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ABSTRACT

In the past decade ensemble forecasting has developed into an integral part of numerical weather prediction.
Flow-dependent forecast probability distributions can be readily generated from an ensemble, allowing for the
identification of forecast cases with high and low uncertainty. The ability of the NCEP ensemble to distinguish
between high and low uncertainty forecast cases is studied here quantitatively. Ensemble mode forecasts, along
with traditional higher-resolution control forecasts, are verified in terms of predicting the probability of the true
state being in 1 of 10 climatologically equally likely 500-hPa height intervals. A stratification of the forecast
cases by the degree of overall agreement among the ensemble members reveals great differences in forecast
performance between the cases identified by the ensemble as the least and most uncertain. A new ensemble-
based forecast product, the ‘‘relative measure of predictability,’’ is introduced to identify forecasts with below
and above average uncertainty. This measure is standardized according to geographical location, the phase of
the annual cycle, lead time, and also the position of the forecast value in terms of the climatological frequency
distribution. The potential benefits of using this and other ensemble-based measures of predictability is dem-
onstrated through synoptic examples.

1. Introduction

During the past decade, ensemble forecasting has be-
come an integral part of numerical weather prediction
(NWP). Major meteorological centers now regularly
produce and use ensemble forecasts (Molteni et al. 1996;
Toth and Kalhay 1993; Rennick 1995; Houtekamer et
al. 1996; Kobayashi et al. 1996). The role of ensemble
forecasting will likely expand in the coming years with-
in the National Weather Service where the use of prob-
abilistic weather, water, and climate forecasts has been
adopted as one of the strategic goals to be achieved by
2005 (NWS 1999). One of the main advantages of en-
semble forecasting is that it can potentially provide case-
dependent estimates of forecast uncertainty (Ehrendor-
fer 1997). To what extent this promise is fulfilled by
the current National Centers for Environmental Predic-
tion (NCEP) global ensemble forecast system (Toth and
Kalnay 1997) is the main topic of the present study.

The generation and verification of probabilistic fore-
casts based on ensembles was the subject of a number
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of recent studies (e.g., Anderson 1996; Hamill and Col-
ucci 1997; Talagrand et al. 1997; Eckel and Walters
1998; Atger 1999; Richardson 2000). General statistics
for the performance of the NCEP ensemble forecasting
system were provided by Zhu et al. [(1996), with a
comparison to that of the European Centre for Medium-
Range Weather Forecasts’s (ECMWF) Ensemble Pre-
diction System], and Toth et al. [(1998); with a com-
parison to that of a single higher-resolution control fore-
cast]. These earlier studies demonstrated that the en-
semble forecasts can be used to generate skillful
probabilistic forecasts, which, after a simple statistical
postprocessing based on verification statistics from the
recent past, become very reliable.

In recent studies (Mylne 1999; Richardson 2000; Zhu
et al. 2001, hereafter ZTW) it was also demonstrated
that the potential economic value associated with the
use of an ensemble forecasting system may be consid-
erably greater than that attainable by using a single,
even-higher-resolution control forecast, given substan-
tial uncertainty in the forecasts (i.e., 500-hPa height
forecasts at and beyond 3 days). Note that in the above
comparisons neither the ensemble nor the control fore-
casts were statistically corrected or postprocessed. It was
also shown (Toth et al. 1998) that the extra value as-
sociated with an ensemble of forecasts as compared to
a single control forecast is due to two main factors: 1)
the ensemble can characterize foreseeable, flow-depen-
dent variations in the uncertainty of the forecasts, and
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FIG. 1. Ten climatologically equally likely intervals, marked by
heavy vertical lines, for a grid point at 408N, 958W, for 500-hPa
height for Apr, based on the NCEP–NCAR reanalysis data. In reality
the intervals on the two sides are open ended; in the figure they end
at the 1% frequency level. Beyond the level of climatological fre-
quency (10% in the vertical scale, dotted horizontal line), two en-
semble distributions as examples for low (lightly hatched) and high
(heavily hatched) uncertainty cases are also indicated.

2) the ensemble can provide a probability distribution
that is more complete than a dichotomous probability
description given by a single forecast.

With appropriate postprocessing using past verifica-
tion statistics, a full probability distribution can be gen-
erated from a single control forecast (see, e.g., Talagrand
et al. 1997; O. Talagrand 1999, personal communica-
tion). Talagrand’s results indicated, however, that post-
processed full probabilistic forecast distributions based
on a single control forecast still did not reach the res-
olution skill level of that provided by a statistically un-
corrected ensemble of forecasts, attesting to the value
of case-dependent uncertainty information provided by
the ensemble. In a recent study, Atger (2001) attempts
to render case-dependent variations in forecast uncer-
tainty to a single forecast, depending on its spatial and
temporal structure. If and to what degree such a statis-
tical approach can compete with an ensemble of fore-
casts based on the estimated initial value uncertainty
and its dynamical evolution (Ehrendorfer 1997) is to be
evaluated.

In this paper we investigate the extent to which an
ensemble of forecasts can distinguish between forecast
situations with lower or higher than average expected
uncertainty, based on their flow-dependent level of sim-
ilarity or dissimilarity. Ensemble forecasts over a period
of a season (section 2) will be stratified according to
the degree of ensemble forecast similarity (section 3).
The main results of this study will be presented in sec-
tion 4. Based on these results, section 5 introduces a
new forecast product, the ‘‘relative measure of predict-
ability.’’ In section 6, the use of different measures of
predictability is demonstrated through synoptic exam-
ples, while the conclusions and discussion are given in
section 7.

2. Ensemble forecast data

In the present study, the NCEP operational global
ensemble forecasts (Toth and Kalnay 1997) will be eval-
uated over the period March–May 1997. The aim here
is to assess the extent to which ensemble forecasts can
distinguish between cases of higher or lower than av-
erage uncertainty. The studied period is from a transition
season that coincides with that of Toth et al. (1998).
Note that predictability in a transition season is typically
lower than in winter but higher than in summer.

The NCEP global ensemble forecasts in 1997 con-
sisted each day of 17 individual forecasts run out to 16
days lead time, of which 3 were control forecasts started
from unperturbed analyses, and 14 were perturbed fore-
casts started from initial conditions where bred pertur-
bations of the size of estimated analysis uncertainty were
both added to, and subtracted from the control analyses
at 0000 and 1200 UTC (Toth and Kalnay 1997). In
section 4, the 14 T62 resolution perturbed forecasts (10
from 0000 UTC, and 4 from 1200 UTC) are evaluated,
along with the 0000 UTC Medium-Range Forecast

(MRF) T126 high-resolution control forecast that pro-
vides a reference level of skill.

The 500-hPa height forecast and analysis data will
be used over the Northern Hemisphere extratropics
(208–77.58N), on a 2.58 by 2.58 latitude–longitude grid.
As in Zhu et al. (1996), and Toth et al. (1998), the
forecast and verifying analysis data will be binned at
each grid point into 10 climatologically equally probable
intervals (Fig. 1). These intervals were defined uniquely
for each grid point and each month of the year using
the NCEP–National Center for Atmospheric Research
(NCAR) reanalysis data (Kalnay et al. 1996). They were
then linearly interpolated in time to each date within the
study period.

3. Methodology

a. Stratification by expected uncertainty

On each day and at each grid point in the period and
region studied, the distribution of the 14 ensemble fore-
casts at each lead time is evaluated in terms of the 10
climatologically equally likely bins. In particular, the
number of ensemble forecast members associated with
the most highly populated climate bin is noted. The
population in this bin is the mode (m) of the ensemble
distribution, and its value for a 14-member ensemble
given in 10 climatologically equally likely bins varies
between 2 and 14. The frequency distribution of the
mode values over all grid points and all case days is
denoted by f (m). High ensemble mode values (14, or
close to 14) correspond to a compact ensemble, where
most members indicate very similar height values,
whereas low ensemble mode values (2, or close to 2)
indicate a diverse ensemble with little agreement among
the members. The former cases generally represent fore-
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FIG. 2. Average success rate of 500-hPa height ensemble mode
forecasts for Mar–May 1997, verified in terms of 10 climatologically
equally likely bins at each grid point over the Northern Hemisphere
extratropics. The results are stratified into low (continuous line) and
high uncertainty (dashed line) groups, according to the number of
ensemble members falling into the most populated bin. Each line
represents average results for 10%–15% of all cases with the lowest
or highest forecast uncertainty, respectively. Success rates for the
unstratified high-resolution MRF control forecast are also shown (dot-
ted line). For an explanation of shading, see text.

cast situations with a small ensemble spread, with pre-
sumably small forecast uncertainty, while the latter cas-
es are characterized by large ensemble spread, presum-
ably indicating high forecast uncertainty (see two fore-
cast distribution examples in Fig. 1).

To evaluate the ability of the ensemble to distinguish
between forecast cases with low and high uncertainty,
10%–15% (P 5 0.1–0.15) of the total number of cases
(over all grid points and days) associated with the high-
est and lowest ensemble mode values are identified for
all lead times. This is achieved by selecting all grid
points separately for which m # Ml (presumed low pre-
dictability) and

Ml

f (m) 5 P, (1)O
m52

and for which m $ Mh (presumed high predictability)
and

14

f (m) 5 P. (2)O
m5Mh

At short lead times the ensemble spread is generally
small, and thus Mh is typically large (close or equal to
14). As the lead time increases, the ensemble spread
also increases and consequently Mh decreases. For the
subset of cases with the lowest ensemble mode, at long
lead time, Ml 5 2 or only slightly higher. At shorter
lead times with concomitantly smaller ensemble spread,
Ml must be larger to account for approximately the same
fraction (10%–15%) of all cases.

b. Measure of performance

The 10%–15% of cases with the highest and lowest
ensemble mode values will be referred to as the ‘‘low
uncertainty’’ (or high predictability) and ‘‘high uncer-
tainty’’ (or low predictability) cases, respectively.
Charts outlining the geographical areas associated with
these cases can be made available in real time to the
forecasters (see section 5). The main results of this study
shown in the next section pertain to the performance of
categorical ensemble mode forecasts, evaluated sepa-
rately for the high and the low predictability cases as
defined above. In addition, the average performance of
the control MRF forecasts, which without statistical post-
processing cannot be objectively classified into high or
low predictability cases, will also be evaluated. The per-
formance measure used for evaluating both the ensemble
mode and MRF control forecasts is the average success
rate of the particular categorical forecast system:

hf
SR 5 , (3)

tf

where hf is the number of cases (hits) when a forecast
system, calling for the occurrence of a particular climate
bin, correctly verified, and tf is the total number of all

such forecasts, accumulated over all climate bins. In
section 4 success rate results for the MRF control fore-
cast (averaged over all cases), and for ensemble mode
forecasts evaluated separately over the high and low
predictability cases, will be shown. Note that when there
are more than one climate bins associated with the value
of the ensemble mode, the verification result for one
such bin, selected arbitrarily among them, will be in-
cluded in the statistics.

The success rate as defined above is the complement
of the false alarm rate (SR 5 1 2 FAR) and is called
postagreement in the older literature (see Wilks 1995).
In general the performance of a system forecasting a
particular event (any 1 particular bin out of 10 climate
bins) can be described by a 2 3 2 contingency table
(defined by yes/no alternatives for both forecast and
observed events), or alternatively, three independent
measures based on such a table. Since the event to be
predicted in our case has a climatological frequency of
0.1, and the overall forecast frequency of any particular
bin (barring any significant model bias) is also 0.1, the
success rate [Eq. (1)] uniquely describes the perfor-
mance of the forecast systems when integrated over all
10 climate bins. If the ensemble mode forecasts exhibit
resolution, case-dependent probabilistic categorical
forecasts can be issued (section 5).

c. Attributes of probabilistic forecasts

The two main attributes of probabilistic forecasts are
their reliability and resolution (see, e.g., Stanski et al.
1989). Reliability implies that forecast probability val-
ues match the conditional observed frequencies of the
same events over the long run; for example, forecasts
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FIG. 3. The 1-day lead time 500-hPa height 10-member NCEP global ensemble mean forecast (contour lines) and associated relative
measure of predictability and probabilistic forecast for the climate decile that contains the ensemble mean (gray shades), valid 0000 UTC
5 Dec 2000. For further explanation, see text.

issued with a 40% probability verify 40% of the time.
Reliability, however, does not necessarily imply value.
For example, if the climate probability of the predicted
event is also 40%, the forecast would not have value
with respect to using climatological information only.
Assuming perfect reliability, resolution is a measure of
how ‘‘sharp’’ the probabilistic forecasts are, that is, how
close the forecast probability values are to the ideal 0
and 1 values. Perfect resolution (i.e., the exclusive use
of 0 and 1 probability values, as with the use of a single
control forecast), however, does not guarantee optimal
forecasts either, unless accompanied by perfect reli-
ability. An ideal probabilistic forecast system in fact has
as much resolution as possible, while exhibiting perfect
reliability at the same time.

We know from earlier verification studies (e.g., Zhu
et al. 1996; Toth et al. 1998) that probabilistic forecasts
based on an ensemble (or a control) forecast can be
easily calibrated to make them very reliable. Probability
values based on the relative frequency of ensemble
members indicating a particular weather event (say, 6
out of 10 members forecasting 1 of the 10 climatolog-
ically equally likely bins) may be adjusted to match the
past observed frequency of that event, given the same
(in this example, 6) ensemble forecast frequency of the
weather event. Calibration amounts to a bias removal
in the probability space and can be used to reduce the

effect of model bias and insufficient ensemble spread
as long as the system behaves consistently in time.

While ensemble-based probabilistic forecasts can be
made almost perfectly reliable through calibration, res-
olution cannot be improved in such a trivial manner. In
this study we evaluate how much resolution ensemble
mode forecasts have in terms of their ability to distin-
guish between forecast cases with low and high uncer-
tainty, based on extremely low and high mode values.
Since postagreement (success rate) is used in the next
section to evaluate the ensemble’s ability to distinguish
between low and high uncertainty categorical forecasts,
the reliability of probabilistic forecasts is not considered
in the analysis presented in the next section. Reliability
and calibration will, however, be discussed in sections
5 and 6 where probabilistic (instead of categorical) fore-
casts will also be considered.

Let us assume that every time the same set of prob-
ability values are used for predicting the 10 climate
categories used in this study, except arranged in differ-
ent ways over the 10 categories. Standard measures of
resolution [e.g., the resolution part of the ranked prob-
ability skill score, RPSS; see, e.g., Wilks (1995)] would
indicate a certain amount of resolution, depending on
how different the 10 probability values are from the
climatological probability value (10%). Such a forecast
system would not be able to distinguish between fore-
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FIG. 4. NCEP analysis of the mean sea level pressure (hPa) field at
1200 UTC 6 Feb 1999.

cast cases with different degrees of predictability. The
resolution in such a system can be termed internal to
the probability distribution used. The issue of case- (as
opposed to the more trivial distribution) dependent res-
olution can only be addressed with an experimental set-
up similar to that used in this study, where the uncer-
tainty associated with a forecast for a single category
or event is analyzed. If case-dependent resolution is
found, the difference in success rates for the low and
high uncertainty cases also provides an easily compre-
hensible measure of these characteristics of the ensem-
ble. In contrast, values of RPSS scores and other alter-
native measures are not as straightforward to interpret.

4. Results

As a function of lead time, Fig. 2 evaluates how dif-
ferent the success rates of the forecasts are for the 10%–
15% of all cases with the lowest and the highest pre-
dictability, as identified in real time by the ensemble.
The average success rate for all cases, using the MRF
control forecast, is also shown. Note that the ensemble
mode forecasts evaluated for all cases without stratifi-
cation (not shown) exhibit success rates similar to that
of the high-resolution control, except with somewhat
lower values before, and somewhat higher values after,
day 6 lead time (see Fig. 3 of Toth et al. 1998).

The results indicate that the ensemble forecasting sys-
tem that was operational in the spring of 1997 had a
substantial case-dependent resolution. For example, at
1-day lead time the most predictable 10%–15% of the
forecasts verified with a success rate of 92%, while the
least predictable 10%–15% verified with a success rate
of only 36%. The average success rate for the unstrat-
ified MRF forecasts was 65%. The verification statistics
at later lead times reveal a somewhat reduced, but still
wide, range of success rates. While the overall MRF
success rates at 4- (12-) day lead time are 34% (15%),

the most and least predictable 10%–15% of the cases
exhibit success rates of 71% and 17% (35% and 11%),
respectively. We should keep in mind that a smaller
number of less frequently occurring cases with extreme-
ly low or high predictability would be associated with
verification statistics even more anomalous than those
presented in Fig. 2.

Note that the overall average success rates (MRF con-
trol, dotted green line in Fig. 2) are closer to the stratified
low uncertainty success rates at very short lead time
(cf. continuous line at 12 h), and to the high uncertainty
success rates at longer lead times (cf. dashed line at
longer lead time). The skewness of the success rate dis-
tribution is especially prominent at 10-day and longer
lead times, suggesting that most of these forecasts are
of poor quality, with a smaller number of exceptionally
good forecasts.

Beyond exploring the large differences in verification
statistics between the most and least uncertain cases at
any given lead time, it is also interesting to compare at
what lead time forecasts with different levels of uncer-
tainty in Fig. 2 assume the same level of skill. Looking
at the range of 0.3–0.4 success rate values highlighted
in Fig. 2, we can see for example that the least pre-
dictable 10%–15% of the 1-day forecasts have a success
rate (36%) that is just about the same as the success
rate of 4-day MRF forecasts (34%, average predict-
ability), or the success rate of the most predictable 10%–
15% of the 12-day forecasts (35%).

5. Relative measure of predictability

a. Motivation

Based on the results above, we consider a new mea-
sure of predictability. Ensemble spread has been sug-
gested and evaluated as a possible way to measure flow-
dependent errors (see, e.g., Houtekamer 1993; Whitaker
and Loughe 1998). This measure, however, has its lim-
itations. Ensemble spread is a function not only of the
expected forecast errors but also of the geographical
location, phase of the annual cycle, and lead time. En-
semble spread normalized by the spread averaged over
a long preceding period over any grid point can reduce
the effect of these complicating factors. Another prob-
lem is that while small ensemble spread suggests small
forecast error (barring errors related to the use of im-
perfect models), a large local spread value does not
necessarily indicate large errors. This is because large
spread is a result of intense atmospheric instabilities and
the statistically expected level of initial errors. In cases
where the initial errors are smaller than expected by the
ensemble, however, small local forecast errors can occur
(see, e.g., Molteni et al. 1996). Spread should thus be
considered as an indication for the upper bound and not
for the expected value of the forecast error. This un-
derlines the need for a probabilistic approach when deal-
ing with forecast uncertainty.
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FIG. 5. Operational 9-day NCEP ensemble mean mean sea level pressure (hPa) forecast (white contours) valid at
1200 UTC 6 Feb 1999. The associated spread is indicated by shades of gray. The corresponding operational ECMWF
ensemble mean forecast is shown by black contours.

b. Definition

Here we propose a new, relative measure of predict-
ability to assess the flow-dependent uncertainty in a sin-
gle forecast. Following the method described in section
3, the new measure is based on the number of ensemble
members falling into a particular bin. Since the best (in
an rms sense) forecast product is the ensemble mean,
unlike in sections 3 and 4, where the bin count for the
ensemble mode was evaluated, the bin count for ensem-
ble mean forecasts is considered here.

To construct the new measure, first the mean of the
10 0000 UTC members of the NCEP global ensemble
forecasts is computed at each grid point (see contour
lines in Fig. 3), and the climate bin (Fig. 1) where the
mean falls is recorded. The number of ensemble mem-
bers falling in the bin of the ensemble mean is then
counted. Just as in the case of the ensemble mode (Fig.
2), a small (large) number of ensemble members falling
into the bin of the ensemble mean (supporting members)
presumably indicates low (high) predictability. The
number of members in that bin is then expressed as a
percentile in a frequency distribution of bin counts. This
frequency distribution is computed over the preceding

30-day interval,1 and over the Northern Hemisphere
(NH) extratropics. Ten percent (90%) relative predictabil-
ity at a particular grid point, for example, indicates that
10% (90%) of the grid points had a lower level of pre-
dictability during the preceding period over the NH ex-
tratropics. These grid points associated with much lower
or higher than average predictability were represented by
the dashed and continuous success rate curves respectively
in Fig. 2 (except that Fig. 2 refers to ensemble mode, and
not mean forecasts). These areas of extremely low and
high predictability are marked in Fig. 3 by darker and
lighter shades of gray, respectively. (A color version of
this and other figures can be viewed in a Web version of
the present manuscript online at http://sgi62.wwb.
noaa.gov:8080/ens/papers/probpaperw/probpaperw.html.)

The relative measure of predictability, by construc-
tion, is normalized not only by geographical location,
season, and lead time but also by the position of the

1 Instead of weighting every day in the preceding 30-day period
equally, we use a recursive filter where the latest day’s data are
averaged with that for the preceding period with weights of 0.03 and
0.97, respectively. Thus the earlier the data, the less weight it receives.
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FIG. 6. Same as in Fig. 4 except for 12-h control forecasts valid at 0000 UTC 29 Jan 1999. The NCEP forecast is
shown by dashed contours.

forecast value with respect to the climatological distri-
bution. Note that in the case of a climatologically ex-
treme forecast large spread does not necessarily indicate
high forecast uncertainty since the variance of obser-
vations and forecasts is generally larger for extreme
cases (Toth 1992; Ziehmann 2001). By the use of the
equiprobable climate intervals that become wider to-
ward the extremes (see Fig. 1), the relative measure of
predictability can be interpreted independent of where
the forecast is in the climatological distribution.

c. Probabilistic forecasts

Beyond the various levels of relative predictability,
the colors in Fig. 3 are also associated with calibrated
probabilistic forecasts for the bin of the ensemble mean.
While the relative measure of predictability, by con-
struction, is independent of the lead time and ranges
between 0% and 100%, the range of probability values,
as suggested by Fig. 2, shrinks and asymptotically tends
to the climate probability of 10% when lead time in-
creases. The probability values shown in Fig. 3 are cal-
ibrated as described in section 3, using the technique of
Zhu et al. (1996) and Toth et al. (1998), based on a
preceding 30-day-long independent verification dataset.

Note that the different colors may be associated with
more than one bin count. In such cases the calibrated
probability value associated with a color is an average
of past observed frequency values weighted by the num-
ber of points associated with the different bin counts
that make up the area with the color in question.

The calibrated probability values reflect forecast un-
certainty due not only to initial errors but also to model-
related uncertainty. This is another advantage of using
probabilistic information (instead of ensemble spread)
for assessing forecast uncertainty. Note that while initial
value–related uncertainty is determined in a flow-de-
pendent manner based on the ensemble, model-related
uncertainty, for the lack of its representation in the
NCEP ensemble system, is reflected in the calibrated
probabilistic forecasts only in a mean sense, averaged
over many cases. In other words, the ensemble-based
calibrated probabilistic forecasts reflect uncertainties
due to both initial and model errors but resolve varia-
tions in uncertainty due to initial errors only.

6. Synoptic examples

In this section we present three synoptic examples to
demonstrate the dramatic variations in the performance
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FIG. 7. Probabilistic quantitative accumulated precipitation forecasts for 0.5-in. threshold for a 24-h period ending
at 1200 UTC 6 Feb 1999, based on the 17-member NCEP global ensemble forecasts. Forecasts are shown with different
lead times (marked as 1-, 2-, . . . , 10-day, initialized at 0000 UTC on 5 Feb and continuing down through 27 Jan).
Contour lines are drawn at 5%, 35%, 65%, and 95% probability levels.
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FIG. 7. (Continued)

of NWP forecasts that can be objectively identified using
an ensemble forecast system. The specific guidance on
above or below average forecast uncertainty (section 5)
was introduced only recently. Ensemble spread forecasts
that have been accessible since 1997, however, can also
be used to identify cases with higher or lower than av-
erage predictability. All the examples that follow were
identified in real time by the authors. The first two ex-
amples—one for extremely high, and another for low
predictability—will be presented here in terms of mean
sea level pressure ensemble spread and probabilistic
quantitative precipitation forecasts, while the third will
feature the relative measure of predictability for 500-
hPa height forecasts.

a. Low uncertainty at long lead time

First we consider a deep low pressure system that
developed in the Gulf of Alaska, affecting the U.S. and
Canadian west coast around 1200 UTC 6 February
1999. The analyzed mean sea level central pressure of
the system had a closed contour of 968 hPa (Fig. 4),
indicating a strongly anomalous flow with a 40-hPa neg-
ative anomaly from the long-term mean. This cyclone
was apparently associated with a very high degree of
predictability. It was at 11.5-day lead time when the
feature of the anomalous low was first noted in real time
using the NCEP ensemble forecasts. And the ensemble
mean of the mean sea level pressure forecast did not
change much after the initial time of 0000 UTC 27

January (10.5-day lead time), with the deepest closed
isobar of the low predicted between 972 and 964 hPa
at 9.5-day and shorter lead times.

As an example, in Fig. 5 we present the 9-day NCEP
ensemble mean forecast (white contours), along with its
associated spread (shades of gray). Over large areas of
the storm and its environment, including the extreme
central low pressure area, the associated ensemble
spread (standard deviation of ensemble members around
the mean) remained around or below 6 hPa. This is half
or less than half of the average ensemble spread com-
puted for the preceding month at this lead time (not
shown), indicating well below average forecast uncer-
tainty. The low level of forecast uncertainty is corrob-
orated by the fact that consecutive ensemble mean and
spread forecasts valid at the same time (not shown) were
very similar. A comparison of the 9-day ensemble mean
forecast (Fig. 5) with the verifying analysis (Fig. 4)
reveals that the forecasts for this cyclone, as expected
from the real-time uncertainty estimates, verified very
well; the error in the central pressure forecasts was only
a few hPa.

Comparing the large-scale flow configurations at 12-
h (Fig. 6) and 9-day (Fig. 5) lead time it is clear that
the forecasts were not trivially persisting the observed
features present around initial time. Great changes from
extremely high to extremely low anomalous pressure
conditions were predicted well over large areas, with
changes from initial to final state reaching up to 40 hPa
over Alaska and nearby areas. Note that the extremely
low height values analyzed in Fig. 4 were well predicted
by the ensemble mean forecasts (Fig. 5), documenting
that the ensemble mean can retain highly anomalous
flow patterns as long as these features are highly pre-
dictable.

It is interesting to note that analyzed 500-hPa height
values near the center of the storm were around 4777
m with a negative anomaly of more than 500 m, falling
into the lowest 1% of historical cases based on the
NCEP–NCAR reanalysis. At 9-day lead time, 80%
(40%) of all ensemble members fell into the lowest 2%
(1%) of the climatological distribution, giving a strong
indication for the possible occurrence of extreme low
values.

The lower than average ensemble spread in Fig. 5
indicates that all members were rather similar. Therefore
it is not surprising that the MRF control forecast also
verified well. A user with access to only a single control
forecast, however, could not have made much use of a
control forecast on its own. Given the low levels of
average skill at the 9–11-day lead time (less than 20%
success rate, see dotted green curve in Fig. 2), forecasts
would be issued with a very low level of confidence,
which would render them useless for a wide range of
users (see, e.g., Fig. 4 of ZTW). Yet with access to
information on the widely varying levels of uncertainty,
indicated reliably by the ensemble, there are times when
extended-range weather forecasts with much increased
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FIG. 8. Same as in Fig. 7 except for 1-in. threshold for periods ending (a) 1200 UTC 5 Feb and (b) 6 Feb 1999, for
1–8-day lead times.

confidence can be made (cf. lightly hatched distribution
in Fig. 1, and continuous curve in Fig. 2).

The above case provides such an example, where con-
fident extended range daily sensible weather forecasts
could have been issued based on the ensemble guidance.

For example, 12 or more of the 17-member NCEP en-
semble forecasts (70%–100%) indicated 0.5 in. or more
24-h accumulated precipitation at 10-day and shorter
lead times (Fig. 7) over all areas on the northwest U.S.
coast that actually received that much precipitation.
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FIG. 8. (Continued)

Similarly, at 7-day or shorter lead times, the ensemble
predicted 70% or higher probabilities for most areas
affected by more than 1 in. of precipitation (Fig. 8b).
The high degree of predictability in terms of accumu-
lated precipitation may be related to the fact that in this
case the precipitation is partly orographically forced.

The time evolution of the weather associated with the
storm, as suggested by the unusually low ensemble
spread over large areas surrounding the storm, was also
well predicted. For example, in contrast to the 70% and
higher forecast probability of 1 in. or more precipitation
corresponding to the observed precipitation event
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FIG. 9. Same as in Fig. 3 except for an 11-day forecast valid at 0000 UTC 13 Dec 2000.

around 0000 UTC 6 February, the ensemble correctly
gave zero probability at 7-day and shorter lead times
for more than 1 in. of precipitation for the preceding
24-h period, centered around 0000 UTC 5 February
(Fig. 8a).

It is important to note that because the NCEP ensem-
ble does not account for model-related uncertainties,
small ensemble spread may sometimes be associated
with large forecast errors due to model deficiencies. The
strong similarity between the NCEP (white contours)
and ECMWF (black contours) ensemble mean forecasts,
generated by two different models, made the occurence
of such errors in this case less likely (Fig. 5).

b. High uncertainty at short lead time

The previous example illustrated the potential value
of the ensemble approach in identifying weather features
associated with low forecast uncertainty, even at long
lead times. In this section, an example is shown of a
case with unusually high forecast uncertainty. Identi-
fying these cases can be especially valuable at shorter
lead times where the overall level of forecast skill is
relatively high. Interestingly, a prominent example of
this kind offers itself in the same forecast studied in
Fig. 5, but valid at a very short lead time.

Shown in Fig. 6 is the 12-h lead time NCEP high-
resolution control forecast (called AVN, solid contours),
valid at 0000 UTC 29 January 1999. A closed low,

associated with a cold front extending to the southwest,
is seen over the eastern Pacific approaching the west
coast of the United States. The ensemble spread asso-
ciated with this system is around 6 hPa. This is the same
level of uncertainty found over large areas of the storm
studied in the 9-day forecast example of Fig. 5. But
while the 6-hPa spread is half or less of the usual spread
at 9-day lead time (Fig. 5), it is up to 3 times more than
the usual spread at the 12-h lead time (Fig. 6).

A comparison of the 12-h NCEP control forecast to
that from ECMWF (cf. solid and dashed contours in
Fig. 6) confirms the unusually high degree of uncertainty
regarding the position of the closed low. The largest
differences between the two fields, which reach up to
5 hPa, occur in the area of large ensemble spread. The
5-hPa difference observed between the two control fore-
casts over the eastern Pacific low pressure system at 12-
h lead time (Fig. 6) is actually above the level of dif-
ference present between the two ensemble mean fore-
casts 8.5 days later, near the center of the Gulf of Alaska
storm where the differences are 4 hPa or less (Fig. 5).

Given the high level of average success rate of 12-
h forecasts (65%, see dotted green curve in Fig. 2), a
weather forecast based on a single control integration
in this case may provide misleading guidance in terms
of overconfidence. Information again from the ensem-
ble, in this case based on larger than normal spread,
may provide case-dependent uncertainty estimates (see
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FIG. 10. Same as in Fig. 9 except for a 9-day forecast.

the heavily hatched distribution in Fig. 1, and the dashed
curve in Fig. 2), which are helpful for many applica-
tions.

The large differences present within the 12-h lead
time NCEP ensemble, and between the ECMWF and
NCEP control forecasts off the northwest U.S. coast in
Fig. 6 (around 6 hPa), would certainly be associated
with different weather conditions, with the ECMWF
forecast, for example, suggesting stronger onshore
winds, associated with heavier precipitation. Note that
the same northeast Pacific area in the 9-day forecast
(Fig. 5) is associated with the same or lesser degree of
uncertainty (5–6-hPa ensemble spread and forecast dif-
ferences).

It is interesting to note that based on the results of
Fig. 2, 10%–15% of the time a 9-day forecast is ex-
pected to be more accurate than 12-h forecasts on the
least predictable 10%–15% of cases. It follows that the
chances that both a high uncertainty 12-h forecast and
a low uncertainty 9-day forecast would appear on the
same day and in the same area is on the order of 1%–
2%. In other words, in an average year and at any lo-
cation, 4–6 days are expected when a 9-day forecast
can be made with the same or slightly higher certainty
than a 12-h forecast. As a reference, both of these fore-
casts would exhibit a skill of the level of an average 3-
day forecast.

c. Emerging forecast features

The example in Fig. 9 displays an 11-day ensemble
mean 500-hPa forecast along with the relative measure
of predictability and associated probability forecast, val-
id for 0000 UTC 13 December 2000. The ensemble
mean forecast does not have strong anomalies from the
climatological mean. Over most of the domain the rel-
ative measure of predictability is in the medium to low
range, with corresponding probability values close to
the 10% climate probability. This suggests, in general,
little forecast information in the ensemble, correspond-
ing to a low level of predictability. Figure 10 shows a
9-day forecast with the same valid time. In contrast to
Fig. 9, the ensemble mean forecast is highly anomalous
and over large areas the relative measure of predict-
ability is in the 90% range. A number of significant
features, among them the deep low pressure system
around 1708E, the northeast Pacific ridge and the west-
ern U.S. trough, are associated with probabilistic fore-
casts as high as 37%. This indicates, given the long lead
time, a relatively high amount of forecast information
content with respect to the 10% climatological proba-
bility level, which appears just 2 days after the fea-
tureless forecast displayed in Fig. 9.

Interestingly, the 24-h forecast (Fig. 3) from the same
ensemble as shown in Fig. 9 (initiated at 0000 UTC 4 Dec
2000) indicates a low level of predictability over large



476 VOLUME 16W E A T H E R A N D F O R E C A S T I N G

areas where the 9-day forecast is highly predictable. In
particular, areas in the Gulf of Alaska and over the mid–
United States show forecast probability levels at the 1-day
lead time (#35%) below that marked at the 9-day lead
time (37%). Similarly to the examples in Figs. 5 and 6,
these are areas where an extended-range forecast contains
more information than a short-range forecast does. (Real-
time forecast maps like those displayed in Figs. 3–10 can
be found online at the Environmental Modeling Center’s
global ensemble Web page: http://sgi62.wwb.noaa.gov:
8080/ens/enshome.html.)

7. Conclusions and discussion

The analysis of the NCEP global ensemble forecast
system in sections 3 and 4 was based on verification
results of the ensemble mode and higher-resolution con-
trol forecasts. Ensemble mode forecasts were stratified
according to the value of the ensemble mode, which
represents a measure of how tightly or loosely distrib-
uted the ensemble members are. The ensemble forecasts
were found to possess a substantial amount of case-
dependent resolution. Therefore they can reliably in-
dicate, at the time weather forecasts are prepared, the
large case to case variations in forecast uncertainty. For
example, 10%–15% of the 1-day forecasts identified as
the least and most uncertain by the NCEP ensemble have
associated success rates of 92% and 36%; the same num-
bers for 4- (and 12-) day forecasts are 71% and 17%
(35% and 11%), respectively.

A further analysis of the results, along with those of
other studies (see, e.g., Toth and Kalnay 1995), suggests
that on one hand daily weather prediction for the 6–15-
day range is possible in cases identified by the ensemble
as highly predictable, with the same accuracy and con-
fidence as that of short-range forecasts with poorer than
average predictability. As Fig. 5 exemplifies, from time
to time even extremely anomalous weather patterns can
be forecast with high confidence in the extended range.
On the other hand, in flow configurations with unusually
low predictability, the skill of short-range forecasts is
expected to be as low as average medium-range fore-
casts, or above average predictability extended-range
forecasts. We note that the extreme climate categories,
as expected from the statistical considerations of van
den Dool and Toth (1991), generally exhibit higher fore-
cast success rates than categories near normal. This as-
pect of the forecast systems has not been evaluated in
the present study where success rates were compounded
over all climate bins.

The large variations in forecast uncertainty revealed
above are a function of 1) the size and distribution of
errors in the analysis fields used to initialize NWP fore-
casts, and 2) the particular evolution of flow patterns
from initial to final forecast times. Variations in forecast
uncertainty are a direct consequence of the chaotic na-
ture of the atmosphere and are out of the control of the
forecasters. Before the advent of ensemble forecasting,

forecasters had no or very limited advance knowledge
of these changes in forecast uncertainty. With ensemble
forecasting, as recent studies have demonstrated, these
dramatic changes have become routinely predictable.

Based on the above results, NCEP recently intro-
duced, on an experimental basis, geographical displays
of probabilistic forecasts for the climate bin in which
the ensemble mean falls, out of 10 climatologically
equally likely intervals. Areas with above and below
average probability values at all lead times are high-
lighted by lighter and darker shades of gray, respectively
(corresponding to the success rates for cases with high
and low predictability, like those in Fig. 2). The new
measure provides for easy identification of areas with
significant deviations from average forecast uncertainty
and offers a bridge between traditional single-value
(point) forecasts and new, probabilistic type of forecasts.

In the present study ensemble mode forecasts asso-
ciated with case-dependent estimates of uncertainty
were evaluated. Ensemble forecasts, however, can also
provide more detailed probability distributions, thus fur-
ther increasing the potential economic value attainable
from the use of weather forecasts. Note that such prob-
abilistic forecasts can also be generated based on single
control forecasts (Talagrand et al. 1997; Atger 2001).
The value of these forecasts, at least theoretically, is
limited compared to that attainable through an ensemble
of forecasts that can properly account for forecast un-
certainty due to initial value and model related errors.
In any case the generation and use of probability dis-
tributions, instead of single-value (or categorical) fore-
casts, requires a conceptual change on the part of the
forecaster but this change is necessary for realizing all
the benefits an ensemble has to offer.

The performance of NWP forecasts, whether control
or ensemble, is negatively affected by the use of im-
perfect forecast models. The success rates reported in
this study, for example, are lower than they would be
under ideal conditions, due to simplifications in model
formulation. The utility of ensemble forecasts is also
limited by shortcomings in the formation of the ensem-
ble. The NCEP ensemble, for example, accounts for
forecast uncertainty related only to errors in initial con-
ditions, but not to errors caused by model imperfectness.
Therefore the range of foreseeable variations in forecast
skill would be wider could we predict the occurrence
of flow-dependent random or systematic model errors.
The results in this and other studies evaluating opera-
tional ensemble forecasts naturally reflect all these lim-
iting factors and represent the currently operationally
attainable levels of skill. Under these limiting condi-
tions, the ensembles exhibit great value beyond that of
single control forecasts, and are ready to be used by
forecasters and end users alike. The fact that the system
is not perfect and can be improved in the future should
not discourage anyone from taking full advantage of
what ensemble forecasting can currently offer.
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