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Abstract 12 

The ensemble mean quantitative precipitation forecasts (QPFs) and probabilistic QPFs 13 

(PQPFs) from six operational global ensemble prediction systems (EPSs) in The Observing 14 

System Research and Predictability Experiment (THORPEX) Interactive Grand Global 15 

Ensemble (TIGGE) dataset are evaluated against the Tropical Rainfall Measuring Mission 16 

(TRMM) observations using a series of area-weighted verification metrics during June to 17 

August 2008-2012 in the Northern Hemisphere (NH) midlatitudes and tropics. Results 18 

indicate that generally the European Centre for Medium-Range Weather Forecasts (ECMWF) 19 

performs best while the Canadian Meteorological Centre (CMC) is relatively good for 20 

short-range QPFs and PQPFs at light precipitation thresholds. The overall forecast skill is 21 

better in the NH midlatitudes than that in the NH tropics. QPFs and PQPFs from China 22 

Meteorological Administration (CMA) have very little discrimination ability of different 23 

observed rain events in the NH tropics. The day +1 QPFs from Japan Meteorological 24 

Administration (JMA) have remarkably large moist biases in the NH tropics, which leads to 25 

the discontinuity of forecast performance with the lead time. 26 

Performance changes due to the major model upgrades during the five summers are also 27 

examined using the forecasts from CMA as the reference to eliminate the interannual variation. 28 

After the model upgrade, the excessively enlarged ensemble spread of CMC increases the 29 

forecast errors, while the QPFs and PQPFs from the US National Centers for Environmental 30 

Prediction (NCEP) are significantly improved in various verification metrics. 31 

 32 

Keywords: TIGGE, quantitative precipitation forecast (QPF), probabilistic quantitative 33 

precipitation forecast (PQPF), Ensemble Prediction System (EPS), verification 34 
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1. Introduction 36 

Quantitative precipitation forecasts (QPFs) are of vital importance in preventing and 37 

mitigating natural disasters [Fritsch et al., 1998]. Precipitation, a diagnosed variable in 38 

numerical weather predictions, is extremely difficult to forecast because the related subgrid 39 

physical processes, such as cumulus convective, microphysical, and land surface processes, 40 

are hard to be parameterized accurately. Because of the existing large uncertainties in QPFs, it 41 

is necessary to employ the ensemble approach to deal with the uncertainty problems. 42 

Ensemble prediction systems (EPSs) can give a representation of forecast uncertainties 43 

through initial perturbations and model perturbations, and can be used to generate 44 

probabilistic QPFs (PQPFs), which are widely used in meteorological and hydrological risk 45 

management. 46 

As a major component of The Observing System Research and Predictability Experiment 47 

(THORPEX), the THORPEX Interactive Grand Global Ensemble (TIGGE) [Bougeault et al., 48 

2010] makes it possible for research on the operational global ensemble precipitation 49 

forecasts. TIGGE started at a workshop in 2005, with the objectives to enhance worldwide 50 

collaboration on improving the accuracy of 1-day to 2-week high-impact weather forecasts 51 

and advancing the research of ensemble forecasting [Richardson et al., 2005]. 52 

Case studies on TIGGE precipitation forecasts have been carried out extensively in heavy 53 

rain events and hydrological flood warnings. Pappenberger et al. [2008] used TIGGE data as 54 

meteorological input to the European Flood Alert System for studying a flood event in 55 

Romania in October 2007 and found that awareness of the flood could have been raised as 56 

early as 8 days in advance. He et al. [2009] applied a coupled 57 

atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE data to investigate a 58 

flood warning case on a meso-scale catchment in the Midlands regions of England and found 59 
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that the precipitation uncertainties dominate and propagate through the cascade chain. 60 

Similarly, another case study in the Upper Huai catchment during July to September 2008 61 

showed a reliable warning of flood as early as 10 days in advance [He et al., 2010]. 62 

Schumacher and Davis [2010] examined the skill of the European Centre for Medium-Range 63 

Weather Forecasts (ECMWF) EPS in nine heavy rainfall events over 5-day periods in the 64 

central and eastern United States during 2007-2008, including three cool-season cases, three 65 

warm-season cases, and three tropical cyclone cases. Wiegand et al. [2011] studied a heavy 66 

precipitation event at the Alpine south side and Saharan Dust over Central Europe through the 67 

investigation of the forecast quality and predictability of synoptic and meso-scale aspects and 68 

found that ensemble-mean multimodel QPFs can be accurate enough to forecast day 4 for a 69 

successful severe-weather warning. 70 

There are several studies of regional cases on TIGGE precipitation forecasts. 71 

Krishnamurti et al. [2009] concluded that the multimodel superensemble has higher skill than 72 

the best single model, by investigating the TIGGE precipitation forecasts over China monsoon 73 

region with deterministic verification metrics. Hamill [2012] compared the PQPFs from four 74 

TIGGE centers with Climatology-Calibrated Precipitation Analysis (CCPA) data over the 75 

contiguous United States during July to October 2010, focusing on the TIGGE multimodel 76 

and ECMWF reforecast-calibrated PQPFs. His study showed that PQPFs from the Canadian 77 

Meteorological Centre (CMC) are most reliable but least sharp, while those from the US 78 

National Centers for Environmental Prediction (NCEP) and the United Kingdom 79 

Meteorological Office (UKMO) are least reliable but sharper. 80 

However, systematic studies on TIGGE precipitation forecasts are quite few. Thus, a more 81 

comprehensive study is needed to reveal detailed properties of QPFs and PQPFs from 82 

different centers. For example, the quality of reliability and resolution may provide the useful 83 
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information about the potential of post-processing to improve precipitation forecasts in the 84 

EPS. This study not only uses various verification metrics, but also considers area-weighted 85 

forecast scores, aiming to provide overall performance of QPFs and PQPFs. Owing to the 86 

availability of global EPSs, the model’s ability to simulate heavy rainfall in important areas, 87 

such as the Inter Tropical Convergence Zone (ITCZ), can be evaluated with a global view. 88 

Fortunately, the global quantitative precipitation estimate (QPE) products, such as the 89 

Tropical Rainfall Measuring Mission (TRMM) products [Huffman et al., 2007], make the 90 

investigation possible. Since the EPSs have been upgraded from time to time, the benefit of 91 

the EPS upgrade is not easily to be assessed by the forecast performance, which is sensitive to 92 

the validation period and interannual variation. It is of great interest to quantitatively analyze 93 

the improvements of QPFs and PQPFs after the model upgrade. 94 

This study focuses on the 24-h accumulated ensemble mean QPFs and PQPFs generated 95 

from individual TIGGE centers in the Northern Hemisphere (NH) midlatitudes and tropics, to 96 

obtain a comprehensive understanding and summary of the precipitation forecast properties of 97 

six selected operational global EPSs during the recent five-year (2008-2012) summers (June 98 

to August, JJA). The overall 5-summer forecast performance of the EPSs is evaluated, 99 

including the discrimination ability of rain events, which can indicate the possible 100 

improvement of the EPSs through post-processing, and the potential use in economic 101 

decision-making for the EPSs. In addition, performance changes before and after major model 102 

upgrades are assessed referenced to the China Meteorological Administration (CMA) EPS, 103 

which has not been upgraded and can be used to eliminate the impact of the interannual 104 

variability on the verification scores. 105 

Section 2 provides an overview of the TIGGE EPSs, while Section 3 describes the 106 

datasets and verification methods. Section 4 demonstrates the results with summary and 107 
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discussions followed in Section 5. 108 

2. Overview of the TIGGE EPSs 109 

Ten operational forecast centers participate in the TIGGE program, including the Bureau 110 

of Meteorology of Australia (BoM), CMA, CMC, the Centro de Previsão de Tempo e Estudos 111 

Climáticos of Brazil (CPTEC), ECMWF, the Japan Meteorological Administration (JMA), the 112 

Korea Meteorological Administration (KMA), the National Meteorological Service of France 113 

(Météo-France), NCEP and UKMO. One can access to the TIGGE data about a delay of 48 h 114 

through three data portals: the ECMWF portal (http://tigge-portal.ecmwf.int/), the CMA 115 

portal (http://bridge.cma.gov.cn:8080/tigge/index.jsp), and the US National Center for 116 

Atmospheric Research (NCAR) portal (http://tigge.ucar.edu/). 117 

Six centers are selected in this study: CMA, CMC, ECMWF, UKMO, NCEP and JMA. 118 

Four other centers (BoM, CPTEC, Météo-France and KMA) are not included in this 119 

investigation for various reasons. BoM stopped providing data to TIGGE on 20 July 2010. 120 

CPTEC is a center located in the Southern Hemisphere and its initial perturbations are not 121 

performed in the NH midlatitudes. Météo-France only provides short-range ensemble 122 

forecasts with 1-3 (1-4.5) day lead times for the 0600 (1800) UTC cycle. For KMA, 123 

precipitation fields have not been added to its EPS until 18 December 2009. For the readers’ 124 

convenience, the main configurations and important upgrades of the six EPSs during 125 

2008-2012 are briefed in Table 1. 126 

CMA uses bred vectors (BVs) [Toth and Kalnay, 1997] for the T213 global model 127 

(~0.5625º) [Wang et al., 2008] as the initial perturbations to construct the EPS and no model 128 

uncertainties have been taken into account. Since no model upgrade has been performed, 129 

QPFs and PQPFs from the CMA EPS are chosen to be the benchmark of fluctuated forecast 130 

skill due to interannual variability, which makes it possible to investigate the performance 131 

http://tigge-portal.ecmwf.int/
http://bridge.cma.gov.cn:8080/tigge/index.jsp
http://tigge.ucar.edu/
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changes due to model upgrades in other five EPSs. 132 

The CMC EPS  uses Ensemble Kalman Filter (EnKF) [Houtekamer et al., 2009] to 133 

generate initial perturbations. To represent model uncertainties, multi-physics schemes (such 134 

as different deep convections, surface schemes, mixing lengths, vertical diffusions and gravity 135 

wave drags) as well as two stochastic parameterization schemes, i.e., Perturbations of Physics 136 

Tendencies (PTP) and Stochastic Kinetic Energy Backscatter (SKEB) [Gagnon et al., 2011] 137 

are adopted. On 17 August 2011, the CMC EPS has been upgraded to version 2.0.2 with the 138 

finer model horizontal grid spacing of 66 km changing from about 100 km. However, the 139 

horizontal resolution of the output data archived in the TIGGE portal remains unchanged. 140 

The ECMWF EPS used the evolved and the initial-time singular vectors (EVO-SVINI) 141 

[Leutbecher, 2005] as its initial perturbations before 24 June 2010, and since then has been 142 

upgraded to the ensemble of data assimilation and the initial-time singular vectors 143 

(EDA-SVINI) [Buizza et al., 2008; Buizza et al., 2010]. The Stochastic Perturbation of 144 

Physics Tendency (SPPT) [Buizza et al., 1999b] has been applied to account for model 145 

uncertainties. The Spectral Stochastic Backscatter Scheme (SPBS) [Berner et al., 2009] was 146 

also introduced into the ECMWF EPS to simulate upscale-propagating errors caused by 147 

unresolved subgrid-scale processes on 9 November 2010. Actually, the ECMWF EPS has 148 

been upgraded frequently, for example, the upgrade on 26 January 2010 (Table 1, more details 149 

can refer to http://www.ecmwf.int/products/data/operational_system/evolution/index.html). 150 

For simplicity, only the major upgrade time on November 2010 has been assessed. 151 

The JMA EPS uses the singular vectors (SVs) to create initial perturbations. Dry SVs are 152 

targeted for the NH extratropics (30ºN-90ºN) while moist SVs are targeted for the tropics 153 

(20ºS-30ºN) [Yamaguchi and Majumdar, 2010]. Since 17 December 2010, the SPPT method 154 

has been applied to account for model uncertainties, with simplified-physics in the NH 155 

http://www.ecmwf.int/products/data/operational_system/evolution/index.html
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extratropics and full-physics (also add gravity wave drag, long-wave radiation, clouds and 156 

large scale convection and cumulus convection) in the tropics [Sakai et al., 2008]. The model 157 

horizontal resolution is about 0.56º, while the archived output data is on 1.25º×1.25º grids 158 

(see http://tigge.ecmwf.int/metadata/TIGGE_metadata_v5_JMA.xls). 159 

The NCEP EPS uses the bred vector - ensemble transform with rescaling (BV-ETR) [Wei 160 

et al., 2008] to generate initial perturbations. Since 23 February 2010, the Stochastic Total 161 

Tendency Perturbation (STTP) scheme [Hou et al., 2006; Hou et al., 2008; Hou et al., 2010] 162 

has been introduced into the NCEP EPS to account for model uncertainties, and the model 163 

horizontal resolution has been upgraded from T126 (~110 km) to T190 (~70 km) 164 

(http://www.emc.ncep.noaa.gov/gmb/ens/ens_imp_news.html). The output data archived in 165 

the TIGGE portal remains unchanged. On 14 February 2012, a major upgrade time, the NCEP 166 

EPS has been advanced to version 9.0, including the improved BV-ETR initialization and 167 

STTP schemes, the upgraded horizontal resolution of T254 (~55 km) for 1-8 day forecasts 168 

(9-16 day forecasts remain T190) and the add of sunshine duration for TIGGE data exachange 169 

(http://www.emc.ncep.noaa.gov/gmb/yzhu/imp/i201109/GEFS_Science_20120208.pdf). 170 

The UKMO EPS uses the Ensemble Transform Kalman Filter (ETKF) [Bishop et al., 2001; 171 

Bowler et al., 2008] as the initial perturbation strategy. Random Parameters (RP) and 172 

Stochastic Kinetic Energy Backscatter (SKEB) schemes are used to represent model 173 

uncertainties (http://tigge.ecmwf.int/metadata/EGRR_TIGGE_metadata_v14.xls). The version 174 

of the UKMO EPS has been changed several times during 2008-2012. On 9 March 2010 (a 175 

major upgrade time), the UKMO EPS has been upgraded to version 8 and its horizontal 176 

resolution has been improved from 1.25º×0.83º to 0.83º×0.56º. 177 

3. Datasets and verification methods 178 

3.1 Validation dataset 179 

http://tigge.ecmwf.int/metadata/TIGGE_metadata_v5_JMA.xls
http://www.emc.ncep.noaa.gov/gmb/ens/ens_imp_news.html
http://www.emc.ncep.noaa.gov/gmb/yzhu/imp/i201109/GEFS_Science_20120208.pdf
http://tigge.ecmwf.int/metadata/EGRR_TIGGE_metadata_v14.xls
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The validation dataset is from the recently created Version 7 TRMM research product 180 

3B42 (ftp://meso-a.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf). The dataset combines 181 

multi-satellite microwave-IR estimates and is adjusted by quality-controlled gauges [Huffman 182 

et al., 2007]. The original dataset is 3-hourly and covers 50ºS-50ºN, 180ºW-180ºE, with a 183 

horizontal resolution of 0.25º×0.25º. In order to compare with the TIGGE forecast data, it is 184 

bilinearly interpolated in space and time to the 1.0º×1.0º daily (1200UTC-1200UTC) 185 

precipitation data. The verification region is focused on the NH tropics (0ºN-20ºN) and NH 186 

midlatitudes (20ºN-49ºN). 187 

3.2 Forecast dataset 188 

The original ensemble precipitation forecast data of CMA, CMC, ECMWF, UKMO, 189 

NCEP and JMA are all converted onto the same 1.0º×1.0º grid before downloading, using the 190 

bilinear interpolation software provided by the ECMWF data portal. Whole perturbed 191 

members (without the control forecast) of each center are used to compute 24-h ensemble 192 

mean QPFs and PQPFs. Only the +1- to +9-day forecasts initialized at 1200UTC are 193 

examined due to the limit of the JMA forecast data. The time period of the verification covers 194 

JJA 2008-2012 (1 June – 30 August, total 91×5=455 days). Several 1200 UTC cycles of the 195 

NCEP forecast data are missing, including the dates of 08, 13, 16, 18, 20 and 25 August 2008. 196 

Considering that replacing this small fraction of data will not influence the final results, the 197 

missing NCEP forecast data are substituted with the nearest initial forecast cycles. 198 

After processing the ensemble data (usually taking subtraction from the accumulated total 199 

precipitation) to the 24-h accumulated precipitation forecasts, there are some negative values 200 

for the five summers: a small portion (0.7%~2.4%) of negligible values (-0.1~0 mm day
-1

 ) 201 

due to numerical computation errors, and a very rare fraction of large values for the CMA 202 

(0.01%, -0.9~-0.1 mm day
-1

), NCEP (0.01%, -8.9~-0.1 mm day
-1

) and CMC (0.01%, 203 

ftp://meso-a.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf
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-87.2~-0.1 mm day
-1

) EPSs. For simplicity, all negative values of 24-h precipitation forecasts 204 

are set to zeros. 205 

3.3 Verification methods 206 

In this study, multiple deterministic and probabilistic verification methods are carried out 207 

to demonstrate different aspects of QPFs and PQPFs. Considering the large meridional span, 208 

an area-weighted average method is applied to the common verification scores [Jolliffe and 209 

Stephenson, 2003; Wilks, 2006; and references within]. 210 

The area-weighted root mean square error (RMSE) is calculated as 211 

2

1

1

( )
N

i i i

i

N

i

i

w x y

RMSE

w


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 





        (1) 212 

where xi and yi represent the ith forecast and observed values, wi equals to the cosine latitude 213 

of the ith sample and N is the sample size (w has the same definition in other scores). 214 

Similarly, the Pearson correlation [Wilks, 2006] is modified to the spatial correlation (SC) to 215 

measure the similarity of two patterns: 216 
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where x  and y  are the area-weighted averages of forecast and observed values: 218 
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The discrimination diagram can be used to demonstrate the ability of the forecast system 221 

to discriminate different rain events. The corresponding forecast and observed rain events are 222 

denoted as Xj and Yk (j,k=1,2,…,M) for M rain events. One rain event Yk corresponds to one 223 

discrimination curve. The forecast relative frequency f(Xj|Yk) conditioned on the observed kth 224 

rain event, is plotted against different forecast categories Xj and is calculated as: 225 

1

1

( | )

N
i i

i j k

i
j k N

i

i k

i

w A B

f X Y

w B





 








        (5) 226 

where A
i
j=1 if the jth event is forecasted for the ith sample or otherwise A

i
j=0, and B

i
k is 227 

similar but for the observed kth event. For a perfect forecast system, f(Xk|Yk)=1 and 228 

f(Xj|Yk)|j≠k=0. 229 

Verification metrics for dichotomous forecasts including the bias score (frequency bias, 230 

Bias), the equitable threat score (ETS), the probability of detection (POD) and the false alarm 231 

ratio (FAR) are also calculated in the area-weighted form, based on the 2×2 contingency table 232 

[Jolliffe and Stephenson, 2003]. The contingency table is also area-weighted using all samples 233 

constructed by A
i
k 
and B

i
k (Equation 5). 234 

 For probabilistic forecasts, the forecast scores are calculated in a similar area-weighted 235 

form. First, the ensemble spread and the spread-skill relationship (spread vs. RMSE) are 236 

evaluated. Usually, the continuous ranked probability score (CRPS) and the continuous 237 

ranked probability skill score (CRPSS) are used as the summary scores for probabilistic 238 

forecasts, while the Brier Score (BS) [Brier, 1950] and the Brier skill score (BSS) are used for 239 

dichotomous probabilistic forecasts at a selected precipitation threshold. The CRPSS is 240 
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calculated based on the area-weighted averages of the CRPS and the referenced CRPS 241 

(CRPSref) that is generated using the cumulative distribution function (CDF) of the observed 242 

samples (i.e. sample climatology) on each grid point. Similarly, the BSS is calculated based 243 

on the area-weighted averages of the BS and the referenced BS (BSref) that is generated using 244 

the sample climatology frequency on each grid point. The CRPSSs and BSSs calculated in 245 

this study are usually much lower than that using the long-term climatology or the 246 

sample-weighted average method for distinct climatological regimes [Hamill and Juras, 247 

2006]. 248 

The BS can be decomposed into three components: reliability (REL), resolution (RES) 249 

and uncertainty (UNC) [Murphy, 1973]. As the sample climatology differs on grid points, the 250 

decomposition is performed on each grid point: BSs=RELs-RESs+UNCs (s denotes the sth grid 251 

point). Each term is calculated as: 252 
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(1 )s s

sUNC o o             (9) 256 

where m denotes the number of forecast categories; when ensemble size is M, m=M+1 and the 257 

probability of the kth forecast category is pk=(k-1)/M; n
s
k denotes the subsample size for the 258 

kth forecast category; Nt is the total sample size on each grid point (Nt=n
s
1+n

s
2+…+n

s
m, 455 in 259 

this study); on each grid for the jth sample, the observed frequency o
s
kj=1 if the event occurs 260 
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or otherwise o
s
kj=0, the conditional average observed frequency is 261 

1 2( ... ) /s
k

s s s s s

k k k kkn
o o o o n    , and the sample climatology is 262 

1 1 2 2( ... ) /s s s s s s s

m m to o n o n o n N       . The overall scores: BS, REL, RES and UNC, can be 263 

derived from the area-weighted averages of all grid points: 264 
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   (10) 265 

where Ns denotes the number of grid points. As BSref equals to UNC, the overall BS can be 266 

expressed as (RES-REL)/UNC. 267 

To further demonstrate the contribution of various forecast categories to the overall REL 268 

and RES, the reliability diagram (RD) is shown with the conditioned observed frequencies 269 

plotted against the forecast probabilities. The subsample frequencies shown on the RD, which 270 

is also called the sharpness graph, are also area weighted. Sharpness solely depends on the 271 

forecast, denoting the ability of the forecast system to predict extreme probabilities (0% and 272 

100%). Forecasts with more subsamples for extreme forecast probabilities are sharper. The 273 

forecast only based on climatology of observation is perfectly reliable (overlapping with the 274 

diagonal line), but it fails to produce enough extreme probabilities (not sharp) with poor 275 

discrimination ability (low RES). The REL term (i.e. the conditional bias) can be calibrated, 276 

while the RES term is difficult to be improved through post-processing. The forecast system 277 

only becomes perfect (BSS=1) when perfect REL (REL=0) and perfect RES (RES=UNC) are 278 

obtained at the same time. 279 

 Compared with the RD, which is conditioned on the forecasts, the Relative Operating 280 

Characteristic (ROC) measures the discrimination ability of probabilistic forecasts 281 
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conditioned on the observations. First, a set of probability thresholds are used to convert the 282 

PQPFs into dichotomous predictands. Then the ROC curve is constructed by plotting the 283 

corresponding PODs against false alarm rates (or probability of false detections, POFDs) 284 

using the 2×2 area-weighted contingency table. The ROC curve overlapping with the diagonal 285 

line indicates no discrimination ability of the occurred and non-occurred events in a forecast 286 

system, i.e., PODs are always equal to POFDs. Area under the ROC curve (ROCA) is used as 287 

a summary scalar of the discrimination ability, ranging from 0 to 1 (perfect forecast), and a 288 

ROCA of 0.5 indicates no skill. 289 

 The dichotomous predictands generated in the ROC can also be used in economic 290 

decision-making. Based on a simple cost-loss model [Zhu et al., 2002], the economic value 291 

(EV) here refers to a relative skill score (not actual economic loss) comparing the economic 292 

loss from the decision-making generated using the information of PQPFs to that from a 293 

constant decision (always take or not take a precautionary action). An EV above 0 indicates 294 

useful information from the PQPFs to the decision-making. For a certain probability threshold, 295 

the EVs are plotted against the cost/loss (C/L) ratios. The potential EV (PEV) of the PQPFs is 296 

obtained by taking the maximum EV of all probability thresholds for different C/L ratios. The 297 

corresponding optimal probability thresholds for different C/L ratios are also plotted as 298 

scatters. If the forecast system is perfectly reliable, the scatters should line on the diagonal 299 

line of the PEV graph [Jolliffe and Stephenson, 2003]. 300 

Error bars are shown for the RMSE, ensemble spread and CRPSS, representing the 90% 301 

confidence intervals using resampling method by randomly selecting the statistics 10000 302 

times [Hamill, 1999]. As for the Bias, ETS, POD, FAR, BSS and ROCA, the error bars are 303 

too short and not shown. 304 

Finally, the impacts of major model upgrades on the forecast performance are examined 305 
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for several scores (ETS, RMSE, CRPSS, BSS, spread, and spread/RMSE ratio). To eliminate 306 

the impact of interannual variation, the score changes of other five centers due to the major 307 

model upgrade are compared with the corresponding score of CMA (frozen version). 308 

Considering 90% confidence intervals, the performance change of the forecast score due to 309 

the major model upgrade is thought to be significant when three criteria are satisfied: (a) the 310 

score change is significant; (b) the change of the score difference between the center and 311 

CMA is significant; (c) the trends of change in (a) and (b) are consistent (same sign). 312 

4. Results 313 

4.1 Verification of ensemble mean QPFs 314 

4.1.1 Precipitation climatology and forecast errors 315 

The precipitation climatology (Figure 1) of the day +3 ensemble mean QPFs from the six 316 

EPSs and the TRMM observations during JJA 2008-2012 are compared. All EPSs (Figure 317 

1a-f) can reproduce major observed heavy rain belts globally with high spatial correlation 318 

coefficients, but demonstrate different regional forecast errors. The CMC and UKMO EPSs 319 

tend to overestimate rain areas in the west coast of India, while the CMA and JMA EPSs have 320 

large overall forecast errors (RMSE of 1.8~2.0 mm day
-1

). The CMA EPS fails to reproduce 321 

the heavy rain area in the western Pacific near the equator (120°E-160°E, 0°N-10°N), and the 322 

JMA EPS fails to reproduce the heavy rain center in the Bay of Bengal. In general, the 323 

ECMWF EPS shows the least RMSE of 1.28 mm day
-1 

for the day +3 QPFs, and the relative 324 

performance of precipitation climatology at other lead times is similar (not shown) for all 325 

EPSs. In particular, the day +1 JMA EPS (Figure 1g) shows noteworthy moist biases in the 326 

NH tropics and causes the discontinuity of forecast scores with the lead time, because JMA 327 

employs moist SVs over the entire tropics and perturbs the specific humidity with a large 328 

amplitude [Yamaguchi and Majumdar, 2010]. 329 
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Compared to ensemble mean QPFs, the control QPFs from the six EPSs show different 330 

overall forecast errors (RMSE, Figure 2). For the control QPFs, the JMA EPS significantly 331 

outperforms other EPSs in the NH midlatitudes, especially for longer lead times, while the 332 

ECMWF, UKMO and JMA EPSs have less forecast errors than other three EPSs in the NH 333 

tropics. For the ensemble mean QPFs, the ECMWF EPS is the best in both regions, while the 334 

CMC, UKMO and JMA EPSs are relatively better than the NCEP and CMA EPSs for longer 335 

lead times. Although the control QPFs from CMC are inferior to those from JMA and UKMO, 336 

the ensemble mean QPFs from the three centers are comparable in both regions. This 337 

indicates that the QPFs in the CMC EPS benefit more from the ensemble configuration. 338 

4.1.2 QPFs of categorical and dichotomous events 339 

The discrimination diagram illustrates how different discrimination curves (conditioned 340 

on the observed rain events) separate with each other, indicating the ability to discriminate 341 

different observed rain events. For the day +1 ensemble mean QPFs (Figure 3), all EPSs are 342 

able to discriminate observed light, moderate and heavy rain events to some degree in the NH 343 

midlatitude, while the discrimination ability is relatively low in the NH tropics. For example, 344 

for the day +1 ensemble mean QPFs in the NH tropics, the poor performance of the CMA 345 

EPS causes little discrimination ability among different rain events (Figure 3a3), and the JMA 346 

EPS overforecasts more observed light rain events as moderate rain events (Figure 3f3) due to 347 

the large moist bias (Figure 1g). The low predictability of QPFs in the NH tropics is perhaps 348 

associated with the complex convective processes in this region, which remains a great 349 

challenge to the model communities. The discrimination ability decreases with the lead time 350 

indicated by the day +1 and day +5 diagrams (Figure 3, other lead times not shown), as the 351 

curves representing different observed rain categories gradually become indistinguishable 352 

towards light rain events. The day +5 ensemble mean QPFs of most EPSs completely lose 353 
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discrimination ability, except the marginal discrimination ability in the ECMWF and UKMO 354 

EPSs. 355 

Other commonly used dichotomous scores are computed for the ensemble mean QPFs at 356 

varied lead times and precipitation thresholds (Figure 4). In both the NH midlatitudes and NH 357 

tropics, all EPSs overforecast the light precipitation (>1mm day
-1

) and underforecast the 358 

heavier precipitation (>25 and 50 mm day
-1

, Figure 4a, b). Generally, ECMWF demonstrates 359 

the best forecast quality (ETS, Figure 4c, d), while NCEP has the relatively good bias score 360 

(Figure 4a, b). The selected scores are linked, such as the existing relation of 361 

Bias=POD/(1-FAR). Accordingly, the relatively lower POD (Figure 4e, f) and lower FAR 362 

(Figure 4g, h) of NCEP contribute to the improved bias scores at the light precipitation 363 

threshold, and vice versa at the heavier precipitation thresholds. The significantly lower POD 364 

and higher FAR of the CMA EPS in the NH tropics are associated with the significantly lower 365 

ETS, consistent with the poor discrimination ability (Figure 3). Also, the verification scores 366 

reflect different forecast properties, and may not be consistent. For instance, the bias scores of 367 

CMA are similar to those of other centers, despite of its other poor scores. This is because a 368 

good bias score, independent of location errors, is only a necessary but not sufficient 369 

condition of an accurate forecast. Consequently, all scores should be used and interpreted with 370 

caution. 371 

4.2 Verification of PQPFs 372 

4.2.1 Spread-skill relationship and CRPSS 373 

A well-constructed EPS should have the fast growing ensemble spread which can capture 374 

the growth of forecast error. The spread-skill relationship (Figure 5) is measured by the 375 

ensemble spread and ensemble mean error in this study. The CMC EPS uses multi-physics 376 

schemes to represent model uncertainties and initiates a large ensemble spread with the fastest 377 
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growth rate and large day to day variation (long error bars of the spread). With the increasing 378 

lead time, the ensemble spread of CMC grows to level with the ensemble mean error in the 379 

NH midlatitudes while becomes overdispersive in the NH tropics. Other five EPSs are 380 

severely underspersive and suffer from spread deficiencies in both regions. The day +1 381 

ensemble spread of JMA is the largest in the NH tropics due to the use of moist SVs, and 382 

drops to the lowest with the slowest growth rate after the day +2 lead times. In addition, an 383 

EPS with large ensemble size does not necessarily possess large ensemble spread or improved 384 

spread-skill relationship. For example, the ensemble spreads of CMA with 14 ensemble 385 

members and ECMWF with 50 ensemble members are very close for longer lead times. 386 

Considering larger RMSEs in the CMA EPS, the ECMWF EPS has better spread-skill 387 

relationship. Another example is that the JMA EPS (50 members) has worse spread-skill 388 

relationship compared to the CMC EPS (20 members), because the former has the similar 389 

RMSEs but much smaller ensemble spread. 390 

The overall performance of PQPFs from the six centers is evaluated by the CRPSS 391 

(Figure 6) using the CDF of sample climatology on each grid point as the reference forecast. 392 

The CRPSS here is conventionally calculated and its value highly depends on the forecast 393 

errors of large precipitation amount [Hamill, 2012]. Nevertheless, the relative performance of 394 

different centers is revealed by the CRPSSs (Figure 6), indicating higher PQPF skills in the 395 

NH midlatitudes than that in the NH tropics and the best skill for the ECMWF EPS in both 396 

regions. CMC has the second best CRPSS of day +1 PQPFs and the skill rapidly drops from 397 

day +2, which may be related to its fast growing of ensemble spread and large forecast errors. 398 

For longer lead times (day +3 ~ +9), JMA ranks the second best followed by NCEP and 399 

UKMO in the NH midlatitudes. In the NH tropics, UKMO ranks the second best for longer 400 

lead times, and CMA has the extremely poor performance as its CRPSS of day +1 PQPFs is 401 
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even worse than that of day +9 PQPFs from ECMWF. 402 

4.2.2 PQPF skill of dichotomous events 403 

Compared with the CRPSS, the BSS equally weights different grid points irrespective of 404 

the distance between the precipitation amount and the precipitation threshold. The BSSs of 405 

PQPFs (Figure 7) show that CMC obviously outperforms other centers at the 1 mm day
-1

 406 

threshold, and CMC and ECWMF are more skillful at heavier precipitation thresholds. In 407 

addition, the BSS varies with the precipitation threshold, and is sensitive to the conditional 408 

bias. ECMWF has the relatively low BSS at 1mm day
-1

 in the NH tropics due to the poor 409 

reliability (Figure 8c3). The good reliability of CMC and the good resolution of ECMWF 410 

(Figure 8b1-4, c1-4) contribute to higher BSSs in both EPSs. The conditional bias (reliability 411 

term) can be calibrated through post-processing while the resolution term is associated with 412 

the model itself and difficult to be post-processed. At the 1 mm day
-1

 threshold, the resolution 413 

terms (Figures 8d1, 8d3, 8e1, 8e3) of UKMO and NCEP are very close, thus the discrepancy 414 

of BSS between these two centers (Figure 7) is mainly caused by the difference of reliability. 415 

At the 10 mm day
-1

 threshold, both the reliability and resolution terms of UKMO are better 416 

than those of NCEP (Figures 8d2, 8d4, 8e2, 8e4), which leads to better BSSs of UKMO 417 

(Figure 7). 418 

The reliability diagrams of day +3 PQPFs at the 1 mm day
-1

 and 10 mm day
-1

 thresholds 419 

(Figure 8) show overconfident forecasts with flatter reliability curves by underestimating both 420 

ends of extreme probabilities for all EPSs. Though the CMC EPS (Figure 8b1-4) is most 421 

reliable (the curves closest to the diagonal line), but is not sharp enough due to the large 422 

discrepancy of its ensemble members. The frequencies of CMC forecasts with high 423 

probability categories are extremely low (less than one in a thousand) (Figures 8b2, 8b4). In 424 

contrast, UKMO and NCEP are sharp, with more forecasts of extreme probabilities (Figures 425 
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8d1-4, e1-4). The day +3 PQPFs from CMA have the worst resolution (smallest RES) while 426 

those from JMA have the worst reliability (largest REL). This indicates the relatively poorer 427 

model quality of CMA and larger conditional biases of JMA. In particular, for the day +1 428 

PQPFs from JMA in the NH tropics (Figure 8g3-4), the observed frequencies of conditional 429 

wet biases are increased due to the large moist biases (Figure 1g). For other lead times (not 430 

shown), the reliability curves are similar to those of the day +3 PQPFs. At the 25 mm day
-1

 431 

and 50 mm day
-1

 thresholds (not shown), the dry forecast probabilities (zero) are dominated 432 

and the frequencies at high probabilities are largely reduced for each center. 433 

4.2.3 Discrimination ability and potential economic value 434 

Figure 9 demonstrates the ROCAs at different precipitation thresholds and lead times. 435 

PQPFs from CMC and ECMWF have the strongest ability to discriminate different observed 436 

rain events. Buizza et al. [1999a] considers an ROCA of 0.7 as the limit of a useful prediction 437 

system. Nearly all centers are useful for the day +1 to +5 lead times at the 1 to 25 mm day
-1

 438 

precipitation thresholds in the NH midlatitudes while PQPFs from CMA, NCEP and JMA 439 

lack skill at the 50 mm day
-1

 precipitation threshold. ROCAs in the NH tropics are relatively 440 

lower for all EPSs, especially for heavier precipitation thresholds. ROCAs of CMA in the NH 441 

tropics are very poor and slightly vary with increasing lead times, indicating inferior 442 

discrimination ability of PQPFs. 443 

Based on the ROCA, the PEV curves and the optimal probability thresholds (Figure 10) 444 

are calculated for taking action as a function of C/L ratios for day +3 PQPFs at different 445 

precipitation thresholds. Except the high PEV values of CMC at 1 mm day
-1

 precipitation 446 

threshold for high C/L ratio users, ECMWF has the highest PEV values. PQPFs from 447 

ECMWF outperform other centers more for heavier precipitation thresholds, indicating large 448 

potential use in economic decision making. PQPFs from CMA have the least PEV and 449 
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smallest range of C/L ratios, showing a large gap compared to other centers (Figures 450 

10a,b,d,e). Among all centers, the optimal probability thresholds against different C/L ratios 451 

from CMC are closest to the diagonal lines, especially at the 1 mm day
-1

 precipitation 452 

threshold, indicating the best reliability [Jolliffe and Stephenson, 2003]. The optimal 453 

probability thresholds of ECMWF are close to the diagonal line at heavier precipitation 454 

thresholds, but largely deviate from the diagonal line at the 1 mm day
-1

 threshold in the NH 455 

tropics, indicating its relatively bad reliability (Figure 8c3). PEV curves of other lead times 456 

(not shown) are similar except those from the JMA day +1 PQPFs. 457 

4.3 Performance changes due to model upgrade 458 

One concern in the design of EPS is to gain better spread-skill relationship. Table 2 459 

provides the average ensemble spread of five centers and their spread differences with CMA 460 

for the day +3 forecasts before and after the major model upgrade. All the five centers have 461 

significant spread changes with 90% confidence interval. Ensemble spread of ECMWF is 462 

reduced while other four centers increase their spread. CMC enlarges their ensemble spread 463 

remarkably, with an increase of 3.5 and 3.4 mm day
-1

 in the NH midlatitudes and the NH 464 

tropics respectively. Figure 11 illustrates the time series of ensemble spread and RMSE of 465 

ensemble mean for the day +3 forecasts of each center in the NH midlatitudes. All the five 466 

centers have significantly changed the spread/RMSE ratio. Ensemble spread of ECMWF 467 

becomes more deficient, while the spread deficiencies of UKMO, NCEP and JMA are 468 

mitigated. The changes of ensemble spread and spread-skill relationship at different lead 469 

times (Table 3) before and after the major model upgrades are similar with those of the day +3 470 

forecasts, except that the changes of short-range forecasts of JMA are insignificant. 471 

Upgrading the EPS is expected to improve ensemble mean QPFs. RMSEs (Table 4) of the 472 

day +3 ensemble mean QPFs from UKMO and NCEP are reduced significantly while there 473 
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are no significant RMSEs changes for ECMWF and JMA after the major model upgrade. The 474 

RMSE of ECMWF QPFs is quite small compared to other centers and is hard to be improved 475 

further. Notably, CMC has increased the RMSE after the model upgrade, because oversized 476 

ensemble spread (Figure 11b) usually causes large forecast errors. The day +3 10 mm day
-1

 477 

ETSs (Table 5) of ECMWF, UKMO and NCEP are improved in the NH tropics, and little 478 

changes exist for JMA and CMC. NCEP has relatively lower ETS in the NH midlatitudes 479 

before the model upgrade and achieves the most remarkable improvement in ETS. Table 6 480 

demonstrates the changes of RMSE and ETS of different lead times and precipitation 481 

thresholds before and after the major model upgrade for each center in the NH midlatitudes 482 

and NH tropics. RMSEs of CMC deteriorate after the model upgrade for most of the lead 483 

times while the ETSs do not, because ETS is a dichotomous forecast score associated with the 484 

selected precipitation threshold and is insensitive to ensemble spread. The day +1 to +9 485 

RMSEs of UKMO are reduced and the 10 mm day
-1

 ETS in the NH tropics is also improved. 486 

However, the 1 mm day
-1

 and 50 mm day
-1

 ETSs are deteriorated. NCEP has not only 487 

improved the day +3 to +9 RMSEs, but also the ETSs at heavier thresholds over 10 mm day
-1

 488 

(except 25 mm day
-1

 ETS in the NH tropics). 489 

At the same time, the PQPFs are expected to be improved through the EPS upgrade. All 490 

the centers have significantly changed CRPSS for the day +3 PQPFs except JMA (Figure 12). 491 

The CRPSSs of ECMWF, UKMO and NCEP are improved significantly after major model 492 

upgrades as the gaps between the two time series become larger (Figure 12b-d). However, the 493 

CRPSS of CMC becomes even lower than that from the static version of CMA after the model 494 

upgrade. The deterioration of CRPSS of CMC is probably due to its remarkably increased 495 

ensemble spread. Unlike CRPSS that more depends on precipitation amount, the BSS is 496 

sensitive to the selected precipitation threshold. The 10 mm day
-1 

BSSs of ECMWF, UKMO 497 



 

23 
 

and NCEP are improved (Table 7), while there are no significant changes for CMC and JMA.  498 

At different lead times and precipitation thresholds (Table 8), the PQPF skill (CRPSS and 499 

BSS) of JMA has not been changed much after the model upgrade; the PQPFs of NCEP 500 

generally have been improved in the NH midlatitudes and NH tropics; both ECMWF and 501 

UKMO not only have improved the CRPSSs, but also the BSSs of some certain thresholds; 502 

though CMC has improved the BSSs at lighter precipitation thresholds, its CRPSS has 503 

decreased significantly. 504 

5. Summary and discussions 505 

This study provides a comprehensive verification on ensemble mean QPFs and PQPFs 506 

from six operational global EPSs in the NH midlatitudes and NH tropics during the boreal 507 

summers of 2008-2012. Taking the latitudinal discrepancies into account, a series of 508 

verification metrics are employed using an area-weighted average method to evaluate the 509 

performance of different operational centers at different lead times and precipitation 510 

thresholds. Performance changes due to the major model upgrade during the five summers are 511 

also examined using the forecasts from CMA as the reference to eliminate the interannual 512 

variation due to the unavailability of the parallel run results of different model versions. 513 

For the ensemble mean QPFs during the 5-year summers, CMA has relatively large 514 

systematic biases in the NH tropics. In fact, different kinds of deterministic and probabilistic 515 

verification scores employed here reveal that CMA performs poorly in the NH tropics, with 516 

very little discrimination ability of different observed rain events. The day +1 QPFs from 517 

JMA has remarkable moist biases in the NH tropics as they employ moist SVs for the entire 518 

tropics and perturb the specific humidity with a large amplitude. This causes the discontinuity 519 

of QPF performance against lead times and should be treated differently. 520 

Considering PQPFs during the 5-year summers, ECMWF generally performs best, except 521 
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at light precipitation thresholds ECMWF and UKMO have lower forecast skill in the NH 522 

tropics due to the relatively poor reliability. The PQPF performance of CMC is relatively 523 

good for light precipitation thresholds and short-range forecasts. For longer lead times, the 524 

ensemble spread of CMC grows excessively large and causes large forecast errors, which 525 

mainly results from the use of multi-physics schemes to represent model uncertainties. JMA 526 

has the smallest ensemble spread except the day +1 forecasts in the NH tropics. The reliability 527 

diagrams reveal that ECMWF has the best discrimination ability (large resolution term); CMC 528 

has the least conditional biases (small reliability term), but lacks extremely high probabilities 529 

and is the least sharp due to the large discrepancy of its ensemble members. In contrast, 530 

PQPFs from UKMO and NCEP are the most sharp. 531 

The verification results are sensitive to the uncertainties and quality of verification data 532 

(data quality control, interpolation method, location and so on). Yuan et al. [2005] showed that 533 

skill scores highly depend on the verification (observation/analysis) data. Hamill [2012] 534 

investigated PQPFs of TIGGE, and most conclusions about the relative performance of 535 

individual centers are consistent with this study. However, some his results are different, for 536 

example, the CRPSS from NCEP is superior to that from UKMO, while the CRPSSs of the 537 

two centers are of the same level in this study. The difference is that he used a modified 538 

version of CRPS to equally weight the dry and wet grid points and verified for different 539 

period and geographical location. It is not appropriate to judge which of the two centers has 540 

better PQPF skill, but instead to interpret these results with caution. 541 

The ultimate goal of verification study is to improve the performance of QPFs and PQPFs. 542 

The post-processing work and the development of the EPSs are two major ways to reach such 543 

goal. This study not only evaluates the merits and shortcomings of each EPS for model 544 

developers and users, but also provides some useful information about the potential of 545 
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post-processing to improve precipitation forecasts in the EPS. For example, the ensemble 546 

mean QPFs and PQPFs from CMA in the NH tropics have very little discrimination ability of 547 

the observed different rain events and thus would be extremely difficult to be improved 548 

through calibration. In contrast, though PQPFs from ECMWF are not as reliable as those from 549 

CMC, they have enough discrimination ability and the systematic bias can be reduced through 550 

calibration. Thus, the centers with less discrimination ability should invest more on the 551 

development of the model, while the centers with relatively high model quality can benefit 552 

more from the post-processing work to further improve QPFs and PQPFs. 553 

Whether the EPS upgrade may benefit QPFs and PQPFs is of interest to investigate. The 554 

EPSs have been upgraded gradually during five years, except for the CMA EPS. Therefore, 555 

the performance changes related to the major model upgrades have been evaluated for five 556 

operational centers referenced to the CMA EPS. The ensemble spread and spread/RMSE ratio 557 

of ECMWF have been significantly reduced while other four centers have significantly 558 

increased their spread with inflated spread/RMSE ratios. In particular, after the model upgrade 559 

to version 2.0.2 in CMC, remarkably increased ensemble spread leads to increased forecast 560 

errors (RMSE) and decreased PQPF skill (CRPSS). After the major upgrade, JMA has not 561 

been improved much, while ECMWF, NCEP, and UKMO have reduced forecast errors 562 

(RMSEs of ensemble mean QPFs) and increased PQPF skill (CRPSS). The improvements in 563 

ETS and BSS vary with selected precipitation thresholds and lead times. The model upgrade 564 

cannot always guarantee the skill improvements, and increasing ensemble spread as well as 565 

spread/error ratio also may cause negative effect on QPFs and PQPFs. 566 

How to fairly evaluate an EPS is essential for the development and upgrade of the EPSs. A 567 

few simple summary scores have limitations and cannot justify whether the old EPS should be 568 

upgraded to the new EPS. For example, the bias score denotes the ratio of forecasted events 569 
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and observed events while cannot express the displacement errors, thus only serves a 570 

necessary but not sufficient condition of accurate forecasts. In the NH tropics, bias scores of 571 

CMA are close to other centers while the ETSs of CMA have large gaps with other centers. In 572 

addition, verification scores or skill scores for dichotomous events (such as ETS and BSS) 573 

vary with different precipitation thresholds and lead times, while continuous scores (such as 574 

CRPSS) provide an overview of one forecast property. Gagnon et al. [2011] examined the 575 

PQPFs from two versions of the CMC EPS during 2009 winter and concluded that the new 576 

version (2.0.2) outperforms the old version, based on the day +6 and +7 BSs of different 577 

precipitation thresholds and the 2.5 and 15 mm day
-1

 precipitation thresholds BSs of different 578 

lead times. In this study, though BSSs of PQPFs from CMC are improved at some 579 

precipitation thresholds, the CRPSSs are deteriorated as a consequence of the excessively 580 

enlarged ensemble spread, because the continuous score CRPSS is sensitive to the 581 

precipitation amount. In comparison, NCEP has improved the CRPSSs and BSSs of different 582 

thresholds for nearly all lead times. Therefore, both scores for continuous forecasts and 583 

dichotomous forecasts at different thresholds for different lead times are suggested to draw a 584 

comprehensive conclusion. 585 
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Table and figure captions 680 

Table 1. Configurations of six TIGGE EPSs investigated in this study 681 

Table 2. Average ensemble spread (mm day
-1

) of five centers and their spread differences with 682 

CMA for day +3 forecasts before and after the major model upgrade. Boldface represents the 683 

significant change with 90% confidence interval. 684 

Table 3. The forecast lead times with significant changes of the ensemble spread and 685 

spread/RMSE ratio due to the major model upgrade with 90% confidence interval. The up 686 

(down) arrows represents an increase (decrease) change. 687 

Table 4. Same as Table 2, but for the RMSE (mm day
-1

). 688 

Table 5. Same as Table 2, but for the ETS at the 10 mm day
-1

 threshold. 689 

Table 6. Same as Table 3, but for the RMSE and ETS of ensemble mean QPFs. 690 

Table 7. Same as Table 2, but for the BSS at the 10 mm day-1 threshold. 691 

Table 8. Same as Table 3, but for the CRPSS and BSS of PQPFs. 692 

Figure 1. Average precipitation (mm day-1) of ensemble mean forecasts from the six EPSs 693 

and TRMM observation during JJA 2008-2012. The RMSE (mm day
-1

) and spatial correlation 694 

(SC) of forecast and observation averages are shown as the numbers in the titles. 695 

Figure 2. The RMSE of the control forecasts (dotted) and ensemble mean forecasts (solid) 696 

(mm day
-1

) during JJA 2008-2012 in (a) the NH midlatitudes and (b) the NH tropics. Error 697 

bars represent 90% confidence intervals. 698 

Figure 3. Discrimination diagrams of the ensemble mean QPFs in the NH midlatitudes (left 699 

two columns) and the NH tropics (right two columns) during JJA 2008-2012. The ordinate 700 

shows the forecast relative frequencies of observed light rain (1-10 mm day
-1

, green), 701 

moderate rain (10-25 mm day
-1

, blue), and heavy rain (25-50 mm day
-1

, red) against five 702 

forecast categories: no rain (N, <1 mm day
-1

), light rain (L, 1-10 mm day
-1

), moderate rain (M, 703 
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10-25 mm day
-1

), heavy rain (H, 25-50 mm day
-1

) and torrential rain (T, >50 mm day
-1

). 704 

Figure 4. The Bias, ETS, POD and FAR of the ensemble mean QPFs against different 705 

precipitation thresholds for different forecast lead times (day +1, +3 and +5) during JJA 706 

2008-2012. 707 

Figure 5. The RMSE of the ensemble mean QPFs (dotted) and the ensemble spread (solid) in 708 

(a) the NH midlatitudes and (b) the NH tropics during JJA 2008-2012. Error bars represent 90% 709 

confidence intervals. 710 

Figure 6. The CRPSS of PQPFs in (a) the NH midlatitudes and (b) the NH tropics during JJA 711 

2008-2012. Error bars represent 90% confidence intervals. 712 

Figure 7. The BSS of PQPFs against different precipitation thresholds for different forecast 713 

lead times (day +1, +3 and +5) in (a) the NH midlatitudes and (b) the NH tropics during JJA 714 

2008-2012. 715 

Figure 8. Reliability diagrams for day +3 and +1 PQPFs at the 1 mm day
-1 

and 10 mm day
-1 

716 

thresholds in the NH midlatitudes (left two columns) and the NH tropics (right two columns). 717 

The bar graphs show the subsample frequencies at the logarithm scale. The BSS, and the 718 

reliability (REL) and resolution (RES) terms of the BS are shown as the numbers. For clearity, 719 

the 50 member ECMWF and JMA are converted into 26 probability bins. 720 

Figure 9. The area under the Relative Operating Characteristic (ROC) curve against different 721 

precipitation thresholds for different forecast lead times (day +1, +3 and +5) in (a) the NH 722 

midlatitudes and (b) the NH tropics during JJA 2008-2012. 723 

Figure 10. Potential economic value (PEV) curves and the optimal probability thresholds for 724 

taking action as a function of cost/loss ratio for day +3 PQPFs at different precipitation 725 

thresholds. 726 

Figure 11. Time series of the ensemble spread and RMSE for the day +3 of ensemble mean 727 
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QPFs in the NH midlatitudes. The dotted vertical line splits the time periods before and after 728 

the major model upgrade. The averaged ratios of the ensemble spread and RMSE during the 729 

two periods are also shown as the numbers. All changes of the spread/RMSE ratio in the five 730 

EPSs (b-f) are significant with 90% confidence interval. 731 

Figure 12. Time series of CRPSS for the day +3 PQPFs in the NH midlatitudes. The dotted 732 

vertical line splits the time periods before and after the major model upgrade. The CRPSS 733 

differences between each center and CMA during the two periods are also shown as the 734 

numbers. Except JMA (e), the CRPSS changes in the four EPSs (a-d) are significant with 90% 735 

confidence interval. 736 

 737 
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Table 1. Configurations of six TIGGE EPSs investigated in this study 

Center 

 

Base time 

(UTC) 

No. of 

ensemble 

members 

Horizontal 

resolution 

archived 

Forecast  

length 

(day) 

Initial 

perturbation 

method 

Model 

uncertainty 

Major model 

upgrade time 

CMA 

(China) 

00/12 14+1 0.56º×0.56º 0-10 BVs - - 

CMC
a
 

(Canada) 

00/12 20+1 1.0º×1.0º 0-16 EnKF PTP + SKEB 

multi-physics 

17 Aug 2011 

ECMWF
b
 

(Europe) 

00/12 50+1 N320(~0.28º) 

N160(~0.56º) 

0-10 

10-15 

EDA-SVINI SPPT + SPBS 9 Nov 2010 

JMA
c
 

(Japan) 

12 50+1 1.25º×1.25º 0-9 SVs SPPT 17 Dec 2010 

NCEP
d
 

(USA) 

00/06/12/18 20+1 1.0º×1.0º 0-16 BV-ETR STTP 23 Feb 2010 

UKMO
e
 

(UK) 

00/12 23+1 0.83º×0.56º 0-15 ETKF RP + SKEB 9 Mar 2010 

a
The CMC EPS was upgraded to version 2.0.2 on 17 August 2011. 

b
The ECMWF EPS used a horizontal resolution of N200 (~0.45º) for 0-10 day forecasts and N128 (~0.7º) for 10-15 day forecasts before 26 

January 2010. EVO-SVINI was used as the initial perturbation method before 24 Jun 2010. The SPBS method has been added on 9 November 

2010. 
c
The JMA EPS began to use the SPPT method on 17 December 2010. 

d
The NCEP EPS was upgraded to version 8.0 and began to use the STTP method on 23 February 2010. In 14 February 2012, the NCEP EPS was 

upgraded to version 9.0. 
e
The UKMO EPS used a horizontal resolution of 1.25º×0.83º before 9 March 2010. 
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Table 2. Average ensemble spread (mm day
-1

) of five centers and their spread differences with 

CMA for day +3 forecasts before and after the major model upgrade. Boldface represents the 

significant change with 90% confidence interval. 

 

Center 

      NH midlatitudes               NH tropics         

Before After Change Before After Change 

CMC 5.8 9.3 3.5 11.2 14.6 3.4 

ECMWF 4.7 4.1 -0.5 6.9 5.4 -1.5 

UKMO 4.3 4.5 0.2 4.9 5.2 0.4 

NCEP 3.1 4.0 0.9 4.7 6.1 1.3 

JMA 3.1 3.5 0.4 4.9 5.2 0.3 

CMC-CMA 1.1 4.4 3.3 5.4 8.9 3.5 

ECMWF-CMA -0.1 -0.7 -0.6 1.0 -0.3 -1.3 

UKMO-CMA -0.4 -0.2 0.2 -1.1 -0.4 0.6 

NCEP-CMA -1.7 -0.8 0.9 -1.2 0.4 1.6 

JMA-CMA -1.6 -1.3 0.3 -1.0 -0.5 0.5 
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Table 3. The forecast lead times with significant changes of the ensemble spread and 

spread/RMSE ratio due to the major model upgrade with 90% confidence interval. The up 

(down) arrows represents an increase (decrease) change. 

Score NH Region CMC ECMWF UKMO NCEP JMA 

SPREAD midlatitudes 

tropics 

1-9 ↑ 

1-9 ↑ 

1 ↑ 2-9 ↓ 

2-9 ↓ 

1-7 ↑ 

1-6 ↑ 

1-9 ↑ 

1-9 ↑ 

2-9 ↑ 

3-9 ↑ 

SPREAD/RMSE midlatitudes 

tropics 

1-9 ↑ 

1-9 ↑ 

1 ↑ 2-9 ↓ 

2-9 ↓ 

1-9 ↑ 

1-9 ↑ 

1-9 ↑ 

1-9 ↑ 

2-9 ↑ 

5,6,8,9 ↑ 
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Table 4. Same as Table 2, but for the RMSE (mm day
-1

). 

 

Center 

      NH midlatitudes               NH tropics         

Before After Change Before After Change 

CMC 7.0 7.5 0.5 11.6 12.3 0.7 

ECMWF 6.7 6.6 -0.1 11.1 11.1 -0.0 

UKMO 7.4 7.0 -0.4 11.9 11.4 -0.5 

NCEP 7.4 7.2 -0.3 12.5 12.1 -0.4 

JMA 7.0 7.1 0.2 11.7 12.1 0.4 

CMC-CMA -0.4 -0.1 0.3 -0.6 -0.5 0.2 

ECMWF-CMA -0.7 -0.8 -0.1 -1.2 -1.6 -0.4 

UKMO-CMA -0.1 -0.3 -0.3 -0.4 -1.1 -0.8 

NCEP-CMA -0.0 -0.2 -0.2 0.2 -0.4 -0.6 

JMA-CMA -0.5 -0.3 0.2 -0.5 -0.5 0.0 



 

36 
 

Table 5. Same as Table 2, but for the ETS at the 10 mm day
-1

 threshold. 

 

Center 

      NH midlatitudes               NH tropics         

Before After Change Before After Change 

CMC 0.224 0.224 0 0.2 0.2 0 

ECMWF 0.290 0.303 0.012 0.261 0.281 0.020 

UKMO 0.252 0.264 0.012 0.228 0.241 0.013 

NCEP 0.227 0.261 0.034 0.204 0.215 0.011 

JMA 0.245 0.249 0.003 0.199 0.201 0.002 

CMC-CMA 0.019 0.005 -0.014 0.025 0.03 0.005 

ECMWF-CMA 0.085 0.091 0.006 0.080 0.112 0.032 

UKMO-CMA 0.047 0.053 0.006 0.047 0.072 0.025 

NCEP-CMA 0.022 0.05 0.028 0.023 0.046 0.023 

JMA-CMA 0.04 0.035 -0.005 0.025 0.028 0.003 
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Table 6. Same as Table 3, but for the RMSE and ETS of ensemble mean QPFs. 

Center NH Region CMC ECMWF UKMO NCEP JMA 

RMSE midlatitudes 

tropics 

2-9 ↑ 

3-9 ↑ 

1 ↓ 

1 ↓ 

  1-9 ↓ 

  1-9 ↓ 

3-9 ↓ 

3-9 ↓ 

- 

- 

ETS 

(1 mm day
-1

) 

midlatitudes 

tropics 

1,6 ↓ 

1 ↓ 2-9 ↑ 

- 

4-9 ↓ 

1, 7, 8 ↓ 

  3-9 ↓ 

- 

2-9 ↓ 

- 

- 

ETS 

(10mm day
-1

) 

midlatitudes 

tropics 

- 

6-8 ↑ 

1, 5 ↑ 

1-9 ↑ 

    8 ↑ 

   1-9 ↑ 

1-9 ↑ 

1-3,5,6,8,9 ↑ 

5-9 ↑ 

 1 ↑ 

ETS 

(25 mm day
-1

) 

midlatitudes 

tropics 

7-9 ↑ 

1,2 ↓ 6-9 ↑ 

- 

1 ↑ 8 ↓ 

  - 

  - 

1-9 ↑ 

- 
2-9 ↑ 

1, 2 ↑ 

ETS 

(50 mm day
-1

) 

midlatitudes 

tropics 

- 

6-9 ↑ 

- 

- 

  - 

    1-4 ↓ 

1-7 ↑ 

1-6 ↑ 

  1 ↑ 

  1 ↑ 
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Table 7. Same as Table 2, but for the BSS at the 10 mm day
-1

 threshold. 

 

Center 

      NH midlatitudes               NH tropics         

Before After Change Before After Change 

CMC 0.118 0.139 0.021 0.03 0.04 0.011 

ECMWF 0.160 0.209 0.049 0.036 0.085 0.049 

UKMO 0.018 0.067 0.049 -0.182 -0.107 0.075 

NCEP -0.103 0.032 0.134 -0.317 -0.15 0.167 

JMA 0.025 0.014 -0.011 -0.14 -0.162 -0.022 

CMC-CMA 0.123 0.117 -0.007 0.245 0.293 0.047 

ECMWF-CMA 0.165 0.199 0.034 0.241 0.338 0.096 

UKMO-CMA 0.015 0.066 0.051 -0.007 0.15 0.157 

NCEP-CMA -0.105 0.032 0.136 -0.142 0.107 0.249 

JMA-CMA 0.03 0.004 -0.026 0.065 0.091 0.025 
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Table 8. Same as Table 3, but for the CRPSS and BSS of PQPFs. 

Score NH Region CMC ECMWF UKMO NCEP JMA 

CRPSS midlatitudes 

tropics 

 1-9 ↓ 

 1-9 ↓ 

1-9 ↑ 

1-9 ↑ 

2-8 ↑ 

1-9 ↑ 

1-9 ↑ 

1-9 ↑ 

- 

- 

BSS 

(1 mm day
-1

) 

midlatitudes 

tropics 

 1-9 ↑ 

 1-9 ↑ 

1-4 ↑ 

1-5 ↑ 

- 

- 

3-9 ↑ 

1-8 ↑ 

- 

- 

BSS 

(10mm day
-1

) 

midlatitudes 

tropics 

 1-2 ↑ 

1,3-9 ↑ 

1-8 ↑ 

1-9 ↑ 

2-9 ↑ 

1-9 ↑ 

1-9 ↑ 

1-9 ↑ 

- 

- 

BSS 

(25 mm day
-1

) 

midlatitudes 

tropics 

- 

- 

1-9 ↑ 

1-7 ↑ 

1-9 ↑ 

1-9 ↑ 

1-9 ↑ 

1-9 ↑ 

8 ↑ 

- 

BSS 

(50 mm day
-1

) 

midlatitudes 

tropics 

- 

6-9 ↑ 

- 

- 

- 

1-4 ↓ 

1-7 ↑ 

1-6 ↑ 

1 ↑ 

1 ↑ 
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Figure 1. Average precipitation (mm day
-1

) of ensemble mean forecasts from the six EPSs 

and TRMM observation during JJA 2008-2012. The RMSE (mm day
-1

) and spatial correlation 

(SC) of forecast and observation averages are shown as the numbers in the titles. 
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Figure 2. The RMSE of the control forecasts (dotted) and ensemble mean forecasts (solid) 

(mm day
-1

) during JJA 2008-2012 in (a) the NH midlatitudes and (b) the NH tropics. Error 

bars represent 90% confidence intervals. 
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Figure 3. Discrimination diagrams of the ensemble mean QPFs in the NH midlatitudes (left 

two columns) and the NH tropics (right two columns) during JJA 2008-2012. The ordinate 

shows the forecast relative frequencies of observed light rain (1-10 mm day
-1

, green), 

moderate rain (10-25 mm day
-1

, blue), and heavy rain (25-50 mm day
-1

, red) against five 

forecast categories: no rain (N, <1 mm day
-1

), light rain (L, 1-10 mm day
-1

), moderate rain (M, 

10-25 mm day
-1

), heavy rain (H, 25-50 mm day
-1

) and torrential rain (T, >50 mm day
-1

). 
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Figure 4. The Bias, ETS, POD and FAR of the ensemble mean QPFs against different 

precipitation thresholds for different forecast lead times (day +1, +3 and +5) during JJA 

2008-2012. 
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Figure 5. The RMSE of the ensemble mean QPFs (dotted) and the ensemble spread (solid) in 

(a) the NH midlatitudes and (b) the NH tropics during JJA 2008-2012. Error bars represent 90% 

confidence intervals. 
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Figure 6. The CRPSS of PQPFs in (a) the NH midlatitudes and (b) the NH tropics during JJA 

2008-2012. Error bars represent 90% confidence intervals. 
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Figure 7. The BSS of PQPFs against different precipitation thresholds for different forecast 

lead times (day +1, +3 and +5) in (a) the NH midlatitudes and (b) the NH tropics during JJA 

2008-2012. 
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Figure 8. Reliability diagrams for day +3 and +1 PQPFs at the 1 mm day
-1 

and 10 mm day
-1 

thresholds in the NH midlatitudes (left two columns) and the NH tropics (right two columns). 

The bar graphs show the subsample frequencies at the logarithm scale. The BSS, and the 

reliability (REL) and resolution (RES) terms of the BS are shown as the numbers. For clearity, 

the 50 member ECMWF and JMA are converted into 26 probability bins. 
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Figure 9. The area under the Relative Operating Characteristic (ROC) curve against different 

precipitation thresholds for different forecast lead times (day +1, +3 and +5) in (a) the NH 

midlatitudes and (b) the NH tropics during JJA 2008-2012. 
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Figure 10. Potential economic value (PEV) curves and the optimal probability thresholds for 

taking action as a function of cost/loss ratio for day +3 PQPFs at different precipitation 

thresholds. 
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Figure 11. Time series of the ensemble spread and RMSE for the day +3 of ensemble mean 

QPFs in the NH midlatitudes. The dotted vertical line splits the time periods before and after 

the major model upgrade. The averaged ratios of the ensemble spread and RMSE during the 

two periods are also shown as the numbers. All changes of the spread/RMSE ratio in the five 

EPSs (b-f) are significant with 90% confidence interval. 
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Figure 12. Time series of CRPSS for the day +3 PQPFs in the NH midlatitudes. The dotted 

vertical line splits the time periods before and after the major model upgrade. The CRPSS 

differences between each center and CMA during the two periods are also shown as the 

numbers. Except JMA (e), the CRPSS changes in the four EPSs (a-d) are significant with 90% 

confidence interval. 

 

 


