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Abstract 1 

The National Oceanic and Atmospheric Administration (NOAA)/Earth System Research 2 

Laboratory (ESRL) generated a multi-decadal (1985-current) ensemble reforecast database for 3 

the 2012 version of the Global Ensemble Forecast System (GEFS). This dataset includes 11-4 

member reforecasts initialized once per day at 00UTC. This GEFS version has a strong cold bias 5 

for winter and warm bias for summer in the Northern Hemisphere.  Although the operational 6 

Kalman Filter (KF) bias-correction approach performs well in winter and summer, it sometimes 7 

fails during the spring and fall transition seasons at long lead times (> ~ 5 days). In this paper, we 8 

use a 24-year (1985-2008) and 25-year (1985-2009) reforecast bias to calibrate 2-m temperature 9 

forecasts in 2009 and 2010, respectively. The reforecast-calibrated forecasts for both years are 10 

more accurate than those adjusted by the KF method during transition seasons. A long training 11 

period (at least 5 years) is necessary to help avoid a large impact on bias correction from an 12 

extreme year case and keep a broader diversity of weather scenarios. The improvement from 13 

using the full 25-year, 31-day window, weekly training dataset is almost equivalent to that from 14 

using daily training samples. This provides an option to reduce computational expenses while 15 

maintaining a desired accuracy. To provide the potential of improving forecast accuracy for 16 

transition seasons, we add reforecast information into the current operational bias-correction 17 

method. The relative contribution of the two methods is determined by the correlation between 18 

the ensemble mean and analysis. This method improves the forecast accuracy for most of the 19 

year with a maximum benefit in April, May, and June. 20 
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1. Introduction 1 

Several weather centers worldwide routinely produce skillful weather predictions using 2 

an ensemble forecast system (Toth and Kalnay, 1993, 1997; Wilks and Hamill, 2007).  The 3 

North American Ensemble Forecast System (NAEFS), officially launched in November 2004, is 4 

a successful example of applying a multi-center, multi-model ensemble forecast system to 5 

estimate the uncertainty of weather forecasts and make high-quality probability forecasts. The 6 

NAEFS combines two ensemble forecast systems, the Global Ensemble Forecast System (GEFS) 7 

of the National Weather Service (NWS) and Canadian Meteorological Center Ensemble (CMCE) 8 

of the Meteorological Service of Canada (MSC), which produces a more reliable forecast than 9 

either of the forecast systems when used alone (Candille, 2009).   10 

 11 

Ensemble forecasts are contaminated by system bias and random errors (Toth et al., 12 

2003; Wilks and Hamill, 2007).  In the last decade various statistical post-processing methods 13 

have been developed and applied to reduce the bias of the ensemble forecast system and improve 14 

the skill of probability forecasts. These methods include logistic regression (Wilks and Hamill, 15 

2007); Bayesian Model Averaging (Raftery et al., 2005; Wilson et al., 2007);  non-homogeneous 16 

Gaussian regression (Gneiting et al., 2005); Gaussian ensemble dressing (Roulston and Smith, 17 

2003; Wang and Bishop, 2005; Bishop and Shanley, 2008); a simple analog technique (Hamill et 18 

al., 2004; 2006; 2013); and adaptive Kalman Filter (KF) (Cheng and Steenburg, 2007; Cui et al., 19 

2012; Glahn, 2014). 20 

Reducing the systematic bias, for both the first and second moments in the ensemble 21 

forecast, is a major goal for the NAEFS Statistical Post Processor (SPP). The current SPP 22 
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includes bias-correction and downscaling. The bias correction is mainly a first moment 1 

adjustment by applying an adaptive KF to accumulate the decaying averaging bias (Cui et al., 2 

2012). The algorithm was developed by the NWS at the National Centers for Environmental 3 

Prediction (NCEP) and was implemented operationally in 2006 to reduce the bias of the NAEFS 4 

ensemble forecasts. This method is fast and does not need to store a large amount of sample data 5 

once initialized, which meets the requirements of a daily operational system. Operational 6 

statistical verification since 2006 reveals that the NAEFS product is significantly enhanced by 7 

the decaying bias-correction method. However, the method sometimes fails to improve the 8 

forecast skill during spring and fall transition seasons for long lead time forecasts.  9 

Recently, NOAA/ ESRL generated an ensemble reforecast dataset using the 2010 version 10 

of GEFS. This multi-decadal dataset has been applied to precipitation calibration, diagnosis of 11 

the ability of GEFS to forecast uncommon phenomenon, and the initialization of regional 12 

reforecasts (Hamill, 2013). In this study, we use a 26-year reforecast dataset to improve the 13 

current operational NAEFS bias correction process. The decaying average and reforecast bias 14 

correction methods are described in Section 2. The GEFS model and reforecast dataset are 15 

introduced in Section 3. The evaluation of the two calibration methods and the sensitivity of the 16 

reforecast calibration to sample size are discussed in Section 4. The improvement from 17 

combining the reforecast method to the decaying method is highlighted in Section 5. The 18 

summary and conclusions are given in Section 6. 19 

2. Bias correction methods  20 

a. Bias estimation 21 
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In this study, the bias (b) for each lead-time t (6-hour intervals up to 384 hours for the 1 

operational product) and each grid point (i, j) is defined as the difference of the best analysis a 2 

i,j(t0) and forecast fi,j(t) at the same valid time t0. 3 

      bi,j(t)= fi,j (t) – ai,j (t0)                                                                                 (1) 4 

b. Decaying average method 5 

The details of the decaying average method can be found in Cui et al. (2012). Here we 6 

introduce its basic equation. The decaying average bias 
p

jiB , (t) is updated by combining the bias 7 

from the previous forecast with the current bias by using a weighting coefficient (w). 8 

Experiments using different weights (0.01, 0.02, 005, 0.1, and 0.2), show that a weight of 0.02 9 

gives the best overall verification score. Recently, Glahn (2014) applied the decaying average 10 

method to the bias correction of station-based forecasts. Sensitivity tests with 4 weights (0.025, 11 

0.05, 0.075, and 0.1) reveal that only the smaller weights (0.025 and 0.05) improve the bias and 12 

mean absolute errors of MOS forecasts for the CONUS region. The value of 0.025 is similar to 13 

the optimal weight (0.02) used in the NCEP bias correction.      14 

                                                                 (2) 15 

c. Reforecast method 16 

The basic idea for this method is to use knowledge about the forecast errors of the same 17 

model during a similar period in previous years to calibrate the current forecast. The average 18 

reforecast bias 
h

jiB , (t) is the climatological mean forecast error, obtained from the multi-year (N) 19 

reforecast ensemble. 20 
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d. Bias correction  2 

To remove the lead-time dependent bias from a model grid, a new (or bias corrected) 3 

forecast F is generated by applying the decaying-average bias (
p

jiB , (t)) and the reforecast bias 4 

( h

jiB , (t)) to the raw forecast (f i,j (t)) at each grid point (i,j), for each lead time (t), and each 5 

parameter. 6 
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 8 

where r is the correlation coefficient estimated by linear regression from the most recent joint 9 

samples (ensemble mean and analysis). To avoid storing a large dataset, the mean values used in 10 

computing r were generated from a decaying average with a weight of 0.10. The relative 11 

contribution of the reforecast and decaying-average bias was quantified by r2. The high 12 

correlation indicates that the model can well capture the temporal variation in the 2-m 13 

temperature analysis during the most recent period. This implies that bias feature is likely 14 

dominated by systematic error during the training period which is highly predictable. Here we use 15 

r2 as an approximate measure of the validity of the decaying average bias. For the two special 16 

cases of r=0 and r=1, the equation represents the reforecast bias correction and decaying bias 17 

correction, respectively.   18 

e. Methodology of verification 19 
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The calibration of the ensemble forecast system is evaluated via the mean forecast error, 1 

mean absolute forecast error, root mean square error (RMSE), and continuous rank probability 2 

score (CRPS). The CRPS score is frequently used for evaluating the performance of probabilistic 3 

forecasts (Zhu et al., 2008; Glahn et al., 2009; Friederichs and Thorarinsdottir, 2012). The lower 4 

the CRPS, the better the probabilistic system is in terms of reliability and resolution. 5 

3. Model and reforecast data 6 

The current operational GEFS version (v9.01) was implemented on February 14, 2012 at 7 

the National Centers for Environmental Prediction (NCEP). It consists of 21 members (one 8 

control member and 20 perturbation members) and is run 4 times daily (00, 06, 12, and 18 UTC). 9 

All members use an identical set of physical parameterizations (Zhu et al., 2007). The model is 10 

run at a horizontal resolution of T254 (~55 km) for the first 8 days and T190 (~70 km) for the 11 

last 8 days, with 42 hybrid levels. The climate forecast system reanalysis (CFSR) (Saha et al., 12 

2010) is used to initialize the simulation. The perturbed initial condition uses the ensemble 13 

transform technique (ETR, Wei et al., 2008). The model uncertainty is estimated using the 14 

stochastic tendencies (STTP) method (Hou et al., 2008).  15 

The reforecast data was generated from the above GEFS version but including only 11 16 

members (1 control member and 10 perturbation members). The model was only run at the 00 17 

UTC cycle for the 10 members. The control member was run at both 00 and 12 UTC. The dataset 18 

used here was bilinearly interpolated to 1°x1° latitude and longitude grids from the native 19 

resolution. These data are available from 1985 forward (+29 years). We use a subset of the data 20 

from 1985 to 2010 (26 years), obtained from NOAA/ESRL. A more detailed description of the 21 

model and dataset can be found in Hamill et al. (2013).  22 
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The time series of 2-meter temperature errors over the Northern Hemisphere for 120-hr 1 

and 240-hr forecasts are displayed in Fig. 1. It is evident that there is a warm bias for April to 2 

August (warm season), while a cold bias is prevalent for the rest of year (cold season). The 3 

sharpest error change occurs between March and May with a change rate of ~0.5 and 4 

0.6°C/month for the 120-hr and 240-hr forecasts, respectively. The large change in bias during 5 

the spring season can make it difficult to do bias correction with the current decaying average 6 

post- processing algorithms, because the forecast errors in recent periods will not be fully 7 

representative of the current forecast error. The difference in errors among different 5-year 8 

periods is relatively small. We did not find a significant improvement in forecast skill from the 9 

late 80’s to the most recent year. The bias curve for the last 5-year period (2005-2009) shifts only 10 

slightly in the direction of positive bias from the first 5-year period (1985-1989). This suggests 11 

that the selection of sample periods may not be a big issue in calibrating 2-m temperature 12 

forecasts.                               13 

Figure 2 depicts the distribution of global 2-m temperature errors for the cold and warm 14 

seasons. Large bias occurs mainly over or near the continents, most likely because of the 15 

complex topography and deficient physical parameterizations over land. The semi-annual change 16 

in bias over the continents of the Northern Hemisphere (NH) is more dramatic than that of the 17 

Southern Hemisphere (SH), suggesting that the decaying method faces a challenge mainly in the 18 

continents of the NH. For example, in the warm season, the positive bias (Fig. 2b) is dominant 19 

over North America with a considerable area having a bias exceeding 2K. During the cold season 20 

(Fig. 2a), the maximum negative bias also exceeds 1K. In contrast, the change in bias is much 21 

smaller in the continents of the SH. This is possibly due to the fact that most of the landmass in 22 
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the SH is in the tropics and sub-tropics, while the NH has much more landmass at higher 1 

latitudes. 2 

4. Experiments and results 3 

We calibrate 2-m temperature for 2009 and 2010 using the prior 24-year (1985-2008) and 4 

25- year biases (1985-2009), respectively. We also calibrate the 500 hPa height for 2009 using 5 

the 24-year bias, but a preliminary check shows that it is very hard to improve the forecast skill 6 

of this variable, possibly due to its relatively small bias or sensitivity. Thus, our focus will be on 7 

the calibration of 2-m temperature. We explore the sensitivity of the calibration to the number of 8 

training years by using the bias from the most recent 2 (2008-2009), 5 (2005-2009), 10 (2000-9 

2009), and 25 (1985-2009) years of training data, and evaluate the last year (2010) of 10 

independent forecasts. We compare the calibrations using three different training-data windows 11 

(1, 31 and 61 days) centered on the corresponding forecast date in each of the training years (25 12 

years).  The impact of sampling interval on the calibration is estimated by comparing verification 13 

scores with a sampling interval of 1 day (daily) and 7 days (weekly) for the 31-day window. We 14 

first calculated the 2-m temperature error for each day.  From this dataset, we created weekly 15 

sampling data by using the error every 7th day from the starting date (Jan. 1, 1985) of the 16 

reforecast. For each year, the daily and weekly sampling creates 31and 4-5 datasets, respectively. 17 

Finally, we apply reforecast information to the NCEP operational GEFS product.   18 

4.1   Calibrating the 2010 forecasts using the 25-year training dataset 19 

 20 

Figure 3 shows the verification for 2-m temperature over the Northern Hemisphere for 21 

the 4 seasons. For the 2009/2010 winter season, only January and February are included in the 22 
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verification in order to keep the same sample size.  We present a comparison of the results of the 1 

raw ensemble forecast (RAW) and two calibrated forecasts (Ebc2% and Erf). The Ebc2% and 2 

Erf denote the decaying average and reforecast bias-correction methods, respectively.  A weight 3 

of 2% is used for the decaying method. 4 

The GEFS model is under-dispersed for all seasons and lead times (Figs. 3a, c, e, and g). 5 

Our focus here is on the 1st moment adjustment. Improvement for the 2nd moment adjustment 6 

will be addressed in a future spread adjustment paper. 7 

The raw ensemble forecast (black lines) has a cold bias during the winter (Fig. 3b) and 8 

autumn (Fig. 3h). Conversely, a warm bias is prevalent during the spring (Fig. 3d) and summer 9 

(Fig. 3f). These biases are almost completely corrected by the Erf method (blue lines). The 10 

corrected bias is closer to zero for all forecast lead times and the corresponding absolute error 11 

and RMSE are also smaller than for the raw ensembles, hinting at the effectiveness of the 12 

calibration methods in reducing the systematic error of the ensemble forecast. The Ebc2% also 13 

does good job in the non-transitional seasons (winter and summer), and even performed slightly 14 

better than the Erf method in winter. However, this technique does not work well in all 15 

circumstances as pointed out in Cui et al. (2012).  Figs. 3d and h reveal that applying the 16 

decaying method leads to a degradation of forecast accuracy during transition seasons throughout 17 

almost all lead times. The maximum degradation occurs in spring. As indicated in Figs. 3a, c, e, 18 

and g, the simple bias correction methods do not change ensemble spread since the bias of the 19 

ensemble mean is applied to each ensemble member. 20 

 21 

The mean errors in the Ebc2% are larger than those of the RAW forecast in the spring and 22 

autumn (Fig. 3d and 3h). To determine the underlying reason, we display the month-to-month 23 
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evolutions of mean error and mean absolute error of 2-m temperature for the three experiments 1 

over the Northern Hemisphere in Fig. 4. In addition to the above three experiments, the result 2 

from the decaying method with a weight of 10% is also added to the comparison. We note a 3 

persistent cold bias in the winter (January and February).  In the beginning of spring (March), the 4 

cold bias becomes smaller and eventually turns into a warm bias in April.  In the two winter 5 

months, the performance by the Ebc2% is very similar to the Erf, yielding a more accurate 6 

forecast than the raw ensembles. This is due to the ensemble forecast error being relatively 7 

consistent during the non-transitional months. The 2% and 10% decaying averages incorporate 8 

the most recent 50-60 and 10-15 days of bias information (Cui et al., 2012) with the highest 9 

weight for the latest information. The Ebc2% fails to improve the forecast in March and April, 10 

when error characteristics change dramatically within a period of ~50-60 days. In April, the 11 

Ebc2% uses a cold bias, accumulated from winter and early spring, to calibrate a warm bias in 12 

spring. This outdated information degrades the forecast (i.e., increases the warm bias), which is 13 

most pronounced for longer forecast lead times. This is likely due to a larger separation of 14 

training data from the actual forecast day of interest. In other words, the longer lead time 15 

forecasts are being trained on forecasts made further back because the more recent forecasts 16 

weren’t used to compute the error as their valid date hasn’t passed yet. During the transition 17 

seasons, the Erf has an obvious advantage over the Ebc2% and Ebc10%, particularly for the long 18 

lead forecasts.  The Ebc10% is slightly better than the Ebc2% since it uses more recent error 19 

information. 20 

Unlike in the Northern Hemisphere, the decaying method in the Southern Hemisphere 21 

does not degrade the forecast skill in the spring and autumn transition seasons as illustrated in 22 
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Fig. 5. The performance of the reforecast method is very similar to the decaying method. This is 1 

likely due to less seasonal variation of model bias because of the ocean (Fig. 2). 2 

 3 

4.2 Comparison between 2009 and 2010 4 

 5 

The improvement in the accuracy of 2-m temperature forecasts by the Erf for 2010 is 6 

impressive. The key question is whether this improvement is unique to the year 2010.  To answer 7 

this question, we also calibrate the 2009 forecast and compare the results to 2010. The data prior 8 

to the validation year (2009) are used to train the reforecast-bias correction algorithm.   9 

Figure 6 shows the RMSE and spread of 2-m temperature for 2009 for the Northern Hemisphere. 10 

Figure 7 provides the comparisons of mean error and mean absolute error between 2009 and 11 

2010. The performance in 2009 is, qualitatively, very similar to that of 2010. The cold bias in 12 

winter and autumn and warm bias in spring and summer can also be seen in 2009 (Fig.7). The 13 

Ebc2%, again, improves the forecast in the non-transition seasons for all lead times but does not 14 

improve the forecast in the other two seasons, when the Ebc2% tends to degrade the longer lead 15 

time forecasts. The Erf improves the ensemble forecasts over the Ebc2% in transition seasons as 16 

noted in 2010. The biases for all seasons are, again, mostly removed by the Erf. However, the 17 

extent to which the Erf can improve RMSE is slightly different. The improvement in winter and 18 

autumn for 2009 is a little less than for 2010. 19 

 20 

 4.3 Calibration using various training samples 21 

 22 
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The CRPS of forecasts from the RAW ensemble (black line) and calibrated ensembles 1 

(color lines) with training samples of various sizes are displayed in Fig. 8.  The results for the 2 

RMSE are very similar to the CRPS (not shown). Figures 8a and b examine the sensitivity of 3 

forecast skill to the number of sample years and interval days, respectively. All calibrated 4 

forecasts demonstrate better performance than the raw forecast. The difference among the 5 

calibrated forecasts is relatively small with only a small degradation for each shorter period. The 6 

scores for 5, 10 and 25 years with a 31-day window are very similar, slightly better than the other 7 

smaller training samples (Fig. 8a), suggesting that the five-year dataset is large enough. The 8 

CRPS of the forecasts from the calibration with the 25-year weekly dataset (blue line) and 25-9 

year daily dataset (green line) within a 31-day window are almost identical (Fig. 8b) and both are 10 

better than the result using a single data value from each year (red line). A further increase in 11 

window size from 31-days to 61-days (not shown) does not bring any obvious change. Therefore, 12 

the 25-year 31-day weekly training dataset is a good option to reduce computational expense 13 

while maintaining desired skill. These results are consistent with the findings of previous 14 

researchers (Hamill et al., 2004, Hagedorn et al., 2008), although they used different model or 15 

GEFS versions. 16 

      17 

5 Using the reforecast to improve the NCEP bias-corrected product 18 

 19 

Having seen the remarkable value of using reforecast information, we now combine the Erf with 20 

the operational Ebc2% method, aimed at providing an option for improving forecast accuracy in 21 

transition seasons.  Figure 9 displays the change in r2 with forecast lead time, averaged over the 22 

Northern Hemisphere for the four seasons of 2010.  The r2 denotes the square of the correlation 23 
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coefficient between the ensemble mean and analysis. Forecast ability declines as forecast lead 1 

time increases. The r2 values are slightly smaller in summer than other seasons for short lead 2 

times.  3 

 4 

Figure 10 shows the time series of RMSE for RAW, Ebc2%, and ER2 for the 24 and 240-hr 5 

forecasts of 2010. Ebc2% and ER2 represent the bias-corrected forecast with the decaying 6 

method and decaying-reforecast-combined method, respectively. For the 24-hr forecast (Fig. 7 

10a), the Ebc2% RMSE is smaller than the raw forecast for the majority of the period. Including 8 

the reforecast bias-correction (ER2) does not change forecast accuracy too much since the 9 

weight of reforecast is small at this short lead-time (see Fig. 9).  For the 240-hr forecast, Ebc2% 10 

does not always improve the forecast, but shows a significant degradation in the forecast during 11 

the spring season. Our results agree with those in Cui et al. (2012), who found that the decaying-12 

averaging method mainly works well for the first few days. It is also very clear that the combined 13 

method performs better than the decaying-average method, except in the end of January where 14 

the reforecast degrades the operational bias-corrected product. The combined method leads to a 15 

maximum improvement in April, May, and June. 16 

 17 

Figure 11 displays the corresponding seasonal-average RMSE and spread. The result using the 18 

reforecast bias correction is added into the comparisons to see if there is any gain from using the 19 

decaying average rather than just the reforecast.  For the transition seasons, the reforecast 20 

correction always gives the best performance. The combined method slightly degrades the 21 

reforecast-corrected forecast. In summer and winter, in general, the results are very similar 22 

between the reforecast and combined methods.        23 
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 1 

6. Conclusions 2 

 3 

In this paper, we develop a method to improve the NAEFS 1st-moment correction using a 26-4 

year GEFS reforecast dataset. We use 24-year and 25-year GEFS reforecast bias information to 5 

calibrate 2009 and 2010 forecasts, respectively. We found that the forecast of 2-m temperature is 6 

strongly biased in the Northern Hemisphere, with a cold bias in the cold season and a warm bias 7 

in the warm season. The bias is mostly removed by the reforecast method. The decaying method 8 

improves the forecast skill in winter and summer as well as the reforecast method, but it 9 

degrades long-lead forecasts during transition seasons due to dramatic changes in the bias 10 

characteristics. 11 

      12 

Several different methods have been examined to optimize the usage of the past 25-year 13 

reforecast information. This is important considering limited computing resources. Based on the 14 

sensitivity tests for different reforecast samples, we found that the 25-year weekly training 15 

dataset is a good option to reduce computational expense while maintaining desired skill.  16 

To provide an option for improving forecast accuracy for transition seasons, we add reforecast 17 

information into the current operational bias-correction method. The relative contribution of the 18 

two methods is quantified using a correlation coefficient between the ensemble mean and 19 

analysis. In general, the combined method performs better than the decaying average method 20 

except at the end of January. The maximum improvement occurs in April, May, and June.  21 

 22 
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The current work and previous studies (Hamil, 2013) demonstrate the important value of 1 

using reforecast information to improve forecast skill. However, bias and its seasonal variation 2 

are model-dependent. Whether the improvement found here will occur in the new GEFS version 3 

needs to be confirmed in the future. Frequent model upgrades make calibration using reforecast 4 

very difficult because creating reforecast dataset needs huge computer resources. Hamill et al. 5 

(2014) is making a great effort to find the most valid configuration of the real-time GEFS 6 

reforecast runs. This would make a calibration using the reforecast feasible in operations. 7 

 8 
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Figure Captions: 1 

 2 

Figure 1. Errors in valid 2-m temperature forecasts averaged over 5-year periods for the NH 3 

during the reforecast period for 120-hr (a) and 240-hr (b) projections. Black lines inidicate the 4 

errors for the 1985-1990 period, red lines for 1990-1994, green lines for 1995-1999, blue lines 5 

for 2000-2004, and light blue lines for 2005-2009. Thick black lines are bias=0 lines. 6 

 7 

Figure 2. Global 2-m temperature error averaged over 25-year reforecast period for 120-hr 8 

forecasts during the cold season  (1 Jan – 15 Mar  and 16 Aug – 31 Dec) (a) and warm season 9 

(16 Mar – 15 Aug) (b).  10 

 11 

Figure 3. Ensemble mean RMSE (solid lines, left panels), spread (dashed lines, left panels), error 12 

(solid lines, right panels), and absolute error (dashed lines, right panels) of 2-m temperature 13 

averaged over the Northern Hemisphere for the 4 seasons of the year 2010.  Eraw, Rbc2%, and 14 

Erf are the raw (black lines), decaying-bias-corrected (red lines), and reforecast-bias-corrected 15 

ensemble forecasts (blue lines), respectively. 16 

 17 

Figure 4. Mean error (solid lines) and mean absolute error (dashed lines) of 2-m temperature 18 

averaged over the Northern Hemisphere for (a) January, (b) February, (c) March, and (d) April, 19 

2010.  Eraw, Rbc2%, Rbc10%, and Erf are the raw (black lines), decaying-bias-corrected using a 20 

2% weight (red lines), decaying-bias-corrected using a 10% weight (green lines), and reforecast-21 

bias-corrected ensemble forecasts (blue lines), respectively. 22 
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 1 

Figure 5. Ensemble mean RMSE (solid lines) and spread (dashed lines) of 2-m temperature 2 

averaged over the Southern Hemisphere for spring (a) and autumn (b) of the year 2010. Eraw, 3 

Rbc2%, and Erf are the raw (black lines), decaying-bias-corrected (red lines), and reforecast-4 

bias-corrected ensemble forecasts (blue lines), respectively. 5 

 6 

Figure 6. RMSE (solid lines) and spread (dashed lines) of 2-m temperature averaged over the 7 

Northern Hemisphere for the 4 seasons of 2009.  Eraw, Ebc2%, Ebc10%, and Erf are the raw 8 

(black lines), decaying-bias-corrected with the two weights (2% red lines and 10% green lines), 9 

and reforecast-bias-corrected ensemble forecasts (blue lines), respectively. 10 

 11 

Figure 7. Comparisons of mean errors (solid lines) and mean absolute errors (dashed lines) of 2-12 

m temperature over the Northern Hemisphere between 2009 (left) and 2010 (right) for winter (a-13 

b), spring (c-d), summer (e-f) and autumn (g-h).  ERAW, Ebc2%, Ebc10%, and Erf are the raw 14 

forecast (black lines), decaying-bias-corrected forecasts with the two weights (2% red lines and 15 

10% green lines), and reforecast-bias-corrected ensemble forecasts (blue lines), respectively. 16 

 17 

Figure 8. CRPS of 2-m temperature averaged from 1 Mar 2010 to 31 May 2010 over the 18 

Northern Hemisphere. ERAW is the raw ensemble forecast (black lines). Erf is the reforecast-19 

bias-corrected ensemble forecast with historical data at the exact forecast date (red lines). 20 

Ey2d31rf, Ey5d31rf, Ey10d31rf, and Ey25d31rf in Fig. 8a are the reforecast-bias-corrected 21 

ensemble forecasts with historical data spanning a time window of 31 days, centered on the 22 
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forecast day for the most recent 2 years (green line), 5 years (blue), 10 years (cyan), and 25 years 1 

(magenta). Ey25d31rf and Ey25d31int7rf in Fig. 8b are the reforecast-bias-corrected ensemble 2 

forecasts using all 25 years of historical data, covering a time window of 31 days centered on the 3 

forecast day. The frequency of data samples for Ey25d31rf and Ey25d31int7rf of Fig. 8b are 1 4 

day (green line) and 7 days (blue line), respectively. 5 

 6 

Figure 9. The change in the square of the correlation coefficient between the ensemble mean and 7 

analysis with forecast lead time for the 4 seasons of 2010. 8 

 9 

Figure 10. RMSE of 2-m temperature averaged over the Northern Hemisphere for 24hr (a) and 10 

240hr (b) forecasts between Dec 2009 and Nov 2010. ERAW, Ebc2%, and ER2 denote the raw 11 

forecast (black lines), decaying-bias-corrected forecast (red lines), and decaying-reforecast-bias-12 

corrected ensemble forecast (green lines), respectively. 13 

 14 

Figure 11. RMSE (solid lines) and spread (dashed lines) of 2-m temperature averaged over the 15 

Northern Hemisphere for the 4 seasons of 2010.  Eraw, Ebc2%, and Ey2531dint7rf, and ER2 are 16 

the raw (black lines), decaying-bias-corrected (red lines), reforecast-bias-corrected (green) and 17 

decaying-reforecast-bias-corrected ensemble forecast (blue lines), respectively. In the 18 

Ey2531dint7rf, historical data spans a time window of 31 days, centered on the forecast day for 19 

the full 25 years with a sample frequency of 7 days. 20 

 21 

 22 
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 3 

 Figure 1.  Errors in valid 2-m temperature forecasts averaged over 5-year periods for the NH 4 

during the reforecast period for 120-hr (a) and 240-hr (b) projections. Black lines inidicate the 5 

errors for the 1985-1990 period, red lines for 1990-1994, green lines for 1995-1999, blue lines 6 

for 2000-2004, and light blue lines for 2005-2009. Thick black lines are bias=0 lines. 7 
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Figure 2.  Global 2-m temperature  error averaged over 25-year reforecast period for 120-hr 2 

forecasts during the cold season  (1 Jan – 15 Mar  and 16 Aug – 31 Dec) (a) and warm season 3 

(16 Mar – 15 Aug) (b).  4 
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 11 

Figure 3.  Ensemble mean RMSE (solid lines, left panels), spread (dashed lines, left panels), 12 

error (solid lines, right panels), and absolute error (dashed lines, right panels) of 2-m temperature 13 

averaged over the Northern Hemisphere for the 4 seasons of the year 2010.  Eraw, Rbc2%, and 14 

Erf are the raw (black lines), decaying-bias-corrected (red lines), and reforecast-bias-corrected 15 

ensemble forecasts (blue lines), respectively. 16 
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 1 

Figure 4.  Mean error (solid lines) and mean absolute error (dashed lines) of 2-m temperature 2 

averaged over the Northern Hemisphere for (a) January, (b) February, (c) March, and (d) April, 3 

2010. Eraw, Rbc2%, Rbc10%, and Erf are the raw (black lines), decaying-bias-corrected using a 4 

2% weight (red lines), decaying-bias-corrected using a 10% weight (green lines), and reforecast-5 

bias-corrected ensemble forecasts (blue lines), respectively. 6 
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 8 
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 10 

 11 

 12 

Figure 5.  Ensemble mean RMSE (solid lines) and spread (dashed lines) of 2-m temperature 13 

averaged over the Southern Hemisphere for spring (a) and autumn (b) of the year 2010. Eraw, 14 

Rbc2%, and Erf are the raw (black lines), decaying-bias-corrected (red lines), and reforecast-15 

bias-corrected ensemble forecasts (blue lines), respectively. 16 

 17 
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Figure 6.  RMSE (solid lines) and spread (dashed lines) of 2-m temperature averaged over the 16 

Northern Hemisphere for the 4 seasons of 2009.  Eraw, Rbc2%, and Erf are the raw (black lines), 17 

decaying-bias-corrected with the two weights (2% red lines and 10% green lines), and reforecast-18 

bias-corrected ensemble forecasts (blue lines), respectively. 19 
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Figure 7.  Comparisons of mean errors (solid lines) and mean absolute errors (dashed lines) of 2-3 

m temperature over the Northern Hemisphere between 2009 (left) and 2010 (right) for winter (a-4 

b), spring (c-d), summer (e-f) and autumn (g-h).  ERAW, Ebc2%, Ebc10%, and Erf are the raw 5 

forecast (black lines), decaying-bias-corrected forecasts with the two weights (2% red lines and 6 

10% green lines), and reforecast-bias-corrected ensemble forecasts (blue lines), respectively. 7 
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 14 

Figure 8.  CRPS of 2-m temperature averaged from 1 Mar 2010 to 31 May 2010 over the 15 

Northern Hemisphere. ERAW is the raw ensemble forecast (black lines). Erf is the reforecast-16 

bias-corrected ensemble forecast with historical data at the exact forecast date (red lines). 17 

Ey2d31rf, Ey5d31rf, Ey10d31rf, and Ey25d31rf in Fig. 8a are the reforecast-bias-corrected 18 

ensemble forecasts with historical data spanning a time window of 31 days, centered on the 19 

forecast day for the most recent 2 years (green line), 5 years (blue), 10 years (cyan), and 25 years 20 

(magenta). Ey25d31rf and Ey25d31int7rf in Fig. 8b are the reforecast-bias-corrected ensemble 21 

forecasts using all 25 years of historical data, covering a time window of 31 days centered on the 22 

forecast day. The frequency of data samples for Ey25d31rf and Ey25d31int7rf of Fig. 8b are 1 23 

day (green line) and 7 days (blue line), respectively. 24 
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Figure 9.  The change in the square of the correlation coefficient between the ensemble mean and 4 

analysis with forecast lead time for the 4 seasons of 2010. 5 
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Figure 10.  RMSE of 2-m temperature averaged over the Northern Hemisphere for 24hr (a) and 2 

240hr (b) forecasts between Dec 2009 and Nov 2010. ERAW, Ebc2%, and ER2 denote the raw 3 

forecast (black lines), decaying-bias-corrected forecast (red lines), and decaying-reforecast-bias-4 

corrected ensemble forecast (green lines), respectively. 5 

  6 

 7 

 8 

 9 

 10 

 11 



34 

 

 1 

 2 

 3 

Figure 11.  RMSE (solid lines) and spread (dashed lines) of 2-m temperature averaged over the 4 

Northern Hemisphere for the 4 seasons of 2010.  Eraw, Ebc2%, and Ey2531dint7rf, and ER2 are 5 

the raw (black lines), decaying-bias-corrected (red lines), reforecast-bias-corrected (green) and 6 

decaying-reforecast-bias-corrected ensemble forecast (blue lines), respectively. In the 7 

Ey2531dint7rf, historical data spans a time window of 31 days, centered on the forecast day for 8 

the full 25 years with a sample frequency of 7 days. 9 


