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Abstract 

 

EMC/NCEP generated an 18-year (1999-2016) subseasonal (weeks 3&4) reforecast to 

support the CPC’s operational mission. The SubX version of the Global Ensemble Forecast 

System was run weekly initialized at 0000 UTC with 11 members. The Climate Forecast System 

Reanalysis (CFSR) and Global Data Assimilation System (GDAS) were served as an initial 

analysis for 1999-2010 and 2011-2016. The analysis of 2-m temperature error characteristics 

demonstrated that the model has a strong warm bias in the Northern Hemisphere (NH) and North 

America (NA) warm season. During the winter, the 2-m temperature errors in NA exhibit a large 

inter-annual and intra-seasonal variability. For NA and the NH, weeks 3&4 errors are mostly 

saturated with a negligible impact of initial condition to forecast and week 2 errors (day-11) also 

reach ~88.6% and 86.6% of their saturated levels. 

In this work, the 1999–2015 reforecast biases were used to calibrate the 2-m temperature 

forecasts in 2016, which reduces (increases) the systematic error (forecast skill) for NA, the NH, 

Southern Hemisphere and Tropics with a maximum benefit for the NA warm season. Overall, 

analysis adjustment for the CFSR period makes bias characteristics more consistent with the 

GDAS period over the NH and Tropics and substantially improves the corresponding skills. The 

calibration using week-2 bias gives a very similar skill to using weeks 3&4 bias, promising the 

feasibility of using week-2 bias to calibrate weeks 3&4’s forecast. Our results also demonstrate 

10-yr reforecasts are an optimal training period. This is particularly beneficial considering 

limited computation resource. 
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1. Introduction 

To provide a seamless numerical guidance to a broad range of users and partners, NOAA 

is extending the service from a weather forecast (week 1) and extended forecast (week 2) to sub-

seasonal (weeks 3&4) forecast through the Next Generation Global Prediction System (NGGPS) 

project. The lack of memory of the atmospheric initial analysis as well as the effects of the 

atmosphere-land and ocean-sea-ice interactions, which benefits weather forecast and seasonal 

and longer timescale forecast, respectively, arises a particular challenge to the sub-seasonal 

forecasts (Johnson et al. 2014 and Li et al. 2018). On the sub-seasonal timescale, the numerical 

model is a major driver for forecast error and skill. Thus, the improvement in the dynamical 

forecast system is a critical aspect of advancing the sub-seasonal forecast skill. In addition to it, 

the statistical method (i.e. post-processing technique) is another important aspect as it improves 

the forecast quality after calibration thus could improve the forecast skill. The post-processing is 

especially important for sub-seasonal time scale due to larger forecast error existed in this time 

scale. 

Regarding the potential improvement of forecast skill in dynamical forecast system,  

recent studies demonstrate that sea surface temperature (SST) forcing (Zhu et al. 2017), the 

updated convection parameterization scheme (Vitart 2009; Zhu et al. 2018; and Li et al. 2018) 

and new stochastic physics (Zhu et al. 2018; and Li et al. 2018) significantly improve Madden-

Julian Oscillation (MJO) forecast skill and 500 hPa geopotential height. Although the forecast 

skill for the source of predictability of the sub-seasonal scale in tropics and the large-scale 

circulation raw forecast is promising, the weeks 3&4 forecast of near-surface variables is still 

challenging. For example, the improvement in forecast skill for 2-m temperature and 

accumulated precipitation raw forecast is only marginal (Zhu et al. 2018). This suggests 
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developing a suitable post-processing technique to calibrate the raw forecast and further improve 

the forecast skill of near-surface variables is especially important on a SubX (Subseasonal 

Experiments) timescale. Previous studies (Hamill et al 2004; 2008; Cui et al. 2012; Guan et al. 

2015; Guan and Zhu 2017; and Ou et al. 2016) reveal the importance of a hindcast (or reforecast) 

in extreme weather forecasts or bias correction on week 1 or week 2 timescales. Thus, the hybrid 

decaying and reforecast bias-correction method (Guan et al. 2015) is being operationally applied 

into the North American Ensemble Forecast System (NAEFS) (Candille 2009) in order to 

improve 1 to 16-day forecasts.  

The major focus of this study is to analyze the spatial and temporal distributions of 2-m 

temperature bias and identify the saturation characteristics of 2-m temperature error. It is well 

known that numerical weather forecasting error grows with lead time. An understanding of the 

error saturation analysis results is crucial to further develop an inexpensive reforecast 

configuration and an effective bias-correction method in operations. It is known that creating a 

multi-year reanalysis and reforecast dataset requires considerable computational and human 

resources. It is desirable to produce a high-quality of forecast but using less resource. To reach 

this goal, we determine the time scale when 2-m temperature error reaches a saturated level and 

then address whether the week 2 2-m temperature bias can be used to calibrate weeks 3&4 

forecasts. We also explore the impact of an inconsistent initial analysis on weeks 3&4 forecast 

and find out a backup solution (or analysis adjustment) when a consistent reanalysis dataset is 

not available. 

We first describe the forecast system and datasets in section 2. Then, we explore the 

temporal and spatial distributions of 2-m temperature bias and error saturation in section 3. In 
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section 4, we develop weeks 3&4 bias correction methods, including analysis adjustment and 

calibration sensitivity tests. Summary and conclusion are given in section 5. 

 

2. Forecast system and data 

In May 2017, the National Centers for Environmental Prediction (NCEP) Environmental 

Modeling Center (EMC) generated an 18-year (1999 - 2016) reforecast dataset to support the 

NCEP Climate Prediction Center (CPC)’s operational mission. With the exception of having a 

smaller ensemble size (1 control member and 10 perturbed members for reforecasts vs 1 control 

member and 20 members for real-time), the Global Ensemble Forecast System (GEFS) is 

essentially the same as the one used by Zhu et al. (2018) and Li et al. (2018). The forecast system 

is based on the operational GEFSv11 (Zhou et al. 2017) but having a new set of perturbed 

physics schemes, an updated scale-aware convection scheme (Han et al. 2017), and bias-

corrected CFSv2 forecast sea surface temperature (SST). Each simulation was integrated for 35 

days starting at 0000 UTC every Wednesday. The resolution of the model is TL574L64 (~ 34-km 

horizontal spacing) during the first 8 days and TL382L64 (~55 km horizontal spacing) for the rest 

of the lead days. The dataset used here was bilinear interpolated onto 1°x1° latitude and 

longitude grids from the model native resolution. Similar to Zhu et al. (2018), the forecast skills 

are defined relative to NCEP/NCAR 40 year reanalysis (Kalnay et al. 1996) climatology. 

Ideally, creating a full set of consistent reanalysis data, including observations and model, 

is an important part of reforecast process. A reforecast with an initial condition from a different 

analysis system would bring a different bias to the forecast. However, the frequent updating of 

the model, satellite data, or analysis system makes running a reanalysis impractical in operations 

because generating a multi-year reanalysis is computationally expensive. As illustrated in Fig.1, 
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here we use the two major sets of existing analysis data because there is not a consistent 18 year 

reanalysis available. The Climate Forecast System Reanalysis (CFSR, Saha et al. 2010) and 

NCEP operational Global Data Assimilation System (GDAS) (varied generations of hybrid GSI 

(Gridded Statistical Interpolation)/EnKF (Ensemble Kalman Filter)) analyses were used as model 

initial conditions for the time period of Jan.1999 – 2010 and 2011 -2016, respectively. The 

analyses data are consistent prior to 2011 and then varied with the GFS/GSI/EnKF upgrades after 

merging to the GDAS period. It should also be mentioned that using a new surface roughness 

formulation in the Global Forecast System (GFS) upgrade of May 11, 2011 (Zheng et al. 2012) 

lead to a significant change in 2-meter temperature analysis and forecasts for the arid areas or 

dust areas. It is expected that the impact of initial conditions on the forecast becomes less 

important at longer lead times. The current study also provides an opportunity to assess the 

impact of using initial conditions from different analysis systems on weeks 3&4 forecast.  

The Breeding Vector and ensemble transform with rescaling (BV-ETR) technique (Wei 

et al., 2008) and hybrid 3D-Var EnKF DA system were used to produce initial perturbations for 

the period of Jan. 1996 - Dec. 2, 2015 and afterwards, respectively. The studies in Zhou et al. 

(2016; 2017) show that the initial perturbation could impact the ensemble spread significantly, 

but have less impact on the ensemble mean errors and skills. Furthermore, the impact on the 

spread is only limited in the shorter forecast lead times (week 1, Zhou et al, 2017). Therefore, 

inconsistent perturbation schemes may have negligible impact of the weeks 3&4 forecasts due to 

short memory of the atmosphere (Zhu et al, 2005; Song and Mapes 2012). 

 

3. Bias analysis 
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To calculate bias, the analysis fields of CFSR (Jan.1 1999 to May 11 2011) and GDAS 

(May 12 2011 to Dec. 31 2016) were used as an approximate truth. Reforecast bias is 

climatological mean forecast error. The forecast error is defined as the difference of the 11-

member ensemble mean forecast and analysis at the same valid time. In calculating the bias 

climatology from 17-year weekly sampling reforecast dataset, we use a time window of 31 days 

centered on the day being considered, leading to a total sample size of 17 yr x 4-5 samples/yr = 

68 – 85 samples for each grid point and each forecast day. 

 

3.1 Bias distribution 

The land-only 2-m temperature errors (or bias) over the Northern Hemisphere (NH) and 

North America (NA) display a strong seasonal dependence (Fig. 2). Warm bias is prevalent for 

warm season (April–September) for these large and small domains. It is also evident in NA that 

the inter-annual and intra-seasonal variability of the bias is larger during boreal winter than other 

three seasons, hinting a poor predictability of winter-related physical processes. In winter, the 

ability of the model to forecast 2-m temperature depends significantly on its ability to determine 

(or assimilate) snow characteristics (Kazakova and Rozinkina 2011; Lavaysse et al. 2013). It has 

been found that the northern Great Plains, southern Canadian prairies, and the northeastern 

United States experience high inter-annual and intra-seasonal variability in snow cover and depth 

(Robinson 1996; Frei and Robinson 1999; Robinson and Frei 2000; Klingaman et al. 2007). 

Therefore, it is probable that the large variability of 2-m temperature bias over NA winter was 

directly associated with the variability of snow characteristics. Of course, this statement needs to 

be confirmed in the future.  
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There is also a clear tendency to have a larger (slightly larger) warm (cold) bias for the 

CFSR period (1999-2010) than the GDAS (2011-2016) period during the summer season (winter 

season) over the NH. To find out where the systematic difference between the two analysis 

system periods comes from, we compare the spatial distributions of global 2-m temperature 

errors between the 2006-2010 and 2011-2015 for July and January 2016 (monthly average) in 

Fig. 3. In summer month (July), the large difference between the two 5-year periods occurs 

mainly near Sahara and Middle-East desert (or arid) areas. This may be largely attributed to the 

modification of surface roughness length formula in the 2011 GFS upgrade (Zheng et al 2012) 

that lead to a larger change in 2-m temperature analysis and forecast over arid and desert regions. 

In winter, the difference between the CFSR to GDAS periods is relatively small. But we do find 

opposite bias characteristic in Kazakhstan and nearby with a positive bias for the GDAS period 

and negative bias for the CFSR period. 

 

3.2 Saturation analysis of 2-m temperature errors 

It is well known that the forecast error grows with lead time, until at some asymptotically 

long lead; the error reaches a saturated status. Error growth of 2-m temperature with lead-time 

for the full reforecast period (1999-2016) over NA and the NH land-only domains are depicted in 

Fig.4. For both domains, errors quickly grow within the first 10 days and gradually saturate 

afterwards through the weeks 3&4 time scale. The absolute errors (ABSE; dotted curve) for NA 

and the NH domains are ~79% (4.13/5.25) and 77% (3.82/4.97) of root-mean-square-error 

(RMSE; solid curve), respectively, if they are at a saturated level (day-28 or at the end of week 

4). Chai and Draxler (2014) pointed out that RMSE should have the same magnitude as ABSE 

when error variance is zero or error is uniformly distributed. In our cases, the contribution of 
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error variance to RMSE is less than ~21% (~23%) for NA (the NH). In general, the errors in NA 

are slightly larger than those in the NH. On average, the errors of day-11 (mid-day of week 2) 

forecast for NA and the NH are about 88.6% (3.57/4.13) and 86.6% (3.31/3.82) of their 

saturation values. It is understood that the timescale of error saturation is strongly dependent on 

the geographical area. For example, the timescale for the land error saturation (weeks) is shorter 

than that for the ocean (months) (Song and Mapse 2012). Our preliminary analysis shows the 

error saturation time is shorter over the Southern CONUS than the Northern CONUS for both 

summer and winter (not shown). The detailed diagnosis for the reasons causing this difference is 

needed in the future work. 

In order to better understand the error saturation, global 2-m temperature is compared 

between lead week 2 (7-day mean) and weeks 3&4 (14-day mean). It is evident that the error 

patterns have nearly fixed geographical structure with lead time in both the summer month (July; 

Fig. 5a; 5b) and winter month (January; Fig. 5c; 5d). The value of error is also very close to each 

other except for the north parts of NA and Europe, where the errors at weeks 3&4 are noticeably 

larger than that at week 2 during the winter season. Longer saturation times (scale) for the high-

latitude winter was linked to some larger system with more thermal or mechanical inertia (Song 

and Mapes, 2012). 

To assess the impact of initial conditions on 2-m temperature forecast, we examine time 

series of year-by-year evolutions for 24-hr, 120-hr, and 480-hr forecasts for NH land only. In the 

beginning of the model integration (24-hr; Fig. 6a), an impact from using different initial 

analysis systems can be noted. For example, the 2-m temperature forecast for the GDAS period 

(green curves) is systematically higher than for the CFSR period (red curves) between July and 

October. The impact from initial conditions is apparently getting less at 120-hr forecast (Fig. 6b) 
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and eventually minimal on weeks 3&4 time scale (480-hr; Fig. 6c). This also implies that the 

observed difference of weeks 3&4 bias (Fig. 2a) between the two analysis periods must come 

from an inconsistent reference (analysis).   

4. Bias correction for weeks 3&4 

4.1 Methodology and analysis adjustment                                                                                                                                                                                              

In this study, we use 17 years (1999 - 2015) average reforecast bias to calibrate the 2016 

GEFS forecast since we intend to do the calibration for recent forecast using historical 

information. Therefore, the forecasts being verified are independent from the training data. The 

bias-corrected forecast F for each grid point i,j is obtained by simply subtracting weeks 3&4 bias 

bi,j(tw34)  from raw forecast f, 

                                                                                                           (1) 

We also apply week 2’s bias bi,j(tw2) to calibrate weeks 3&4 forecast. Here the biases of 

week 2 and weeks 3&4 are two 7-day (days 8-14) and one 14-day (days 15-28) averaged forecast 

errors to match a validated forecast period, respectively. To test the sensitivity of the forecast 

skill to the number of training years, we also compare the calibrated forecast by using the bias 

from the most recent 5- (2011–2015), 10- (2006–2015), 17-yr (1999–2015) of training data, and 

evaluate the 2016 forecasts. 

The calibration of the ensemble forecast system is evaluated via the root-mean-square 

error (RMSE; Zhu and Toth 2008) and Rank Probability Skill Score (RPSS; Wilks 2011). The 

RPSS is frequently used for evaluating the performance of probabilistic forecasts (Ou 2016; 

Melhauser et al., 2016; Zhu et al. 2017). The score measures the improvement of a multi-
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category forecast to a reference. The higher the RPSS, the better the probabilistic system 

performs. 

As noted in Fig.2, there is a systematic difference in 2-m temperature bias between the 

CFSR and GDAS period for the NH domain, which most likely arose from inconsistent 

references (analyses). To confirm this, we show a land-only year-by-year analysis for the four 

geographic domains in Fig. 7. As expected, the analysis difference between the two assimilation 

periods is evident for the NH and tropics (TR) domains with a maximum difference of more than 

1º (Fig. 7a and Fig. 7c). The solid curves represent the averages for each analysis period. Note 

both domains encompass the desert or arid regions in North Africa and Middle-East, the most 

affected regions by the 2011 GFS upgrade. For the most of the time, the analysis is 

systematically higher in the GDAS than the CFSR period for the NH and TR. A higher reference 

analysis in the GDAS period (Fig.7a) induces a smaller warm bias (Fig. 2a) assuming that the 

forecast is less dependent on the initial analysis for weeks 3&4 time scale. 

  To make a consistent reference, it is necessary to make some adjustment for the early 

CFSR analysis. We first calculate 12-year (a
12y

) (1999-2010) and 5-year (a
5y

) (2011-2015) 

averaged analysis for each grid i,j and then apply the difference a’ to the first 12-year analysis as  

follow: 

          (2)                             

           (3)                                                                                                                                                             

Please note that an “analysis adjustment” is based on our early assumption (Fig. 6c; Zhu 

2005) which states that the weeks 3&4 forecast errors (or longer lead forecast) have less (or no) 

impact from the initial condition. Climate trend cannot be well estimated in this study because a 

full set of the CFSR analysis or GDAS analysis for the studied period is not available. However, 
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our comparison for the North Africa and Middle East regions does illustrate that the large 

difference (~3.4°) between the two analysis periods is mainly caused from the inconsistent 

analysis as indicted by a sharp increase in 2-m temperature in 2011 (Fig.8). In contrast, the 

natural changing trend during either the earlier 12 years or later 5 years is relatively minor.  

To demonstrate the consistency of forecast errors, we have presented domain average 

errors (or bias) without and with analysis adjustment in Fig. 9. Analysis adjustment merges the 

two separate groups together and mitigates the inconsistency of 2-m temperature bias for the 

both regions (Fig.9a vs Fig.9b; Fig.9c vs Fig.9d). In next section, we will examine the bias 

correction (or calibration) from the different biases (with/without analysis adjustment). 

4.2 Calibrating the 2016 forecasts using the 17-yr training dataset 

We present here a comparison of the verifications of the raw and the four calibrated 

weeks 3&4 forecasts over the four geographic domains (NH, NA, the SH, and TR). The week 2 

and weeks 3&4 bias with and without analysis adjustment were used to calibrate weeks 3&4 

forecasts. The forecast skills for both RMS errors (Fig. 10a) and RPSS (Fig. 10b) get improved 

after bias correction and analysis adjustment for all the four domains. Analysis adjustment does 

an excellent job for the NH and TR, but not for NA. Errors for NA are reduced by nearly 20% 

through the bias correction. It is also evident that forecast skills are very similar whether week 2 

or weeks 3&4 bias is used to do calibration. Therefore, this indicates that we could use week 2’s 

bias to calibrate weeks 3&4 forecasts which would optimize the use of computer resources 

without sacrificing the effectiveness of the calibration. Although its skill improvement is the 

most substantial, NA still has the lowest RPSS even though it has a similar RMS error to NH. 
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This could be due to its large bias variance and therefore less predictability compared to the other 

domains. 

To find out the seasonal dependence of the bias corrections, we show the time series of 

RMSE and RPSS for the raw, bias-corrected weeks 3&4 forecasts with and without analysis 

adjustment (Fig.11 and 12). The largest improvement occurs over NA (Fig. 11b; Fig. 12b) for the 

warm season from bias correction mainly. The RPSS increases from a near-zero value to ~ 0.4, 

while RMSE gets substantially reduced with a maximum reduction up to ~50% in July. A large 

skill improvement due to the analysis adjustment is for the tropical area (land only; Fig. 11d and 

Fig. 12d) throughout most of the year.  

Figure 13 depicts the distribution of RPSS for the raw (a) and calibrated (b) weeks 3&4 

forecasts in 2016. There is a negative skill relative to the climatology for the raw forecast over a 

considerable region of the Continental United States (CONUS). The 2-m temperature prediction 

is extremely challenging in the Great Plains, consistent with the findings in Klein et al. (2006). 

The bias-corrected forecast produces much higher forecast skill throughout the entire 

CONUS domain. Substantial improvements are detected over the Great Plains where the 

maximum increase in skill reaches ~0.6 (from ~ -0.45 for the raw forecast to ~0.15 for the 

bias-corrected forecast) near South Dakota. 

4.3 Skill sensitivity to number of training years 

The sensitivity of forecast skills to the number of training years has been studied by 

Hamill (2004); Guan et al. (2015); and Ou et al. (2016). Using the first-generation GEFS 

reforecast data, Hamill et al. (2004) demonstrated that there was a significant increase in skill 

from 2 to 5 years of training data for week 2 surface temperature, but once 10-12 years were 

reached, the incremental increase was much smaller.  The sensitivity experiments (Guan et al. 
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2015) with a more skillful GEFSv10 reforecast data (Hamill 2013)  reveal that improvement 

from using a 5-yr training period is almost equivalent to that from using 10-yr or 25-yr for lead 

time up to 16 days. Using the same dataset, Ou et al. show an 18-year training period is desirable 

for a high-quality week-2 calibration over the CONUS. 

To test the sensitivity of the weeks 3&4 forecast skill to the number of training years, 

here we calibrate the 2016  forecast using the 5-yr (2011-2015), 10-year (2006-2015), and 17-yr 

(1999-2015) training data. Our results (Fig. 14) show that increasing the number of training years 

from 5-yr to 10-yr leads a skill gain of 0.016 (or ~5%), while further increasing to 17-yr does not 

exhibit an important difference from the result using a 10-yr sample. This indicates a 10-yr 

sample should be an optimal requirement for the weeks 3&4 2-m temperature calibration of the 

NCEP GEFS SubX version. Our optimal sampling year (10 yrs) for weeks 3&4 forecast is 

similar to the year (10-12 yrs ) for week 2 forecast estimated by Hamill (2004) but less than that 

(18 yrs) in Ou et al (2016). The difference could be partially attributed to the difference in 

forecast lead-time, model version, and verification period as pointed out in Ou et al. (2016).    

5. Summary and Conclusion 

The NCEP/EMC generated an 18-year sub-seasonal reforecast dataset to support the 

CPC’s operational mission. The GEFS-SubX version was run every 7 days initialized at 0000 

UTC (every Wednesday) with 11 members, and with inconsistent initial analyses and initial 

perturbations. Using the dataset, we explore the analyses difference and adjustment, the bias 

characteristics of weeks 3&4 2-m temperature for the reforecast period and apply the 17-yr 

(1999-2015) bias to calibrate weeks 3&4 forecasts of 2016. The works have led to a number of 

conclusions as following: 
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(1) The forecast of 2-m temperature is strongly biased in North America and the Northern 

Hemisphere with a warm bias in the summertime. In winter, there is a large inter-annual and 

intra-seasonal variability of 2-m temperature bias for NA region, likely related to its high 

variability in snow characteristics. Therefore, it is a challenge to find out corresponding model 

systematic errors for 2-meter temperature. 

 

(2) The model errors quickly grow within the first 10 days and afterward gradually saturate until 

the weeks 3&4 time scale. The error of day-11 (or middle of week 2) forecast for NA (the NH) 

reaches about 88.6% (86.6%) of its saturated (day-28) value. The impact of the initial conditions 

is almost completely gone at weeks 3&4 time scale. We have noticed that there is a geographic 

difference for the error saturation. The Southern CONUS tends to have a shorter saturation 

timescale than that over the Northern CONUS. Further diagnosis is needed to address the reason 

causing this difference. 

    

(3)  A consistent analysis is very important to generate reforecasts and real-time forecasts. 

Analysis adjustment is an alternative way to make bias characteristics more consistent between 

the CFSR and GDAS periods. Adjusted analysis can be considered as a backup solution when a 

full set of reanalysis (or reference) is not available. 

 

(4) Bias correction is very important to reduce systematic error and increase forecast skill for all 

four domains with a maximum benefit for North America during warm season. The calibration 

using week-2 bias gives a very similar skill to that using week 3&4 bias, suggesting that week 
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2’s bias could be used to correct weeks 3&4’s forecast. This could help save huge computation 

resources and storage for other applications. 

 

(5) The weeks 3&4 2-m temperature calibrations using 5-yr, 10-yr, and 17-yr sample data have 

been performed, aimed to determine an optimal sample year. Our results demonstrated a 10-yr 

training period is close enough to obtain a more skillful forecast in 2016 if analyses (or 

reference) are consistent. 

 

The current study demonstrates the important value of using reforecast information to 

improve weeks 3&4 forecast skill for 2-m temperature through fully evaluating the analysis 

difference as well as temporal and spatial distributions of forecast errors. Analysis of bias 

characteristics of weeks 3&4 precipitation forecasts and its calibration are being performed. 

Since July 1 2017, the NCEP GEFS SubX version has generated 35-day forecast in real-time, 

once per week (every Wednesday 0000 UTC). In the future, we will continue generating the 

calibration statistics with incoming real-time SubX forecast and further examine the 

effectiveness and robustness of the calibration method with more data.    
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Figure captions: 

 

Figure 1.  Evolution of initial analyses and perturbations during the 18-year GEFS reforecast  

period (Jan.1999 - Dec. 2016). Since using GDAS analyses from Jan. 1 2010, there were 

four GFS/GDAS upgrades those are May 9 2011, May 22 2012, January 14 2015, and 

May 11 2016, respectively. 

 

Figure 2. Time series in 2-m temperature forecast error (or bias) for weeks 3&4 of the NH (left  

panel) and NA (right panel) domains. Each curve represents one particular year. Red and 

green curves indicate the errors for 1999–2010 and 2011–2015, respectively. Thick black 

curves are the errors for 2016. 

 

Figure 3. Spatial distributions of weeks 3&4 2-meter temperature bias (30 days running  

mean) for summer month (July) of 5 years (a. year 2006-2010; b: year 2011-2015) and 

winter month (January) of 5 years (c. year 2006-2010; d. year 2011-2015). 

 

Figure 4. 18-year domain averages (land only) of 2-meter temperature RMSE and absolute error  

for the NA (left panel) and NH (right panel) out to 35 days. 

 

Figure 5. Spatial distribution comparisons of week 2, weeks 3&4 2-meter temperature mean  

error (or bias) from 30 days running mean) for 18 years (1999-2016) of summer month - 

July (a. week 2; b. weeks 3&4) and winter month - January (c. week 2; d. week 3&4). 

 

Figure 6. Time series in 2-m temperature forecast over the NH region (land only) for the 24-hr  
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(a), 120-hr (b), and 480-hr (c) lead-time. Each curve represents one particular year. Red  

curves are for 1999–2010 and green curves are for 2011–2015.  

 

Figure 7. The time series of year-by-year 2-m temperature analyses for the NH (a), NA (b), SH  

(c), and TR (d) (land only). Red curves are for 1999–2010 and green curves are for 2011–

2015. Black solid curves are the averages for the CFSR period and black dash lines are 

the averages for the GDAS period. 

 

Figure 8. Domain averaged 2-m temperature analyses for North Africa and Middle East regions  

during years of 1999-2015. Red plus (+) is for the CFSR period and blue cross (x) is for 

the GDAS period. Red (blue) solid line represents the line of best fit for the CFSR 

(GDAS) period. Black lines are the averaged values for the corresponding two periods. 

 

Figure 9. The time series of weeks 3&4 2-m temperature forecast errors (or biases) for the NH  

(top panels) and TR (bottom panels) domains without (left panels) and with (right panels) 

analysis adjustments. Red lines indicate the errors for 1999–2010 and green lines indicate 

the errors for 2011–2015. Black lines indicate error for 2016. 

 

Figure 10. RMSE (a) and RPSS (b) of weeks 3&4 land-only 2-m temperature forecasts in 2016,  

averaged over the NH, NA, SH, TR for the raw (grey bar) and four bias-corrected (other 

color bars) forecasts. The BC_BIASwk2 (red) and BC_BIASwk34 (green) 

(BC_BIASwk2adj (blue) and BC_BIASwk34adj (purple)) denote the calibration using 

week 2 and weeks 3&4 bias without (with) analysis adjustment, respectively. 
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Figure 11.  RMSE of weeks 3&4 land-only 2-m temperature forecasts in 2016 averaged over  

the NH (a), NA (b), SH (c), and TR (d) for the raw (black) and two bias-corrected  

forecasts. The BC_BIASwk34 and BC_BIASwk34adj denote the bias-corrected forecasts 

without (red) and with (blue) analysis adjustment, respectively. 

 

Figure 12.  The same as Fig. 11 except for RPSS (Ranked Probabilistic Skill Score). 

 

Figure 13.  RPSS of weeks 3&4 2-m temperature forecasts for the CONUS in 2016 for the raw   

a) and bias-corrected (BC_BIASwk34adj) forecasts (b).  

 

Figure 14. RPSS of weeks 3&4 2-m temperature forecasts as a function of the number of training  

years. Skill scores represent the average score across the CONUS in 2016. 
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Figure 1. Evolution of initial analyses and perturbations during the 18-year GEFS reforecast 

period (Jan.1999 - Dec. 2016). Since using GDAS analyses from Jan. 1 2010, there were four 

GFS/GDAS upgrades those are May 9 2011, May 22 2012, January 14 2015 and May 11 2016 

respectively. 
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Figure 2. Time series in 2-m temperature forecast error (or bias) for weeks 3&4 of the NH (left 

panel) and NA (right panel) domains. Each curve represents one particular year. Red and green 

curves indicate the errors for 1999–2010 and 2011–2015, respectively. Thick black curves 

indicate the errors for 2016. 

 

 

 

 

 

 

 

a) 2-m temperature error,  NH b) 2-m temperature error,  NA 
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Figure 3. Spatial distributions of weeks 3&4 2-meter temperature bias (30 days running  

mean) for summer month (July) of 5 years (a. year 2006-2010; b: year 2011-2015) and winter 

month (January) of 5 years (c. year 2006-2010; d. year 2011-2015). 
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Figure 4. 18-year domain averages (land only) of 2-meter temperature RMSE and absolute error 

(ABSE) for the NA (left panel) and NH (right panel) out to 35 days. 
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Figure 5. Spatial distribution comparison of week 2, weeks 3&4 2-meter temperature mean error 

(or bias) from 30 days running mean for 18 years (1999-2016) of summer month - July (a. week 

2; b. weeks 3&4) and winter month - January (c. week 2; d. weeks 3&4). 
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Figure 6. Time series in 2-m temperature forecast over the NH region (land only) for the 24-hr 

(a), 120-hr (b), and 480-hr (c) lead-time. Each curve represents one particular year. Red curves 

are for 1999–2010, green curves are for 2011–2015. 
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Figure 7. The time series of year-by-year 2-meter temperature analyses for the NH (a), NA (b), 

SH (c), and TR (d) (land only). Each curve represents one particular year. Red curves are for 

1999–2010 and green curves are for 2011–2015. Black solid curves are the averages for the 

CFSR period and black dash lines are the averages for the GDAS period. 
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Figure 8. Domain averaged 2-m temperature analyses for North Africa and Middle East regions 

during years of 1999-2015. Red plus (+) is for the CFSR period and blue cross (x) is for the 

GDAS period. Red (blue) solid line represents the line of best fit for the CFSR (GDAS) period. 

Black lines are the averaged values for the corresponding two periods. 
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Figure 9. The time series of weeks 3&4 2-m temperature forecast errors (or biases) for the NH 

(top panels) and TR (bottom panels) domains without (left panels) and with (right panels) 

analysis adjustments. Each curve represents one particular year. Red curves indicate the errors 

for 1999–2010 and green curves indicate the errors for 2011–2015. Black lines indicate errors for 

2016. 
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Figure 10. RMSE (a) and RPSS (b) of weeks 3&4 land-only 2-m temperature forecasts in 2016, 

averaged over the NH, NA, SH, TR for the raw (grey bar) and four bias-corrected (other color 

bars) forecasts. The BC_BIASwk2 (red) and BC_BIASwk34 (green) (BC_BIASwk2adj (blue) 

and BC_BIASwk34adj (purple)) denote the calibration using week 2 and weeks 3&4 bias 

without (with) analysis adjustment, respectively. 
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Figure 11.  RMSE of weeks 3&4 land-only 2-m temperature forecasts in 2016 averaged over  

the NH (a), NA (b), SH (c), and TR (d) for the raw (black) and two bias-corrected forecasts. The 

BC_BIASwk34 and BC_BIASwk34adj denote the bias-corrected forecasts without (red) and 

with (blue) analysis adjustment, respectively. 
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Figure 12. The same as Fig.11 except for RPSS (Ranked Probabilistic Skill Score). 
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Figure 13.  RPSS of weeks 3&4 2-m temperature forecasts for the CONUS in 2016 for the raw a) 

and bias-corrected (BC_BIASwk34adj) b) forecasts.  

        

                

Figure 14. RPSS of weeks 3&4 2-m temperature forecasts as a function of the number of training 

years. Skill scores represent the average score across the CONUS in 2016. 
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