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Abstract 

 

NOAA is accelerating its efforts to improve the numerical guidance and prediction 

capability for extended range (weeks 3 & 4) prediction in its seamless forecast system. 

Madden Julian Oscillation (MJO) is the dominant mode of sub-seasonal variability in 

tropics and forecast skill of MJO is investigated in this paper. 

 

We used different configurations of the NCEP Global Ensemble Forecast System 

(GEFS) to perform the experiments. The configurations include: (1) The operational 

version of the stochastic perturbation forced with operational Sea Surface 

Temperatures (SSTs); (2) An updated stochastic physics forced with operational SSTs; 

(3) An updated stochastic physics forced with bias-corrected SSTs that are from 

Climate Forecast System (Version 2); and (4) As in (3) but with the addition of a scale 

aware-convection scheme. 

 

We evaluated MJO forecast skill from the experiments using Wheeler-Hendon 

indices and also examined the performance of the forecast system on prediction of key 

MJO components. We found that using the updated stochastic scheme improved the 

MJO prediction lead-time by about 4 days. Further updating the underlying SSTs with 

the bias corrected CFSv2 forecast increased the MJO prediction lead time by another 

1.7 days. The best configuration of the four experiments is the last configuration which 

extends forecast lead time by ~9 days. Further investigation shows that upper and 
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lower level zonal wind has larger contribution to the improvement of the MJO prediction 

than the outgoing longwave radiation. The improvement of the MJO forecast skill 

appears to be due primarily to the improvement in the representation of convection and 

associated circulations over the tropical West Pacific.  
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1.  Introduction 

 

A skillful forecast for the sub-seasonal time scale (3-4 weeks) is valuable in socio-economic 

context but poses substantial challenges. The limited forecast skill for this time window is 

mainly due to its relatively weak dependence on the initial conditions (an important source of 

predictability for the short term weather forecasts) and the insufficient time for the forecast 

system to ‘feel’ the effects of the lower boundary forcing that provide predictability on seasonal 

and longer timescales (Vitart et al., 2009, Johnson et al. 2014; Liu et al. 2016, Troccoli  2010, 

Tian et al. 2017). Thus improving sub-seasonal forecasts is likely to come from substantial  

efforts on the model development, with a focus on improving representation of the sources of the 

sub-seasonal predictability.  

 

As a dominant mode in tropical variability on the sub-seasonal timescale, the Madden-Julian 

Oscillation (MJO), which features as a 30-60 day oscillation of convection and precipitation in 

the tropics has been a focal point of the research community and operational centers that are 

looking to improve sub-seasonal prediction. Indeed, numerical studies have found that  

improvement in tropical and extratropical prediction on sub-seasonal time scale can be linked to 

improved prediction of the MJO (Ferranti et al., 1990; Waliser et al. 2003; Lin and Brunet 2009, 

Pegion and Sardeshmukh 2011; Vitart  2014; Liu et al. 2017). With increasing interest and 

demand for skillful sub-seasonal forecasts, better representation of the MJO is of particular 

importance in operational Numerical Weather Prediction (NWP) centers. In recent years, 

progress in MJO forecasting as a result of NWP developments has been quite promising. For 

https://link.springer.com/article/10.1007/s00382-016-3264-7#CR53
https://link.springer.com/article/10.1007/s00382-016-3264-7#CR43
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example, the European Centre for Medium-Range Weather Forecasts (ECMWF) has mitigated 

the temporal decline in MJO prediction skill by about 1 day per year since 2002 (Vitart 2014). It 

was found that the large improvement before 2009 was mostly attributed to the change in 

convective parameterization (Vitart 2009). The progress of MJO forecast skill offers promise for 

corresponding potential improvements in the sub-seasonal forecast for most of other phenomena. 

 

Concerning the MJO prediction/forecast, researchers and model developers mainly focus on 

these key areas for skill improvement and they are: 1). model physics parameterization: 

particularly, the MJO skill was found to be sensitive to the convection scheme and some research 

suggested the improvement of the skill through the MJO propagation (Wang and Schlesinger 

1999; Maloney and Hartmann 2001; Liu et al. 2005; Lin et al. 2008; Zhang and Song 2009; 

Vitart 2009; Zhou et al. 2012). 2). Ocean impact. The MJO is mainly an atmospheric 

phenomenon but ocean impacts, particularly the accurate sea surface temperatures and 

atmospheric ocean coupling are believed to be critically important for prediction (Wang et al. 

2015; Liu et al. 2017). 3). Ensemble prediction using either single model (Vitart and Molteni 

2010; Hudson et al. 2013) or multi-model approaches to effectively sample model uncertainty 

(Gottschalck et al. 2010; Fu et al. 2013). The National Center for Environmental Prediction 

(NCEP) Global ensemble Forecast System (GEFS) provides numerical guidance for probabilistic 

forecast with the lead time up to 16 days. To align with the NOAA effort to accelerate sub-

seasonal prediction in a seamless ensemble forecast system, several experiments that extend the 

GEFS integration time to cover weeks 3 & 4 lead time were performed. Using this approach, an 

early investigation indicated that MJO prediction skill was improved by using an optimal SST 
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scheme (Zhu et al. 2017a). Following that investigation, we have performed more 

comprehensive experiments to test the impact of using different GEFS configurations on MJO 

forecast skill.    

 

The results of some of these experiments are described herein., specifically, this study focuses on 

three scientific areas: 1). A new perturbed physics scheme designed to sample the model 

uncertainty more effectively over the tropical region; 2). An updated underlying SST that 

represents the day-to-day variability from a coupled atmosphere-ocean model; and 3). An 

updated scale dependent convection scheme and other changes to the physics parameterizations 

(Han et al. 2017). For these experiments, the focus is on a 2-year period with new forecasts 

launched every 5 days. This approach allows us to sample the MJO phenomenon sufficiently 

while keeping computational expense manageable.  

 

Section 2 describes the details of the experiments and data used in this study. The evaluation of 

the forecast skill of the MJO and its associated key components is demonstrated in section 3. 

Conclusions and discussion are provided in section 4.  

 

2. Experiment and Data 

 

The NCEP Global Ensemble Forecast System (GEFS version 11, Zhou et. al, 2017), based on 

the Global Forecast System version 12 (GFS, i.e. Global spectral model GSM + land surface 

model LSM) is used to perform the experiments. For each experiment, a 21- member (1 control 
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run and 20 perturbed members) ensemble was used to integrate the forecast system that run up to 

35 days. Considering the computational cost and the relatively small impact of the resolution on 

longer lead times (Tracton and Kalnay 1993; Ma et al. 2012), we used relatively coarse T574 

horizontal resolution ( roughly equivalent to 33km grid spacing) for the first 8 lead days and 

T382 (~55km) for lead days 8-35. 64 vertical levels were used for all lead times. Because GFS is 

an uncoupled atmosphere ocean forecast system, a prescribed SST with the initial analysis data 

damping towards the observed climatology (with a 90-day e-folding rate) was used to force the 

model. The Simplified Arakawa-Schubert convective parameterization scheme was used for 

deep convection (SAS, Arakawa and Schubert 1974; Grell 1993; Pan and Wu 1995; Han and Pan 

2011) and the Mass-flux shallow convection scheme for shallow convection. Documentation of 

the GFS operational Physics can be found in (http://www.dtcenter.org/GMTB/gfs_phys_doc/).       

 

In this study, four experiments were conducted to examine the MJO forecast associated with 

different GEFS configurations. The four configurations were: 1). an operational version of the 

GEFS that uses the Stochastic Total Tendency Perturbation scheme (Hou et al. 2006, 2008) and 

that is extended to 35 days without changing the SSTs (hereafter STTP); 2) same as 1) but using 

an updated stochastic physics scheme that combines Stochastic Perturbed Physics Tendency 

(SPPT, Buizza et al 1999; Palmer et al, 2009), Stochastic Humidity Perturbation (SHUM, 

Tompkins and Berner 2008) , and Stochastic Kinetic Energy Backscatter (SKEB) ( Shutts and 

Palmer, 2004; Shutts 2005; Berner et al. 2009 hereafter SPs); 3). same as 2) but forced with bias 

corrected CFSv2 forecast SST (hereafter SPs+CFSBC); and 4). same as 3) but using a scale 

aware-convection scheme (SPs+CFSBC+CNV) in GSM (Han et al. 2017). Table 1 summarized 
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the configurations of all these experiments. All experiments were initialized every 5 days at 00Z, 

starting May 1
st
 2014 and ending May 26, 2016. 

 

 

The analysis data used in this study is the NCEP GFS analysis, i.e., Global Data Assimilation 

System (GDAS). A 7-point daily mean centered at 00Z of each lead day (e.g. using 06Z, 12Z, 

18Z 24Z, 30Z, 36Z and 42Z average to represent the daily mean of the lead day 1) is used in both 

forecast and analysis data. Both forecast and analysis data are at 2.5 degree resolution.  

 

3. Results 

 

3.1. MJO forecast skill 

 

We evaluated the Wheeler Hendon (WH) MJO indices (Wheeler and Hendon 2004), which is 

defined as the bivariate anomaly correlation between the analysis and forecast Realtime 

Multivariate MJO (RMM1) and (RMM2) using input fields of outgoing longwave radiation 

(OLR), zonal wind at 200 hPa and 850 hPa. i.e.  

𝐴𝐶(𝜏) =
∑ [𝑎1(𝑡)𝑓1(𝑡, 𝜏) + 𝑎2(𝑡)𝑓2(𝑡, 𝜏)]𝑁

𝑖=1

√∑ [𝑎1
2(𝑡) + 𝑎2

2(𝑡)]𝑁
𝑖=1 √∑ [𝑓1

2(𝑡, 𝜏) + 𝑓2
2(𝑡, 𝜏)]𝑁

𝑖=1

(1) 
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where f1(t, 𝜏) and f2(t, 𝜏) are the RMM1 and RMM2 of the forecast at lead day 𝜏 initialized at day 

t. 𝑎1(𝑡)and 𝑎2(𝑡) are the RMM1 and RMM2 of the analysis data corresponding to the forecast at 

day t. 

 

The MJO forecast skill of the GEFS with the updated stochastic physics schemes, SST scheme 

and convection scheme showed improvement from the operational GEFS with each successive 

enhancement (Fig. 1). By only changing the stochastic schemes, the MJO forecast skill improved 

from ~12.5 days (defined as anomaly correlation equals to 0.5) to ~ 16.8 days. Further updating 

the underlying SST improved the MJO forecast skill by another 1.7 days and updating all three 

areas of the GEFS (configuration 4) improved the MJO skill to 22 days (Figure 1a). In the GEFS 

forecast, the skill of RMM2 is greater than RMM1 (cf. Figs. 1b and 1c), leaving an open 

question whether the forecast over the Maritime continent and tropical Africa is more skillful 

than that over tropical West Pacific and Indian Ocean.   

 

The forecast MJO strength varies with initial time (Fig. 2). The MJO strength associated with 

SPs, SPs+CFSBC and SPs+CFSBC+CNV are similar while the MJO strength from the STTP 

experiment is generally stronger than the strength in other three experiments. For both lead days 

16 and 21 (Fig. 2ab), the forecast MJO is not systematically stronger or weaker than the analysis 

in each experiment, indicating the forecast MJO strength is dependent on initial time. For the 

periods of July to November of 2015 and February to March of 2016, the forecast MJO strength 

is more consistent with the analysis than it is for the other initial periods of the two years for both 

lead days (Fig. 2ab).   
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The progression of the MJO in different phases is also dependent on initial time. For the two 

example initial periods, in April-October 2015 (validation time for lead day 16 is May-October 

2015, Fig.3ab), the forecast MJO indices are weaker in the SPs, SPs+CFSBC and 

SPs+CFSBC+CNV experiments than in the STTP experiment. The strength of the MJO in the 

SPs+CFSBC+CNV experiment is more similar to that in the analysis than in the MJO in the 

other experiments but still much weaker than the analyzed MJO. In the initial period of 

September-December 2015 (Fig.3cd), the forecast MJO strength is closer to the analysis data in 

all experiments but there are phase errors.  For both initial periods, the SPs experiments perform 

better than the STTP. For all experiments, the forecast MJO tends to shift to the left side of the 

phase diagram, i.e. Western Hemisphere, Africa and Indian Ocean which suggests that the 

forecast MJO fails to propagate appropriately over the West Pacific ocean and Maritime 

Continent. Thus, there are deficiencies in both magnitude and sign of the forecast RMM1 and 

RMM2 in the forecast system for the weeks 3 & 4 time scale. 

 

3.2. Contribution of the large-scale circulation and convection 

 

Since the Wheeler-Hendon MJO skill uses the upper and lower level zonal wind and the OLR 

anomaly to represent MJO associated circulation, the forecast skill of the large-scale circulation 

and the convection are examined to help better understand the improvement in MJO skill. Fig. 4 

shows the correlation of the tropical 15°S-15°N mean zonal wind and OLR anomaly during the 

2-year period (150 initial days) for all lead days and four experiments. In all experiments, the 
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correlation score for upper level zonal wind is higher than the lower level zonal wind which is 

higher than the OLR. This is reasonable because lower level winds are more dependent on the 

model uncertainty in surface process than are the upper level winds. The OLR forecast shows the 

lowest score, likely because it is a function of more complicated physical and dynamical 

processes that involves considerable uncertainty thus limiting the forecast skill. For all three 

components, it is obvious that all the SPs experiments (including SPs, SPs+CFSBC and 

SPs+CFSBC+CNV) performed better than the production version of the GEFS (STTP), 

indicating the positive impact of these updated stochastic scheme on the performance of the 

forecast system over the tropical region. Among the SPs experiments, SPs+CFSBC+CNV 

outperformed SPs+CFSBC which outperformed SPs in wind components, especially in 200 hPa 

zonal wind. Although there are some differences between the SPs and the other two experiments 

(i.e. SPs+CFSBC and SPs+CFSBC+CNV) in OLR for longer lead time, the difference between 

the SPs+CFSBC and SPs+CFSBC+CNV is not as evident as in the zonal wind fields.  

 

To further explore where in the tropics does the substantial improvement occur, we examined 

correlation of the wind and OLR anomaly on each model grid over the tropics for lead day 15 

(Fig. 5). The operational version of GEFS shows better performance on 850 hPa zonal wind 

anomaly forecast than the other two variables over the region from tropical Indian Ocean to west 

Pacific (Fig. 5 a-c). The updated stochastic schemes that perturbed the temperature, wind and 

humidity profile help improved the 200 hPa zonal wind anomaly over the tropical Indian Ocean 

to most of the Maritime Continent, as well as the 850 hPa zonal wind anomaly over the tropical 

west Pacific and Indian Ocean (Fig. 5 d-f). In the Wheeler-Hendon RMM calculation, the zonal 
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wind is weighted more than the OLR anomaly.  Although the updated stochastic schemes also 

resulted in an improvement of the OLR anomaly forecast over the MJO related region, the 

improvement in the wind component appears to be the main reason that leads to the improved 

MJO forecast in the updated stochastic schemes. A further update on underlying SST, combined 

with the updated stochastic schemes enhanced the improvement of the three variables. Updated 

the stochastic scheme, the underlying SST, and the convection scheme provided additional skill 

to the wind and OLR forecast (Figure5, i-l). The improvement of the forecast anomaly of the 

three variables can also be demonstrated in a latitude and lead time cross-section of the three 

variables (Fig. 6). The SPs+CFSBC+CNV is the configuration that leads to the largest 

improvement. Among the three variables, the largest improvement occurs in 200 hPa zonal wind, 

especially beyond two weeks of the lead time. The conclusion that of these tested here, the 

SPs+CFSBC+CNV is the best configuration for MJO forecasts can also be substantiated by a 

MJO phase and lead time cross-section of the pattern correlation of the composite 200 hPa, 850 

hPa zonal wind and OLR fields (Fig. 7). For all three variables, the large improvement occurs 

mostly on phase 3 and phase 6-7 after two weeks of the lead time. This is consistent with the 

improvement of the forecast over tropical west Pacific and Indian Ocean (Fig. 5). 

 

3.3. Contribution of the stochastic physics scheme 

 

Based on the evaluation of the forecast skill of the MJO and its associated variables (Fig.1 and 

4), the forecast skill exhibits a jump after using an updated stochastic scheme. As such, we 

examined the spread of the perturbed variables in the SPs experiment to further check the 
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contribution of the stochastic scheme on the performance of the GEFS. The SPs is a combined 

stochastic physics scheme of three components, which include SPPT, SHUM and SKEB. The 

individual impact of the SPs has been discussed in Zhu et al. 2017a. The combined effect of the 

SPs, compared to the operational STTP version, increased the spread mainly over the tropical 

region (Fig.8) and the increase of the spread lead to an improved temperature, zonal wind and 

relative humidity profile in the same region (Fig.9). For the weeks 3 & 4 forecast of the tropical 

mean zonal wind at 250 hPa and 850 hPa, the forecast skill  improved by 43% and 19%  

respectively (Fig.10). The weeks 3 & 4 forecast skill of the tropical zonal wind is strongly 

dependent on the initial time. The skill range can be as large as 1 for the zonal wind at both 

levels. The forecast skill of the weeks 3&4 tropical mean zonal wind at 250 hPa and 850 hPa 

during a strong MJO period is 63% and 18% larger than that of the weak MJO period in SPs 

experiment and 50% and 12% larger in STTP experiment. The conclusion that higher skill of the 

weeks 3&4 forecast is associated with strong MJO period is consistent with the result in figure 2.   

 

4. Conclusion and Discussion 

 

Improving forecast skill for the source of the sub-seasonal predictability (i.e, the MJO) is critical 

to the improvement of tropical and extratropical forecasts of other phenomena, especially for 

extreme events. In this work, experiments were performed using different configurations of the 

NCEP GEFS to evaluate the MJO forecast skill and its key components. Based on the four 

experiments, it was determined that the MJO forecast benefited largely from the use of  a 

stochastic physics scheme that resulted in the improvement of the forecast of  key MJO 
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component variables. The improvement was mostly attributed to the increase of the spread of the 

temperature, wind and humidity profiles over the tropics. The addition of an updated underlying 

SST from the bias corrected CFSv2 forecast and a new convection scheme simulates tropical 

convective systems more realistically further enhanced the improvement. The improvement of 

the MJO forecast skill is mainly due to better representation of the circulation and convection  

over the tropical West Pacific and Indian Ocean, especially in the configuration of 

SPs+CFSBC+CNV. A combination of the updated stochastic physics perturbation, more realistic 

SST, and convection scheme in the forecast model led to about a 9-day extension of given skill 

threshold for MJO forecasts.   

 

Following this work, our next step will be the evaluation for the MJO-skill impacts after bias-

correction. Application of this convection is enabled by the recent completion and post 

processing of an 18-year reforecast. In addition to the evaluation of tropical forecasts, an analysis 

of the teleconnection relation between tropical and extratropical prediction skill is necessary and 

critical. The current investigation suggests that there is a statistically significant lag correlation 

between the North Atlantic Oscillation (NAO) and MJO indices, which encourages further 

analysis on this direction. The extreme events associated with the MJO and other sources of 

predictability for sub-seasonal time scale are also included in plans for future studies.   

 

Linking the forecast skill to the configuration of the forecast system, model developers and 

researchers may also be interested in isolating the impact of the stochastic scheme, the 

underlying SST, and the convection scheme. Due to the computational cost, the more granular 
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sensitivity tests were not conducted as part of this work. Rather, the design of each configuration 

used herein was based on the positive impact of each factor (SPs, SST and convection) derived 

from small sample tests and early investigation (Zhu et al. 2017b). A more comprehensive 

investigation s can be left to other researchers who have interest.   
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Table 1. Summary of the GEFS configurations 

 

Abbreviation Stochastic Physics 

Scheme 

SST Convection 

Scheme 

STTP STTP Relax to 

Climatology. 

SAS 

SPs SPPT+SHUM+SKEB Relax to 

Climatology 

SAS 

SPs+CFSBC SPPT+SHUM+SKEB Initial analysis+ 

bias corrected 

CFS forecast 

SAS 

SPS+CFSBC+CNV SPPT+SHUM+SKEB Initial analysis+ 

Bias corrected 

CFS forecast 

Updated SAS 
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Figure 1.  WH MJO skill for a). RMM1&2. b). RMM1. c). RMM2 for different experiments 

during the period of May 1st 2014-May 26, 2016 (5day-inteval). The WH-MJO skill is defined 

as the bivariate correlation between ensemble mean forecast and analysis data. Climatology and 

120-day running mean are removed from the forecast and analysis data when calculating the 

RMMs. A dash line of anomaly correlation equals to 0.5 is added in the plot to indicate the MJO 

skill. 
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Figure 2.  WH MJO index as a function of validation time for a). lead day=16 and b) lead 

day=21. 7 point running mean has been applied to the time-series to smooth the data.   
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Figure 3. Phase diagram of the MJO index for lead day 16 (a and c) and 21 (b and d) during 

validation time of 20150502-20150717 (a and b) and 20151002-20160107 (c and d).  
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Figure 4. Correlation coefficient of a). U200; b) u850 and c). OLR anomalies over 15°S-15°N 

between the analysis and forecast data over the period of May 1st 2014-May 26 2016. 
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Figure 5. Spatial distribution of the correlation coefficient of u200, U850 and OLR anomaly between the 

analysis and the forecast data over the 2-year experiment period at lead day 15. a-c: Correlation coefficient 

for STTP; d-l: the difference of the correlation between the SPs experiments and the STTP.  
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Figure 6. Correlation coefficient as a function of latitude and lead time for U200, U850 and OLR anomaly for 

STTP and the difference of the correlation coefficient of each experiment from the STTP.  

U850 U200 OLR 

a b c 

d e f 

g h i 

j k l 



 

30 

 

  

Figure 7. Pattern correlation as a function of MJO phase and lead time for the composite U200, U850 

and OLR over each MJO phase between the analysis and forecast data. Left column: Pattern correlation 

for each experiment. Right column: difference of the pattern correlation between the SPs experiment and 

the STTP. 
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Figure 8. Ensemble spread of the perturbed members in GEFS for temperature (a), zonal wind (b) and 

relative humidity at 360th forecast hour (c) and the difference between SPs and STTP for the corresponding 

variables (d-f).  
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  Figure 9. The 360-hour forecast of the temperature, zonal wind and relative humidity in Analysis, 

STTP and SPs (right panel of each plot) and the difference between each experiment and the analysis 

(left panel of each plot).  
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Figure 10. The ensemble mean anomaly correlation of the week 3&4 averaged 250 hPa (a) and 850 hPa 

(b) zonal winds as a function of initial time for the STTP and SPs. The average score for 250 hPa zonal 

wind (a) is 0.404 and 0.283 for SPs and STTP. The average score for 850 hPa zonal wind (b) is 0.545 and 

0.457 for SPs and STTP respectively. 

 
 


