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ABSTRACT 

 

    Numerical Weather Prediction (NWP) centers around the world face the same 

questions when they develop (or upgrade) an ensemble forecast system. How many 

ensemble members do we need to better represent forecast uncertainties with limited 

computational resources? What is the relationship between resolution and ensemble size? 

This paper starts from ensembles of the Lorenz 96 model generated using the ensemble 

transform with rescaling (ETR) initial perturbation method for over 200 members. The 

results are contrasted with tests based on the NCEP Global Ensemble Forecast System 

(GEFS) with different ensemble sizes and resolution. The impact of various ensemble 

sizes is studied using different verification methods from December 1
st
, 2009 to January 

31
st
, 2010 for 500hPa geopotential height field over the Northern Hemisphere (NH) and 

Southern Hemisphere (SH) extra-tropics. Results indicate that increasing ensemble size is 

beneficial to improve skill of ensemble, especially for small ensemble size (less than 40-

member), and there is still significant improvement on the skill of probabilistic forecast 

with further increasing ensemble members. The relative benefits of T126L28 model with 

70 members and T190L28 model with 20 members which have equivalent computing 

cost are also compared. The comparison of the two configurations, from the Pattern 

Anomaly Correlation score (PAC), Continuous Ranked Probabilistic Score (CRPS) and 

statistical significance testing of their difference, indicates that increasing model 

resolution is more (less) beneficial than increasing ensemble size for short (long) lead 

times. 
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1. Introduction 

 

Since 1992, the European Center for Medium-Range Weather Forecasting (ECMWF) 

and the National Centers for Environmental Prediction (NCEP) implemented operational 

global ensemble forecast systems (the system is called GEFS for short at NCEP). Almost 

two decades later, GEFS has been operationally implemented in many numerical weather 

prediction centres around the world such as CMC (Canada), Met Office (UK), JMA 

(Japan) and so on. Ensemble based probabilistic forecast is a feasible method to estimate 

forecast uncertainty through perturbed initial conditions (or perturbed observation for 

assimilation) which greatly improve and extend numerical forecast skill by comparing 

with deterministic forecast (Zhu and Ma, 2010). The operational initial perturbation used 

to represent initial uncertainty has undergone great development from the Singular 

Vector (SV) method (Buizza and Palmer, 1995; Molteni et al., 1996), the breeding 

method (Toth and Kalnay, 1993, 1997) and the Perturbed Observation (PO) method 

(Houtekamer et al., 1996) to the Ensemble based data assimilation and Singular Vector 

(EDA-SV) method (Buizza et al., 2008, 2010), the Ensemble Transform with Rescaling 

(ETR) method (Wei et al., 2008) and the Ensemble Kalman Filter (EnKF) method 

(Houtekamer and Mitchell, 2005; Houtekamer et al., 2007), which can improve the 

representation of the uncertainties in analysis. Though operational ensemble forecast 

systems focused only on assessing the initial uncertainty at first, several attempts have 

been made to account for model-related uncertainty, such as multi-model and multi-

parameterization (implemented in CMC since 1998, Houtekamer et al., 1996), Stochastic 

Physics Parameterization Tendencies (implemented in ECMWF since 1998, Buizza et al., 

1999a, Palmer et al., 2009), SPectral stochastic Backscatter Scheme (implemented in 

ECMWF since 2010,  Shutts 2004, 2005; Berner et al., 2009), Stochastic Total Tendency 

Perturbation (implemented in NCEP since 2010, Hou et al., 2006, 2008, 2010), perturbed 

surface parameters (Eckel and Mass, 2005), coupling to ocean ensemble (Holt et al., 2009) 

and so on. 

Increases of model resolution and ensemble size are beneficial for the improvement of 

ensemble performance (Du et al., 1997; Buizza and Palmer, 1998a; Buizza et al., 1998b; 

Buizza et al., 1999b; Richardson, 2001; Mullen and Buizza, 2002). However, the limited 
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computational resources constrain model resolution and ensemble size. Therefore, when 

designing an effective operational ensemble prediction system, there are two main 

questions we seek answers to, which are 1) how many ensemble members do we need to 

better represent forecast uncertainties with limited computational resources? And 2) what 

is the relative impact of increasing model resolution and increasing ensemble size on 

forecast skill? In this study, the two questions above will be analyzed by using both the 

Lorenz 96 model (Lorenz, 1996) and the NCEP GEFS. 

The famous Lorenz models are similar to other nonlinear dynamical models of 

atmospheric system. They have been widely used in many ensemble forecast studies. 

Anderson (1997) compared the performance of ensembles based on random perturbations, 

bred vectors and SVs with the Lorenz 63 model. Bowler (2006) compared initial 

perturbation methods including ensemble Kalman filter, bred vectors and SVs using the 

Lorenz 96 model. It is extremely expensive and complex to carry out experiment with 

operational forecast models enlarging the ensemble size for the purpose of expanding the 

sample of numerical model’s phase space; however, it is feasible in the Lorenz model due 

to simple dynamical system. Experiments with large ensemble size attained using the 

Lorenz model can give a theoretical instruction in this study with less computational cost.  

It is recognized that the Lorenz model has limitations to represent the complexity of the 

realistic atmospheric system. Furthermore, the assimilation data used for this study’s 

experiment are synthetic observations generated from random number that limits the 

reliability of the conclusion. To verify the conclusions obtained based on the Lorenz 96 

model, this study uses realistic operational ensemble forecast system for relatively small 

ensemble sizes. Buizza and Palmer (1998a) analyzed the impact of 2, 4, 8, 16 and 32-

member on the performance of the ECMWF Ensemble Prediction System (EPS) for 

500hPa geopotential height field. Mullen and Buizza (2002) assessed the effect of 

horizontal resolution and ensemble size on the ECMWF EPS for 24-h accumulated 

precipitation. The comparisons of TL159M51, TL255M51, TL319M51, TL255M15 and 

TL319M15 (“M” refers to the number of ensemble members) are shown in that paper. 

Reynolds et al. evaluated the impact of resolution versus ensemble size tradeoffs on the 

U.S. Navy global ensemble performance using resolution of T119, T159 and T239, with 
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33, 17 and 9 ensemble members. In this study, NCEP operational GEFS is employed and 

ensemble size will increase to 80-member.  

The purpose of this paper is to determine a reasonable (or optimal) ensemble size and 

the relationship with resolution for operational ensemble prediction system. Section 2 

will describe the models and experimental design. In section 3 and 4, the impacts of 

ensemble sizes on ensemble skill, using Lorenz 96 model and NCEP GEFS, are 

examined respectively. Section 5 compares a relative trade-off of increasing model 

resolution versus increasing ensemble size through NCEP GEFS experiments. Section 6 

provides a summary and conclusions. 

 

2. Experimental design 

 

2.1 Lorenz 96 model and its application 

a. Lorenz 96 model 

    The Lorenz 96 model (Lorenz, 1996) is given by the following set of differential 

equations 

FXXXX
dt

dX
iiii

i +−−= −−+ 121 )( ,                                                     (1) 

Where Ni ,...,2,1=  with cyclic boundary condition, i.e.,
11 −− = NXX ,

NXX =0
 and 

11 += NXX . 

The magnitude of the forcing is set to 8=F , which is well into the chaotic regime 

(Lorenz, 1996) and the system’s size is chosen 1000=N . A fourth-order Runge-Kutta 

integration scheme is employed with a fixed time step of 0.05, which corresponds to 

approximately 6-hour in the real atmosphere. The first 1000 time steps are used for the 

system to spin-up. 

b. Analysis method 

    The truth run for all 1000 variables is obtained by integrating the Lorenz 96 model 

from randomly generated initial fields. The observations y are the fields after perturbing 

the truth run with an error standard deviation of 0.2 at each time step. Here, the ensemble 

mean of analysis a
x  is considered to be the best estimate of analysis. At each time step, 

observations y are assimilated by ensemble mean of forecast b
x  using equation (2) to 

update a
x , and then obtain analysis-error covariance by equation (3) (Evensen, 1994). 
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1( ) ( )a b b T b T b−= + + −x x P H HP H R y Hx ,                                           (2) 

1( )a b b T b T b−= − +P P P H HP H R HP ,                                              (3)        

where aP is the analysis-error covariance; bP is the background-error covariance; H is 

observation operator (assume the forecasts and observations correspond to the same 

points, so the elements of the diagonal matrix are equal to 1); R is the observation-error 

covariance (assume the elements of the diagonal matrix that are equal to 0.03 ). bx  is 

equal to 
1

1 m
b

k

km =

∑x  in which m is chosen 40 and initial condition of b

k
x  is obtained by 

adding paired random perturbations with amplitude of 0.2 to the analysis of previous time 

step, except random perturbations is added to the truth run at time 0. The background-

error covariance estimate is generated from this 40-member ensemble using equation  

1

1

b b bT

m
′ ′=

−
P X X ,                                                        (4) 

where b′X is defined as a matrix formed from the ensemble of perturbations 

1
( ,..., )b b b

m
′ ′ ′=X x x  in which b b b

k k
′ = −x x x . 

c. Initial perturbation method 

Initial perturbations are generated using ETR based perturbation (Wei et al., 2006 and 

2008) with 10, 20, 40, 60, 80, 100 and 200 ensemble members in this experiment.  

In ETR scheme, the basic perturbations for best analysis are generated from 6-hour 

forecasts through an ensemble transformation T  as follows 

a f=Z Z T .                                                              (5) 

T  can be constructed by solving eigenvalue 1 2( , ,... )
m

diag λ λ λ=Γ  and eigenvector 

1 2[ , ,... ]
m

=C c c c  of 
1Tf a f−

Z P Z , 

1 1T
f a f

− −=Z P Z CΓC ,                                                   (6) 

where aP is obtained from analysis process or data assimilation. 

Suppose 1 2 1( , ,... , )
m

diag λ λ λ α−=G , where α is a non-zero constant. The analysis 

perturbations can be generated through 1/ 2

p

−=T CG as 

1/ 2a f f

p p

−= =Z Z T Z CG .                                                   (7) 
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After transformation, the analysis perturbations are orthogonal, but not centered. If the 

initial perturbations are centered around the analysis, the performance of ensemble mean 

will be better. Equation (8) can be used to centralize the perturbations. 

1/ 2a a T f T

p

−= =Z Z C Z CG C .                                             (8) 

Though the initial perturbations are not orthogonal anymore after centralizing, the more 

ensemble members we have, the more orthogonal the perturbations will become. 

To make the initial spread be similar to the analysis-error covariance, it is rescaled 

using factor γ  which is defined as the ratio of the square root of aP  and the square root 

of 2

1

1 m
a

k

km =

∑ z .  

 

2.2 NCEP GEFS model and its application 

The current NCEP operational GEFS (based on GFS v8.00 which was in operation since  

December 15th, 2009) runs 20 ensemble member forecasts and one control forecast at T190 

horizontal resolution, 28 hybrid vertical levels 4 times (00UTC, 06UTC, 12UTC and 18UTC) 

per day. The forecast output data are interpolated to 1°×1° lat/lon resolution from 0 to 384 

forecast hours at 6-hour intervals. The initial perturbations, around the analysis provided 

by GDAS/GSI, are generated using the ETR method which is the same as in the Lorenz 

96 experiment. A Stochastic Total Tendency Perturbation (STTP) scheme is applied in 

the forecast integration to simulate random model errors.  

The impact of different ensemble sizes (80, 60, 40, 20, 10 and 5) on NCEP GEFS 

performance is studied in this paper. To be able to run a relatively larger ensemble size at 

similar computation costs, the GEFS model resolution is reduced to T126 and STTP is 

not applied for this experiment. The experiment runs from December 1
st
, 2009 to January 

31
st
, 2010, and long forecasts are made once per day. ETR cycling are every 6 hours. At 

each cycle, both equations (7) and (8) are used to orthogonalize and centralize all 80 

perturbations. Verifications are processed for 60, 40, 20, 10 and 5 ensemble members 

which are randomly chosen from 80-member.  

 

2.3 Verification methodology 

a.   RMS error of ensemble mean (RMSE) and ensemble spread (SPREAD)  
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RMSE of ensemble mean measures the distance between forecast and analyses. 

SPREAD measures the deviation of ensemble members from the ensemble mean. In 

general, SPREAD is equal to RMSE for a perfect forecast ensemble system in which the 

verifying analysis is statistically indistinguishable from ensemble members. In other 

words, ensemble forecast could represent all the uncertainties associated with initial 

errors and model errors. (Toth et al., 2003) 

b.  Pattern Anomaly Correlation score (PAC)  

PAC measures the ability of ensemble mean to represent weather patterns which is 

defined as the correlation between the predicted anomaly and the observed anomaly with 

respect to their corresponding climatology. The maximum value of 1.0 indicates a perfect 

depiction of the patterns. (Zhu, 2005) 

c.   Continuous Ranked Probabilistic Score (CRPS)  

    CRPS is used to measure the reliability and resolution of ensemble based probabilistic 

forecast by calculating the distance between the predicted and the observed cumulative 

density functions of scalar variables. The high (low) value indicates a low (high) skill of 

the forecast system. (Toth et al., 2003) 

 

3. Impact of ensemble size on ensemble skill in an ideal model 

 

    To explore what could be a reasonable ensemble size, the performance of relative large 

ensemble size (greater than 100 members) should be studied. However, it is extremely 

expensive and complex for running operational forecast models as mentioned in Section 

1. Therefore, most studies assessing the performance of ensemble sizes focused on a 

limited membership for realistic atmospheric models. In this study, the Lorenz model is 

employed to demonstrate this issue through a theoretical study and a numerical 

application with less computational cost. Initial perturbations in this ideal experiment are 

generated using the ETR method. This method was implemented for operations at NCEP 

since 2006. Wei et al. (2006, 2008) compared the results for different ensemble forecast 

systems based on BM, ET, ETR and ETKF. Magnusson et al. (2009) compared SV and 

ET using ECMWF IFS-model. McLay et al. (2008) found that ET perturbation, with a 
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finite ensemble size, is too small in the tropics and too large in the midlatitudes. But there 

are few studies that relate to the impact of ensemble sizes with the ETR initialization.  

    To assess the performance of the Lorenz 96 model experiments, RMSE, SPREAD and 

CRPS are used. Figs.1 show that 1) The SPREAD is close to RMSE; 2) The forecast 

error is saturated at about 60 time steps (corresponding to 15 days, 6 hours for each time 

step). By comparing RMSE for different ensemble sizes, Fig.1 shows that the 

improvement is more significant for enlarging the ensemble size from 10 to 20 (double) 

and from 20 to 40 (double) than for further increasing the ensemble size. This conclusion 

is corroborated in Figs.2 by using 200 members as an optimum reference to calculate 

RMSE ratios to other memberships. It should be noticed that the differences among all 

ensemble sizes are quite small at early lead-time (less than day 3), and at longer lead time, 

if assuming 200 members is a perfect ensemble size which can represent all errors, the 

99% errors could be represented by 40 ensemble members, but 96% errors are only 

represented by 10 ensemble members. The tendencies of CRPS curves shown in Figs.3 

are similar to RMSE. However, for detail shown in Fig. 4, the improvements of 

increasing ensemble size on the representativeness of errors are larger than RMSE shown 

in Fig.2. 10-member represents less than 96% errors at short lead times, which decreases 

to 92% for long lead times. When the sizes increase to more than 40 members, the ratios 

as a function of lead time have few changes which maintain more than 98% errors for all 

lead times, and for further increasing ensemble sizes, this percentage improves more 

obviously than RMSE ratios. 

 

4. Impact of ensemble size on ensemble skill in a realistic atmospheric model 

 

    The different ensemble sizes are tested on NCEP global ensemble forecast system 

(GEFS) running at T126L28 resolutions. Ensemble forecast skill scores have been 

computed for ensemble sizes of 5, 10, 20, 40, 60 and 80 members for the period 

December 1
st
, 2009 to January 31

st
, 2010. The improvements of increasing ensemble size 

are assessed based on 500hPa geopotential height over the NH and SH extra-tropics from 

the NCEP standard probabilistic verification package (Zhu et al., 1996, 2002; Zhu, 2004; 

Zhu and Toth, 2008), which includes RMSE, SPREAD, PAC and CRPS.  
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4.1 RMSE and SPREAD 

Fig.5a shows that SPREAD is smaller than RMSE due to not accounting for all 

possible sources of model related uncertainty. If STTP is applied, the situation will be 

improved to some extend. The increases of ensemble sizes from 5 to 10, from 10 to 20 

and from 20 to 40 produce statistically significant improvements of RMSE at all lead 

times over the NH extra-tropics. However, the improvements are very small when further 

increasing the ensemble size. SPREAD is insensitive to increases in ensemble sizes. Fig.6 

shows whether the differences of RMSE for ensemble sizes are statistically significant. A 

vertical bar represents a 95% of standard deviation. For example, the top panel shows the 

difference between 10 and 20 ensemble members. A positive value means 10 members 

have larger RMSE value than 20 members. The bars do not cross with the zero line, 

suggesting significant differences at the 5% confidence level. RMSE for 20 members 

differs significantly from 40 members for short lead times (about less than 7 days). The 

difference between 40 and 80 is not significant for short lead times and is significant after 

about 10 days. The situation over the SH extra-tropics is similar to the NH extra-tropics 

(see Fig.5b), but both RMSE and SPREAD are smaller than over the NH extra-tropics 

because of seasonal variations of circulation patterns and predictability. 

 

4.2 PAC 

    If we consider 65% PAC score as a useful skill for large scale weather forecast, it is 

very clear to see from Fig.7a that there are about 13 hours (approximately from 214-hour 

extended to 227-hour) gain by increasing the ensemble size from 5 to 80 over the NH 

extra-tropics. It is evident that ensemble systems should have more than 20 members. 

The forecast performance for the SH extra-tropics is clearly lower (about 1 day difference) 

than for the NH extra-tropics. The difference may be due to differences in the quality of 

initial conditions, and different seasons. Despite these differences, the impact of 

increasing the ensemble size is similar in both extra-tropical hemispheres. 

 

4.3 CRPS 
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The comparison of CRPS in Fig.8 shows that the increase in ensemble size improves 

the probabilistic forecast skill over both the NH and the SH extra-tropics, especially when 

the size is smaller than 40-member. The improvement is significantly larger than the 

forecast skill for ensemble mean evaluation. For example, over the NH extra-tropics, 

Fig.7a shows that PAC score for 5-member is larger than 65% before 214-hour. If we use 

214-hour for 5-member as a reference to project on CRPS score map (Fig.8, 

corresponding to 0.53 skill score of CRPS), the skill score extends to 262hr for 80-

member, so there is approximately 35-hour more gain than the PAC score for increasing 

the ensemble size from 5 to 80-member. This result has been confirmed by statistical 

significance test (Fig.9). The differences of CRPS for 10-20, 20-40 and 40-80 ensemble 

members are all significant at the 5% confidence level for all lead times which is 

different from ensemble mean verification, although they decrease greatly when the sizes 

increase from 20 to 40 and from 40 to 80. 

 

5. Model resolution versus ensemble size in a realistic atmospheric model  

 

The relative impact of increasing model resolution versus increasing ensemble size is 

assessed by comparing 70 members at T126L28 resolution with 20 members at T190L28 

resolution. These two configurations take equivalent computation resources and use the 

same model physics.. The comparisons of PAC and CRPS scores (the top figures of 

Figs.10 and 11) indicate similarly that increasing model resolution (T190) is more (less) 

beneficial than increased ensemble size for short (long) lead times. A statistical 

significance test (the bottom figures of Figs.10 and 11) confirms this conclusion. Table 1 

summarizes the statistical significant forecast time at which one forecast configuration 

performs significantly better than the other one by using 95% confidence interval. We 

can clearly find that under similar computer resources and model physics, the resolution 

plays a more important role than ensemble size when the forecast lead time is less than 5 

days, whereas large ensemble size is significantly superior to higher resolution when the 

forecast lead time exceeds 12 days, which means more ensemble members will benefit 

the extended range forecast. Therefore, there is a trade-off between model resolution and 

ensemble membership configuration. The optimal configuration may depend on the 
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application. In this experiment period, for 6-10 days forecast lead times, there is no 

significant difference between increasing resolution and membership. At NCEP, a higher 

resolution may be considered to improve 1-5 days forecast. Meanwhile, the approach of 

using lagged ensemble members could be an option to enhance week-2 or longer range 

ensemble forecast skill. 

 

6. Conclusions 

 

    This study compares the impact of different ensemble sizes, and the relative 

performance of ensemble sizes versus model resolution to investigate an optimal 

configuration to improve the skill of operational ensemble forecasts. These issues are 

considered every time a numerical center upgrades or develops its ensemble prediction 

system.  

    The study starts by using the Lorenz 96 model to obtain answers to these issues. 

Because the model is computationally simple, it allows to arrive to conclusions with less 

cost than using a realistic atmospheric model. Initial perturbations are generated by using 

ETR method with 10, 20, 40, 60, 80, 100 and 200 ensemble members. RMSE, SPREAD 

and CRPS are used to measure the ensemble performance. The results show that 

performances of ensemble mean improve slightly when ensemble sizes increase at early 

lead-time (less than day 3), and at longer lead time, if assuming 200 members is a perfect 

ensemble size which can represent all errors, the 99% errors could be represented by 40 

ensemble members, but 96% errors are only represented by 10 ensemble members. 

Performances of probabilistic forecast improve more obviously with increasing ensemble 

size than performances of ensemble mean. 

    The conclusions obtained from the Lorenz model are corroborated with a more realistic 

model of the atmosphere. The experiments from NCEP GEFS at T126L28 resolution are 

used to test the impact of membership. The ensemble forecasts are generated by using 5, 

10, 20, 40, 60 and 80 members from December 1
st
, 2009 to January 31

st
, 2010. A 500hPa 

geopotential height over the NH and SH extra-tropics has been considered as main 

variable for evaluation. The measures, such as RMSE, SPREAD, PAC and CRPS, are 

applied to evaluate the benefits of increasing ensemble size. SPREAD is not sensitive to 
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increase ensemble sizes. RMSE score indicates that there are statistically significant 

improvements in ensemble mean performance when the ensemble size is less than 40-

member, however, the improvements are not significant any more with further increasing 

ensemble members. But a probabilistic forecast verification score (CRPS) shows that the 

improvements are still significant when doubling ensemble size from 40 to 80-member. 

Similarly, the comparison of the gains for useful skill through increasing ensemble size 

from 5 to 80-member evaluated by PAC and CRPS scores indicates the different impacts 

on the skill of ensemble mean and probabilistic forecast with increasing the ensemble 

size. There is about 13-hours skill gain over the NH extra-tropics shown in the PAC score, 

which is 35 hours less gain than in the CRPS (probabilistic measurement). Overall, 

increasing ensemble size is beneficial to improve skill of ensemble forecasts, especially 

when the ensemble size is small, and there is still significant improvement on the skill of 

probabilistic forecast when ensemble size becomes lager. 

    Numerical centers that develop global ensemble prediction systems face the issue of 

best use of their available computational resources. They usually compromise between 

increasing model resolution and enlarging ensemble size. The relative benefits of 

T126L28 model with 70 members and T190L28 model with 20 members which have 

equivalent computing cost are compared for 500hPa geopotential height from December 

1
st
, 2009 to January 31

st
, 2010 over the NH extra-tropics. The comparison of two 

configurations, from the PAC, CRPS scores and statistical significant testing of their 

difference, indicates that increasing model resolution is more (less) beneficial than 

increasing ensemble size for short (long) lead times. 

    Based on these experiments, we will continue our study to improve ensemble 

initialization from hybrid EnKF/ETR by using operational GEFS with higher resolution. 

We will focus on the impact of ensemble size and resolution for the summer season, and 

on the precipitation forecast and the storm forecast in a future study. 
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Figure Captions 

Figure 1: RMSE and SPREAD for different ensemble members.  

Figure 2: RMSE ratios of 200-member ensemble mean to other sizes.  

Figure 3: CRPS for different ensemble members.  

Figure 4: CRPS ratios of 200-member ensemble mean to other sizes.  

Figure 5: RMSE and SPREAD of different ensemble sizes for 500hPa geopotential height 

from 1 Dec. 2009 to 31 Jan. 2010. a, over the NH extra-tropics; b, over the SH 

extra-tropics. 

Figure 6: The differences of RMSE for 10-20, 20-40 and 40-80 ensemble members 

respectively. The Blue bars around the difference (blue line) are 95% confidence 

intervals. 

Figure 7: As in Figure 5 but for PAC. 

Figure 8: As in Figure 5 but for CRPS. 

Figure 9: As in Figure 6 but for CRPS. 

Figure 10: PAC (top) for 70T126 (black) and 20T190 (red) for NH extra-tropics 500hPa 

geopotential height from Dec. 1
st
, 2009 to Jan. 31

st
,
 
2010. The vertical bars around 

the RMSE difference (T190 – T126, solid line) are 95% confidence intervals 

(bottom). 

Figure 11: As in Figure 10 but for CRPS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19 

Table 1: Summary of statistical significant forecast time for 20T190 and 70T126 

 PAC CRPS 

20T190 1-5d 1-5d 

70T126 13-16d 12-16d 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90

Time Steps

R
M

S
E

(s
o

lid
) 

a
n

d
 S

P
R

E
A

D
(d

a
s
h

)

R10 S10 R20 S20 R40

S40 R60 S60 R80 S80

R100 S100 R200 S200

 

Fig.1 RMSE and SPREAD for different ensemble members. 
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Fig.2 RMSE ratios of 200-member ensemble mean to other sizes. 
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Fig.3 CRPS for different ensemble members.  
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Fig.4 CRPS ratios of 200-member to other sizes. 

 

 

    

    

Fig.5 RMSE and SPREAD of different ensemble sizes for 500hPa geopotential height  

from 1 Dec. 2009 to 31 Jan. 2010. 

a, over the NH extra-tropics; b, over the SH extra-tropics. 

a 
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Fig.6 The differences of RMSE for 10-20, 20-40 and 40-80 ensemble members respectively. 

The Blue bars around the difference (blue line) are 95% confidence intervals. 

    

      

Fig.7 As in Fig.5 but for PAC.  
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Fig.8 As in Fig.5 but for CRPS. 

      

Fig.9 As in Fig.6 but for CRPS. 
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Fig.10 PAC (top) for 70T126 (black) and 20T190 (red) for NH extra-tropics 500hPa geopotential 

height from  Dec. 1
st
, 2009 to Jan. 31

st
,
 
2010. The vertical bars around the RMSE difference (T190 – 

T126, solid line) are 95% confidence intervals (bottom). 

 

 
Fig.11 As in Fig.10 but for CRPS. 

 


