatures.

The calibrated ensemble forecasts become closer to

the actual temperatures. However, the extents to which

the bias corrections can improve the raw ensembles are

different for NCEP/GEFS and CMC/GEFS because

of the different characteristics of the NCEP and CMC

ensemble systems.

Figure 4 shows CRPSS scores of the 2-m temperature

for 2008 summer, verified over the Northern Hemi-

sphere. Values added from the bias correction are no-

ticeable for both NCEP/GEFS and CMC/GEFS. Figure 5

shows the RPSS of 850-hPa temperature for fall 2009.

Both the NCEP/GEFS and CMC/GEFS are improved

due to calibration. Overall, the bias reductions globally

FIG. 6. NCEP/GEFS CRPSS of 1000-hPa height averaged from 1 Dec 2007 to 29 Feb 2008 for

the Northern Hemisphere. E20s is for the raw ensemble forecast and E20sb is for the bias-

corrected ensemble forecast.
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(absolute value) after calibration can reach up to 75%

for days 0–3, 60% for days 2–8, and 45% for days 8–15

for the 500-hPa height field (not shown). More evalua-

tion results such as PAC and relative economic value

(Zhu et al. 2002) are also examined. These results are

available online (http://www.emc.ncep.noaa.gov/gmb/

yzhu/html/opr/naefs.html) and are updated seasonally.

In general, there are skill gains for forecast days 1–6 due

to bias correction.

However, the calibration technique does not work

well in all circumstances. For some seasons and variables

there is no skill improvement for the week-2 forecast.

Figure 6 shows there is almost no improvement for the

1000-hPa height field RPSS score after day 7. Previous

studies have indicated that there remains room for im-

provement in the week-2 forecasts, as can be seen when

comparing the calibrated and the optimal ensembles

displayed in Fig. 2. How can we improve the current

calibration technique? Do we need a hindcast for the

calibration of the week-2 forecast? These questions will

be discussed in the next section.

c. Calibration techniques comparison

Figure 7 shows the annual mean RPSS scores of the

500-hPa geopotential heights verified over the Northern

Hemisphere. Of the three operational NCEP/GEFS en-

sembles, the one with optimal bias correction (OPR_OPT)

gets the highest RPSS scores among the six curves. The

decaying average bias-correction algorithm also works

well. The RPSS of the OPR_DAV2% is improved

versus the OPR_RAW for all lead times, but especially

in the short range, which can be judged from the small

distance between the two curves OPR_DAV2% and

OPR_OPT.

For the three reforecast ensembles, it is not sur-

prising to note that the optimal bias-corrected en-

semble (RFC_OPT) shows the best performance when

compared with the raw and climatological bias-corrected

ensembles (RFC_RAW and RFC_COR). A com-

parison between RFC_RAW and RFC_COR shows

that RFC_COR has a noticeable RPSS improvement

versus RFC_RAW, especially for the week-2 forecasts.

Using the climatological mean bias estimate, it is possi-

ble to make probabilistic week-2 forecasts more skillful

than the raw reforecast. The RFC_COR comes from

a reforecast ensemble with an older version of the

model, which has initial data of relatively poorer quality

compared with the operational ensembles, including

OPR_RAW and OPR_DAV2%. However, RFC_COR

has an even better level of performance than OPR_RAW

FIG. 7. RPSS of Northern Hemisphere 500-hPa geopotential height from 1 Mar 2004 to 28 Feb

2005 comparing the NCEP operational forecast (OPR) and ESRL reforecast (RFC): OPR_RAW

is the NCEP operational raw ensemble forecast, OPR_OPT is the NCEP operational forecast

using optimal bias correction, OPR_DAV2% is the NCEP operational forecast using a 2% weight

for bias correction, RFC_RAW is the raw reforecast, RFC_OPT is the reforecast after optimal bias

correction, and RFC_COR is the reforecast after removing the climatological mean bias.
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and OPR_DAV2% after day 10 (Fig. 7), indicating the

effectiveness of a large data sample in improving week-2

forecasts.

Figure 8 shows the annual mean RMS error of the

ensemble mean forecasts for 500-hPa height, verified

over the Northern Hemisphere. The six curves coming

from the six ensembles for forecast days 1–6 are divided

into two clusters that belong to the operational and re-

forecast ensemble forecast groups, respectively. Of the

three operational ensembles, OPR_OPT has the lowest

RMS error among the six ensembles. The OPR_DAV2%

has reduced RMS errors for the first week compared with

OPR_RAW but its RMS becomes larger for week-2

forecasts. However, the two similar curves of OPR_OPT

and OPR_DAV2% for the first week suggest that there is

only a limited opportunity for future improvement in bias

correction for the first few days. The big distance between

the OPR_OPT and OPR_DAV2% curves for week 2

indicates that the OPR_DAV2% calibration technique

has the potential to improve extended forecasts.

Of the three reforecast ensembles, RFC_COR has

smaller RMS values than does RFC_RAW for all lead

times, even for week 2. A comparison between the

operational and reforecast ensembles shows that the op-

erational ensemble mean (OPR_RAW) has a much lower

RMS error than the ESRL/PSD hindcast (RFC_RAW).

The RFC_RAW short-range error is around 50%

larger than that of OPR_RAW. Though the reforecast

runs start from relatively poorer quality initial data than

are used in the operational ensemble, RFC_COR works

for short-range forecasts and its curve with reduced

RMS error comes close to the OPR_RAW curve after

day 10. Both Figs. 7 and 8 show that the decaying av-

eraging with a 2% weight and 45 days of training data

works very well in the short range. All measures are

improved until day 5.

Figures 9 and 10 are the RPSS and ROC skill scores

of 850-hPa temperature for the summer of 2004, ver-

ified over the Northern Hemisphere. Results are

similar to those shown for the 500-hPa height. The

OPR_DAV2% has better performance than OPR_RAW,

and RFC_COR also shows noticeable improvement

versus the RFC_RAW. Notice that there is poor per-

formance in the short range for RFC_COR versus

RFC_RAW, starting from the initial time. We think this

was caused by the bias between the reanalysis, which was

used during the climatological bias estimation, and the

operational analysis, which was used for the ensemble

evaluation. The climatological bias estimate is calculated

from the difference between the daily forecast and veri-

fication climatologies as a function of forecast lead time.

The climatologies are computed from 31-day running

means using data from 1979 to 2003. Therefore, there is

an existing bias between the operational analysis and the

verification climatologies. Such a bias can be mitigated or

removed through bias correction.

FIG. 8. As in Fig. 7, but for RMS errors from the ensemble mean.
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Other bias-corrected variables include 2-m tempera-

ture and 10-m U and V components (not shown). Based

on the results from different variables, some tentative

conclusions may be drawn.

The decaying averaging (DA) with a 2% weight and

45 days of operational training data works very well over

the short range (almost as well as the ‘‘optimal), which

makes its application possible for frequent updates of

the DA/NWP modeling system. On the other hand, the

climatological mean bias correction can add value, es-

pecially for week-2 probability forecasts. Since the op-

erational analysis–modeling system that supports the

NCEP/GEFS ensemble undergoes frequent (once or

twice a year) changes, it would be a very large com-

puting problem if the reforecast method requiring the

same model used for operational forecasting was also

used for the reforecasting. No such long-term archive

based on the most recent analysis–modeling system is

available for the reforecast ensemble. The generation

of a large hindcast ensemble is expensive but may be

helpful. The use of up-to-date data assimilation/NWP

techniques is imperative at all ranges.

5. Summary and future plans

A statistical postprocessing algorithm (i.e., the decay-

ing average method) has been applied to the NCEP/

GEFS and CMC/GEFS to generate calibrated forecasts.

The implementation of this technique is expected to

improve NCEP and CMC global ensemble forecasts in

order to provide more accurate NAEFS products. Due to

the different ensemble configurations, calibration strate-

gies applied to the NCEP and CMC ensembles have been

adjusted. The NCEP/GEFS is created by using one model

with perturbed initial conditions. We assume the biases

from one model have a kind of similarity, and ensemble

mean biases are thought to be able to represent these

systematic errors. Therefore, NCEP/GEFS uses the en-

semble mean bias to calibrate each member. For CMC/

GEFS, the bias for each individual ensemble member is

calculated and used for that member. Both the NCEP/

GEFS and CMC/GEFS benefit from the application of

bias correction. Several studies have shown that NAEFS,

when compared to the CMC and NCEP ensemble sys-

tem, shows significant improvements both in terms of

reliability and resolution (Zhu and Toth 2008; Candille

2009). Even with the attractive properties of the decaying

average method, its limitations and performance for some

variables in week 2 forecasts in some seasons represent a

major drawback. There is room for future improvement

from (a) adjusting weights to allow a longer training time

and (b) to take advantage of reforecasts/hindcasts.

To further improve the current operational bias-

correction technique, three other experiments were

designed and assessed using annual retrospective ex-

periments from 1 March 2004 to 28 February 2005. Re-

sults show that the decaying average bias estimation

method with a short sample works well for the first few

FIG. 9. As in Fig. 6, but for the RPSS of 850-hPa temperature for June–August 2004.
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days. The calibrated NCEP/GEFS ensemble, after re-

moving time mean forecast errors for the most recent

period, has an improved probabilistic performance for

all measures until day 5. The reforecast ensembles from

ESRL/PSD with and without a climate mean bias cor-

rection are also examined. A comparison between the

NCEP/GEFS and ESRL/PSD bias-corrected ensemble

forecasts shows that a climate mean bias correction can

add value, especially for week-2 probability forecasts.

This conclusion is very similar to the studies by Hamill

et al. in multiple papers (e.g., Hamill et al. 2004, 2006).

The major drawback of climate mean bias correction

is the need for a long training dataset, and since a refore-

cast works best with a frozen model, the database must

be completely rebuilt whenever the model is updated,

which requires large computing resources. In this way,

routine improvements to the model are incorporated in

the reforecast-based products as soon as they are imp-

lemented. However, due to the good performance of the

climate mean bias correction, the current reforecast

ensemble uses an old low-resolution version of the model

system and it is worth the effort to generate the reforecast

dataset and apply it to the ensemble postprocessing.

NCEP has plans with ESRL/PSD to jointly implement

a real-time hindcast experiment in the 2011–12 time

frame and utilize additional resources to generate a set

of historical ensemble reforecasts (20 yr). The operational

forecast model will be applied to the reforecast configu-

rations. Our postprocessing study will benefit from this

new high-resolution reforecast dataset. Using the refor-

ecast dataset, we will be able to test our postprocessing

methodology and compare it with the calibration method

developed by ESRL/PSD. New bias-correction methods

developed under The Observing System Research and

Predictability Experiment (THORPEX) project will also

be considered for use in the NAEFS statistical post-

processing system.
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