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Abstract 

Two ensemble initialization schemes, the ensemble transform with rescaling (ETR), an 

improved operational breeding method and the ensemble Kalman filter (EnKF), are compared 

under the NCEP operational environment for the global ensemble forecast system (GEFS). The 

ensemble mean forecast is verified by using the root mean square error (RMSE), the ensemble 

spread, and the pattern anomaly correlation (PAC). The continuous ranked probability skill score 

(CRPSS) is used to verify the probabilistic forecast. The comparison shows that the amplitude of 

initial perturbations in EnKF is generally larger than in ETR especially in the Southern 

Hemisphere (SH), but both fail to generate sufficient spread at the medium-range forecasting 

times.  EnKF outperforms ETR in terms of CRPS scores in the Northern Hemisphere for the first 

week (NH), whereas the ensemble mean forecast is more skillful for ETR in the southern 

hemisphere (SH). No significant differences are found for the tropics between ETR and EnKF. 

Similar experiments are performed with the stochastic total tendency perturbation (STTP) 

scheme, in which the total tendency of all model variables is perturbed to parameterize the 

uncertainty in the forecast model itself. The inclusion of STTP increases the ensemble spread for 

EnKF and ETR. Better spread-error relationships are obtained for ETR and EnKF over NH, but 

not for EnKF in the SH. The probability forecast scores remains significantly better in the NH 

for EnKF compared to ETR as in the experiments without STTP, but some degradation is found 

in the EnKF experiments in the SH due to an over-dispersive ensemble. The results indicate the 

tuning of either EnKF or STTP is required for SH when STTP is applied with the EnKF-based 

perturbations.  
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The ensemble mean tropical cyclone track forecasts in two tropical cyclone seasons are 

compared. The EnKF scheme has similar performance as ETR in tropical cyclone track forecast 

when the vortex relocation scheme is applied.  
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1. Introduction 

Small errors in initial conditions can amplify and result in significant forecast errors during a 

forecast (Lorenz 1969; 1982). A feasible way to improve forecast skill is to use ensemble 

forecasting with different initial conditions sampling the error probability density functions 

(PDFs) of the analyzed atmospheric state (Epstein 1969; Leith 1974). More specifically, the 

analysis PDF must be defined given estimates of error in observed and background fields, and 

then a representative but finite sample suitable for evolution must be taken from this PDF. No 

consensus has been reached on how to accomplish these tasks. 

Of all ensemble generation schemes, the breeding method is the most computationally 

inexpensive. It has been used for generating initial perturbations at the U. S. National Center of 

Environmental Prediction (NCEP) for the operational Global Ensemble Forecast System (GEFS) 

since Dec. 1992 (Toth and Kalnay 1993, 1997). A hypothesis of the breeding method is that the 

important part of analysis errors is the dynamically constrained part contributed by errors of the 

forecast background. This method dynamically recycles the perturbations to simulate the 

development of growing errors in analysis cycles. After an infinitely long breading time and with 

the use of infinitesimal amplitude, the bred vectors (BV) should be identical to leading Lyapunov 

vectors (Corazza et al., 2001; Toth and Kalnay, 1993, 1997; Cai et al., 2003; Kalnay 2001), 

which provide estimates of fastest sustainable growth and thus represent probable growing 

analysis errors. The ensemble mean based on the BV method gives a better forecast than the 

control forecast as long as the ensemble represents the uncertainty in the control analysis. 

In practical applications, however, BVs cannot accurately represent the true uncertainty in 

the analysis and have a tendency to produce analysis perturbations whose variance is 
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concentrated in considerably limited eigen-directions (Wang and Bishop 2003; Wei et al. 2006). 

The absence of variability in some eigen-directions is undesirable given that the ensemble 

perturbations are already too few to span all the directions in which analysis error variability 

really exists. Ensemble transformation (ET) with rescaling (ETR) was introduced in NCEP 

global forecast system in 2005 (Wei et al. 2006, 2008), in which the forecast perturbations from 

breeding cycling are transformed into analysis perturbations by multiplying a transformation 

matrix. The matrix is chosen to ensure that the ensemble-based representation would be 

consistent with a user-provided estimate of analysis error covariance. The ensemble variance is 

maintained in as many directions as possible within the ensemble subspace. Meanwhile, the ET 

method produces simplex, not paired members. Wei et al. (2008) compared the probabilistic 

scores of the BV and ETR. They found that the ETR had better performance than the BV. 

A hybrid variational-ensemble data assimilation system based on the Gridpoint Statistical 

Interpolation (GSI; Wu et al. 2002; Kleist et al. 2009) and the ensemble Kalman filter (EnKF) 

has been developed and was successfully implemented operationally for the NCEP Global data 

assimilation System (GDAS) using the Global Forecast System model in May 2012 (Whitaker 

and Hamill 2002; Whitaker et al. 2008; Wang et al. 2013, Kleist and Ide 2015). In the hybrid 

GSI-EnKF, the flow-dependent background covariance based on the ensemble of short-range 

forecasts from EnKF is incorporated with the static background error covariance of GSI (a 

3DVAR algorithm) during the data assimilation. The ensemble obtained at the end of the EnKF 

assimilation can be used as the initial conditions for global ensemble prediction. The success of 

EnKF in NCEP GDAS provides alternative ensemble initial conditions for the operational GEFS. 

It is necessary to choose one which will provide better medium-range forecast performance from 

the existing operational schemes. 
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Quantitative comparisons of the breeding scheme and EnKF perturbation strategies have 

been performed in simplified environments and in operational environments. Buizza et al. (2005) 

compared the ensemble forecast systems of European Centre for Medium-Range Weather 

Forecasts (ECMWF), the Meteorological Service of Canada (MSC), and NCEP. These three 

operational systems use the singular vector, the breeding of growing mode (BGM) and EnKF 

schemes respectively. No conclusion is reached as to the relative performances of the different 

initialization schemes, as they could only measure the overall quality of the three systems. 

Descamps and Talagrand (2006) and Bowler (2006) found that the EnKF performs better than 

the breeding method but their conclusions are limited to simple models. 

The goal of this study is to perform a clear comparison of the current operational ensemble 

scheme (ETR) with the EnKF in the NCEP operational environment. The results in this study 

will provide essential guidance for the next GEFS implementation. The general experimental 

setup of the study is described in section 2. An overview of verification scores that are utilized in 

the study is presented in section 3. The verification scores from the two experiments covering 

two summer seasons is presented in sections 4 and 5, and ensemble track verification is 

summarized in section 6.  The conclusions are given in section 7 together with a general 

discussion.  

2. Experimental setup and verification method 

a）Experimental setup 

The forecast model used is the NCEP Global Forecast System (GFS), version 9.01 

(http://www.emc.ncep.noaa.gov/?branch=GFS&tab=impl). Two sets of experiments, ETR and 

EnKF, use the same GFS model and same control analysis in order to ensure that the differences 
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between the experiments result only from the differences in the initialization methods. The 

ensemble for each set consists of 20 ensemble members and a control run. The analysis is 

truncated from the T574L64 analysis generated by the hybrid GSI and EnKF system and 

interpolated to a lower resolution (T254L42) which then also serves as the control member for 

the ensemble. The initial conditions for each ensemble member are created by applying a small 

perturbation to the control analysis by using either ETR or EnKF. For the ETR experiments, the 

generation of the initial perturbations follows the NCEP GEFS operational scheme (see Wei et 

al., 2006 and Wei et al., 2008 for the description of the ETR scheme in detail). In the EnKF 

experiment, 6-h ensemble forecast perturbations initialized from EnKF analyses are used as 

initial perturbations since only the EnKF from the previous cycle is available at the time when 

GEFS starts in the NCEP operational environment.  This is due to the fact the EnKF is only run 

as part of the late cycle within the global data assimilation system for the purposes of prescribing 

background error covariances in the cycle that follows.  In other words, the prior of the EnKF is 

utilized instead of the posterior to generate the initial ensemble for the GEFS. The model is 

integrated once daily (0000 UTC) at T254L42 resolution for 0-192 h lead times and lower 

resolution (T190L42) for 192-384 h lead times due to computational constraints. 

Given that uncertainties in the forecast also arise from uncertainties in the model 

formulation, the performance of these initialization schemes is also compared by including 

model perturbations. The NCEP GEFS uses the Stochastic Total Tendency Perturbation (STTP) 

scheme to represent such unpredictable model uncertainties, in which stochastic forcing is added 

to the total tendencies of ensemble perturbations for the model variables (temperature, specific 

humidity and winds, Hou et al. 2006, 2008). The scheme is applied every six hour after forecast 

output is created.  The total time tendency (from all physical and dynamical processes) for each 
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variable is perturbed by a random factor and rescaled to be size, region, and lead time 

appropriate.  For example, the extratropics have larger perturbations in the tropics and 

perturbations should be larger with longer lead time. The calculation of the time tendency 

perturbations is done at the same time across all ensemble members, with the perturbations made 

statistically independent of each other before being applied to the variables.  

Treatment of model errors has also been an area of research within the context of the EnKF 

(Whitaker and Hamill 2002, 2012; Whitaker et al. 2008; Houtekamer et al.  2005 and 2009; 

Zhang et al. 2004; Meng and Zhang 2008). Ideally, the ensemble providing background-error 

covariances should sample all sources of error in the forecast environment, including sampling 

error due to limitations in ensemble size and errors in the model itself.  The EnKF may not give 

enough weight to observations when ensemble-estimated covariances are underestimated. This 

problem can progressively become worse in time if unaccounted for, potentially leading to filter 

divergence in which the ensemble variance becomes unrealistically small and the filter trusts its 

own forecast and ignores the information given by the observations.  

 In order for the EnKF to perform optimally in data assimilation, model errors and other 

error source were treated by using ensemble covariance inflation (e.g, Whitaker and Hamill 2002) 

and additive noise on posterior ensemble (e.g., Whitaker et al. 2008, Houtekamer et al. 2005). 

The particular versions of multiplicative inflation (relaxation to prior spread) and additive 

inflation (using lagged forecast pairs) is described in more details in Whitaker and Hamill (2012).   

An interesting question that arises from the special treatment of model error in EnKF is 

whether the ensemble initialized with EnKF perturbations can produce sufficient spread for 

medium-range forecasts without model perturbations. If not, it is interesting to explore how well 
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it works with STTP. Two groups of experiments have been conducted. The performance of ETR 

and EnKF without STTP is examined during the periods of July 1- October 25 2011. Similar 

experiments are performed for 2012 summer except with STTP turned on.  

Another component of the operational GEFS is a tropical cyclone relocation scheme. The 

tropical cyclone component is separated from the environment field using the scheme of 

Kurihara et. al. (1993 and 1995) and relocated to the observed TC location center when 

calculating TC perturbations.  The TC relocation is always included in the ETR experiments for 

all ensemble members and the control as in operations. The impacts with and without this 

scheme are examined for the EnKF run.  

b) Verification Metrics 

Forecast and analysis fields are interpolated onto a common regular 2.5 by 2.5 degree lat-lon 

grid to assess the quality of ensuing ensemble predictions.  Ensemble forecasts are verified 

against hybrid GSI and EnKF GFS analysis. The quality of forecasts is measured by the NCEP 

ensemble verification system (Zhu et al. 1997; Toth et al., 2003, 2006; Zhu and Toth 2008) 

which includes calculation of traditional verification measure such as Root Mean Square Error 

(RMSE) and Pattern Anomaly Correlation (PAC) for the ensemble mean and the measures 

related to two important attributes: the reliability and resolution (Toth et al., 2003, 2006), such as 

Continuous Ranked Probability Skill Score (CRPSS) and Ranked Probability Skill Score (RPSS)  

for the probability forecasts.  

RMS errors of the ensemble mean measure the distance between forecasts and analyses (or 

observations).  SPRD (ensemble spread) is calculated by measuring the deviation of ensemble 

forecasts from their mean. It is expected that SPRD has the same size of RMS error at the same 
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lead time in a good forecast when the ensemble forecast can represent full forecast uncertainty 

(Zhu 2005; Buizza et al. 2005). 

 PAC measures the ability of the ensemble mean to forecast the variation of weather patterns, 

which is defined as the correlation between the predicted anomaly and the observed anomaly 

with respect to their corresponding climatology. The maximum value of 1.0 indicates a perfect 

depiction of the patterns. 

CRPS is used to measure the reliability and resolution of ensemble-based probabilistic 

forecasts by calculating the distance between the predicted and the observed cumulative 

distribution functions of scalar variables in terms of 10 climatologically equally likely intervals 

determined at each grid point separately (Toth et al. 2002). For statistics over a long period, 

CRPS is equivalent to Mean Absolute Error (MAE) for a deterministic forecast and it is very 

similar to RPSS. Therefore, we consider it possible to use either one of these two measures.  

Tropical cyclone tracks are estimated by comparing forecast and observed tracks based on 

the best track dataset in the Atlantic, and western North Pacific,  and eastern North Pacific 

basins. Only ensemble mean track error and track spread are verified.  

The paired block bootstrap algorithm (Hamill, 1999) is used to estimate the statistical 

significance of differences in scores. The technique generates multiple datasets from the 

available data by selecting random samples with replacement, allowing one to estimate the 

statistical parameters regardless of the distribution of the underlying data. In this study, 95% 

confidence interval is computed from a bootstrap resampling using 20000 random samples of 

more than 90 cases. 

3. Initial perturbations of ETR and EnKF  
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Fig. 1 shows the initial error variance of total energy averaged in the NH, SH and tropics 

for EnKF and ETR.  
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where 𝑢𝑖
′2 , 𝑣𝑖

′2  and 𝑡𝑖
′2  are deviations corresponding to the ith member for the wind 

components and temperature. The quantity 𝜅 = 𝑐𝑝/𝑇𝑟 equals to 4.0 J kg
-1

 K
-2  

in which cp is the 

special heat at constant pressure and Tr is the reference temperature. EnKF 6-hour forecast 

perturbations used as the ensemble initial perturbations are compared with the analysis 

perturbations after multiplicative inflation and additive inflation. The inflation increases the 

ensemble spread but also introduces imbalance in the ensemble of analyzed states. The ensemble 

spread decreases significantly in 6 hour forecasts although it remains larger than the spreads 

before additive inflation is applied.  The application of the inflation plays a certain role in 

parameterizing other uncertainty sources and stabilizing the assimilation method, but is not very 

efficient. Overall the EnKF 6-hour forecast perturbations are larger than ETR perturbations 

(except in tropical lower levels), which is consistent with the nature of these two 

techniques.  The breeding cycling in ETR is explicitly designed to generate perturbations that 

contain fast-growing modes corresponding to the evolving atmosphere and the amplitude of 

initial perturbations is small and expected to grow fast with forecast lead times. In contrast, large 

amplitude perturbations are favorable for data assimilation to avoid filter divergence. EnKF 

ensemble not only samples analysis errors but also the other sources of error in the forecast 

environment. Meanwhile it captures the entire spectrum of analysis errors, many of which will 

project onto neutral or decaying modes. In addition, larger perturbation is expected when the 

prior ensemble perturbations instead of the posterior are used to generate initial perturbations.  
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There are also significant differences in the geographical distributions of the initial 

perturbations between ETR and EnKF (Fig. 2).  The perturbation amplitude in ETR increases 

poleward in the Northern Hemisphere, which is consistent with its regional rescaling mask (Ma 

et al. 2014), (Fig. 2a). Smaller perturbations are found over the continent than the ocean. The 

land-sea contrast is usually considered as a result of the geographical inhomogeneity of the 

observation density distribution. Smaller perturbations are also observed over South Africa, 

South America and Australia than over the ocean. The geographic distribution of EnKF spread is 

similar with that of forecast ensemble, which is not only due to that the initial perturbations in 

the EnKF experiment come from 6-hour short-range forecasts, but also the posterior ensemble 

spread is relaxed to the prior during EnKF data assimilation. The land-sea contrast in EnKF is 

not evident (Fig. 2b). The spread distribution has same pattern as that of the ensemble mean. In 

other words, the initial perturbation amplitude is locally maximized in the regions where mean 

kinetic energy is high. For the NH, maximum perturbation centers are corresponding to the storm 

tracks over the Pacific and the Atlantic. Initial perturbations are zonally symmetric in the 

observation-scarce Southern Hemisphere and have large amplitude at strongly baroclinic high 

latitude around 60ºS.   

The difference of the initial perturbation amplitude between these two experiments has a 

clear zonal structure (Fig. 2c). EnKF has much larger initial perturbations in middle-latitude 

baroclinic zones but smaller in polar region. We also note that the perturbations in baroclinic 

middle latitude grow rapidly in ETR. The difference between EnKF and ETR decreases with 

forecast time. The spatial patterns of the perturbation for ETR and EnKF at 96 hr are very similar 

except for the larger amplitude of EnKF in baroclinic zones (Fig. 3). 
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Fig. 4 examines the mean eigenvalue spectra of the ensemble covariance matrix. For each 

ensemble generation technique, the heights of the 19 bars correspond to 19 seasonally averaged 

eigenvalues of the geopotential height error covariance normalized by global mean for initial 

perturbations. The sum of these eigenvalues is related to the spread of the ensemble at this time. 

There are large amounts of ensemble variance present in all 19 uncorrelated orthogonal 

directions of ETR and EnKF, but the spectrum of the EnKF eigenvalues is flatter than the one 

from ETR. The first eigenvalue being much larger than all the others in ETR, indicating that 

there is a great deal of similarity between the ensemble members. As an extension of breeding 

method, dynamic cycling remains in ETR. The breeding technique would eventually only 

maintain error variance in the direction corresponding to some leading modes. As shown by Wei 

et al. (2006) and Ma. Et al. (2014), the ET method maintains the variance in as many directions 

as possible within the ensemble subspace and performs better than simple breeding, but the 

perturbations are orthogonal only in the infinite number of ensemble members.  The small value 

in the trailing eigenvector indicates it would be inefficient to improve forecast with more 

ensemble members.  

4. Experiments without STTP  

All scores that are computed for 2011 summer can be found in 

http://www.emc.ncep.noaa.gov/gc_wmb/xzhou/EnKF_ETR_2011_Summer.HTML. The 

parameters evaluated include the geopetential height at 500 hPa and 1000 hPa pressure levels, 

wind fields at 10-m, 850 hPa and 250 hPa pressure levels, temperature at 2-m height, 850hPa 

pressure level. NH refers to the area north 20ºN to 80ºN, SH refers to the south of 20ºS to 80ºS 

and Tropics is from 20º S to 20ºN. We will primarily show the forecast scores of 500 hPa 

geopotential height for NH and SH and zonal wind component at 850 hPa winds for tropical 

http://www.emc.ncep.noaa.gov/gc_wmb/xzhou/EnKF_ETR_2011_Summer.HTML
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region due to the absence of geostrophy and the low variability of the mass field (temperature 

and geopotential). The results for other parameters will be also summarized. 

a) Skill of ensemble mean  and spread 

The greater the ability of an ensemble forecast to account for the likely errors in the 

forecast, the greater the skill of the mean of that ensemble forecast. The skill of the ensemble 

mean can be taken as a (crude) measure of the quality of the ensemble. Figure 5a shows the 

RMS error of the 500hPa height ensemble mean forecast over NH for the two perturbation 

strategies. RMSE in both ETR and EnKF rapidly increases in the first week and becomes 

almost saturated after day 10. RMSE is significantly smaller in ETR than in EnKF for the first 

two days but become similar at longer lead times. The advantage of ETR is more evident over 

SH than over NH. The ETR ensemble mean is more accurate than that of EnKF in the first four 

days with some suggestions that ETR slightly superior at longer lead times (Figure 5b).   

Similar performance can be seen in RMSE of geopotential height at 1000 hPa (not 

shown). ETR has significantly smaller RMSE than EnKF in both NH and SH for the short-time  

forecast. The advantage preserves in longer lead times over SH but the differences become 

insignificant. EnKF is significantly better in the ensemble forecast of the low-level wind at 850 

hPa and surface from day 1 to day 3 over NH (not shown). No significant difference is found 

from the temperature at the low levels (850 hPa and 2m) the wind fields at 250 hPa between 

these two experiments over NH. On the contrast, the degradation of EnKF is generally 

significant for all variables in the first 2-4 days over SH.  

Ideally, the spread of ensemble forecast perturbations is equal to the RMS error of 

ensemble-mean forecast at all lead times. Having an underspread and overspread ensemble is 

not desirable for an ensemble forecasting system. Figure 5 shows that the growth of ensemble 
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spread is slower than that of ensemble mean forecast errors in both ETR and EnKF. For the 

ETR, the ensemble spread of geopotential height at 500 hPa as well as other variables over SH 

and NH is generally under-dispersive (Figs. 5a and 5b). EnKF has greater spread than ETR at 

the initial time. Over-dispersion in EnKF is found in the first several days and then gradually 

changes to under-dispersion with lead forecast time. The deviation between EnKF and ETR 

increases with lead time in the first week but decreases gradually and become negligible in the 

second week.  

A slight overspread in the short-time forecast as in the NH is desirable. The ensemble 

mean forecast error is under-estimated when same model analysis is used for verification. 

However, the over dispersion in SH is considered to have a negative impact on the ensemble 

mean forecast. The geopoetential height perturbation at 500 hPa in EnKF is over-dispersive in 

SH in the first week, which is more evident and lasts longer than in NH (Fig. 5a and Fig. 5b). 

Over-dispersion is also found in the first 2-4 days in other variables over SH but not over NH.  

The presence of too large spread in the SH is consistent with the degradation of EnKF. 

The degradation of EnKF is also found in the SH in terms of PAC. Figs. 5c and 5d shows 

the time evolution of the PAC for the geopotential height at 500-hPa in the NH and SH. PAC is 

close to perfect with values of 1 at the initial time and then decreases with the forecast lead 

time. No difference is observed in the NH for the geopotential height at 500 hPa (Fig 5c) as 

well as other variables (not shown). The PAC score is slightly degraded in EnKF for the SH. 

The degradation is not always significant but can be found at not only 500-hPa (Fig. d) and 

1000-hPa geopotential height but also at the wind fields at 10 m, 850 hPa and 250 hPa levels 

and low-level temperature at 2 m and 850 hPa (not shown).      
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Fig. 6a shows the RMSE of 850 hPa zonal wind over tropical region. RMSE is 

significantly smaller in EnKF from day 1 to 3 than in ETR and the scores become similar 

beyond day 4. The spread in both EnKF and ETR is generally much smaller than RMSE, but 

large overdispersion is seen in ETR at the initial time which decays rapidly. In ETR, initial 

perturbation amplitude for all vertical layers is rescaled with a factor based on a 500 hPa kinetic 

energy regional mask. An ad-hoc tuning with an inflation factor is applied to obtain sufficient 

ensemble dispersion in low levels. This tuning strategy leads to over dispersion in low levels in 

the tropics, which decays rapidly with integration. This tuning will not be employed in a future 

implementation. 

Fig. 6b shows that PAC for 850 hPa zonal wind over the tropics is very similar in these 

two experiments. No significant difference is found for other variables in the tropics (not 

shown). 

For other variables in the tropics, no significant difference is found between EnKF and 

ETR except some suggestions that EnKF is more skillful from day 1-3 for the horizontal wind 

components (not shown). The ensemble spread in both ETR and EnKF is much smaller than the 

ensemble mean forecast error for all variables.  
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b) Ensemble probabilistic forecasts  

CRPS is computed with a reference forecast based on the climatological distribution. The 

maximum value is one, associated with a perfect forecast while zero value indicates that the 

forecast is no better than climatology, the reference forecast. For 500 hPa geopotential height, 

EnKF CRPS is significantly smaller over NH than ETR in the first two days but becomes larger 

in longer lead time (Fig. 7a). For other variables in the NH the performance of EnKF is better 

than ETR at all lead times while CRPS is generally significantly higher in the first week (not 

shown). On contrast, there is no difference seen in other parameters for the SH except 

geopotential height at 500 hPa (Fig. 7b) and 1000 hPa in a short time range (not shown). For the 

tropics, EnKF performs better in the first 2-3 days and the improvement is statistically significant, 

but the scores generally become similar for longer lead times (Fig.6c). 

Better performance of EnKF in probability forecasts is consistent with the results in 

spectrum analysis in Fig. 3. The flat spectrum in EnKF indicates a better estimate of analysis 

error variance than ETR, which could result to a higher score in probability ensemble forecast.   

5. Experiments with model errors 

The results in previous section show that the spread growth in both ETR and EnKF is not 

as fast as the growth of forecast error. Under-dispersion is quite common in both ETR and EnKF 

in long lead times. Large initial spread in EnKF does not generate enough spread in the medium-

range forecast. In this section, the STTP model perturbation scheme that is used in the current 

operational GEFS is included for the 2012 summer experiments. 

a) Ensemble mean and spread 
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The performance of EnKF and ETR for 2012 summer is similar with that for 2011 summer 

in terms of the RMSE of 500-hPa geopotential height. ETR is found to be superior to EnKF in 

the short-range forecast but similar for longer lead times. STTP adds spread for both ETR and 

EnKF configurations. EnKF ensemble spread remains larger than that of ETR with slightly 

over-dispersive spread in the first four days.  

Given that STTP is well tuned for ETR in GEFS, the relationship between the ensemble 

spread and RMS error is close to perfect for the ETR experiment (Fig. 8a and Fig. 8b). For EnKF, 

STTP increases the ensemble spread which is already overdispersive. It is not only seen in 

geopotential height, but also in the horizontal wind components at different vertical levels (not 

shown). As a result, the EnKF ensemble mean forecast is less skillful than that of ETR. The 

RMSE of ensemble mean is greater in EnKF than in ETR in all lead times. The differences 

between these two experiments pass bootstrap test at 95% significant level from forecast day 1 to 

day 8.  

Note that there is a sudden decrease of ensemble spread at day 8 (Fig. 8) as a result of the 

change of model resolution from T254 to T190 for computational efficiency. The discontinuity 

of the ensemble spread is due to this spatial truncation. This does not affect RMSE since the 

ensemble mean produce smooth fields where small-scale features are absent.  

Consistent with RMSE, the difference of PAC between ETR and EnKF becomes more 

evident than in the experiments without STTP. Fig. 8a shows that the PAC of 500 hPa 

geopotential height becomes slightly greater with lead time over NH in ETR than in EnKF. 

Similar phenomenon can also found in geopotential height at 1000 hPa and the wind fields at 

different vertical levels (not shown). The better performance of ETR is more evident in the SH. 
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The PAC of 500 hPa geopotential height is significantly greater in ETR expect the forecast 

beyond day 14 (Fig. 8b). The advantage of ETR is also found in other verified variables except 

in 2m temperature. In the tropics, ETR and EnKF perform similarly (not shown).  

In tropics, STTP does not increase the ensemble spread significantly except for geopotential 

height (not shown). A group of sensitivity experiments is performed and the results show that 

overdispersion in geopetential height results from the perturbed surface pressure (not shown). 

The performance of ETR and EnKF in 2012 summer over in the tropical region is similar with 

2011 summer. The RMSE in these two experiments is similar (Fig. 9a), with the exception of the 

degradation of the RMSE in ETR for the low-level temperature and horizontal wind components 

in short-range forecasts (not shown). As discussed previously, the degradation of ETR is a result 

of the ad-hoc low-level inflation.  

b)  Ensemble probabilistic forecasts  

The CRPS scores in ETR and EnKF for 500 hPa geopotential height over NH are similar 

(Fig. 10). EnKF outperforms in low levels for the first week, including 1000hPa geopotential 

height, temperature and wind fields near the surface and at 850 hPa. The advantage of EnKF is 

also found for wind probability forecasts in the tropics although the difference in CRPS is small 

(Fig. 8c). The results are opposite in the SH. The CRPS values in ETR are greater than in EnKF. 

The skill in ETR is generally significantly higher before day 8.  

 

6. Tropical cyclone track forecast 

The ensemble-mean forecast of TC track over the Western and Eastern North Pacific and 

North Atlantic is verified for two TC seasons (Fig. 11). For summer 2011, the impact of the TC 
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relocation scheme on TC track forecast is examined for the EnKF experiment, in which the TCs 

in each ensemble member are relocated to the observed centers. The ensemble spread at the 

initial time is larger in EnKF without TC relocation, but its growth rate is smaller than in ETR. 

The spread of the ensemble forecast in EnKF become similar with those in ETR after 72 hrs. 

The EnKF ensemble mean forecast exhibits larger forecast errors than ETR at  all forecast time, 

with the differences being significant at 12 hr, 48 hr, and 120 hr  

The degradation of storm track forecast in EnKF is considered as a result of the absence 

of TC relocation. When the EnKF 6hr-forecast perturbations are centered on analysis without 

specific procedure for tropical cyclones, tropical cyclones in ensemble members are probably not 

perturbed appropriately if the tropical cyclone center of the EnKF 6hr ensemble mean deviate 

from that in the control.  In addition, Fig. 11 shows that the initial ensemble mean TC location 

has larger deviation without relocation. The initial track error and spread decreases after the TC 

relocation procedure is performed.  The skills of TC track forecast are comparable with those in 

ETR and the track forecast errors decrease. 

 For 2012 summer, The TC relocation scheme is performed in both EnKF and ETR. There is 

no significant difference in the ensemble mean TC track forecast error. Different from 2011 

summer, the track spread is comparable with track errors. A common feature for these two 

seasons is that the growth rate of track spread in EnKF with TC relocation is slightly greater 

than in ETR. 

7. Summary and discussion 

Two initialization schemes available to generate initial ensemble perturbations for the 

global ensemble forecast system (GEFS) in the NCEP operational environment are compared. 

The current operational GEFS uses the ensemble transform technique (ET) to generate initial 
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perturbations, which is an improved version of the breeding-vector technique (BV-ETR) 

implemented since 2005. An EnKF was implemented into the NCEP data assimilation system in 

2012. The EnKF short-range ensemble forecasts provide flow-dependent ensemble covariances 

for the data assimilation system. A question that arose from the implementation of EnKF is 

whether the ensemble perturbations generated by EnKF can replace ETR to generate the initial 

ensemble for the global medium-range ensemble forecasts. The main purpose of this study is to 

perform a comprehensive comparison between these two initialization schemes.  

Forecast errors not only come from initial conditions but also from model uncertainties.  

STTP is one of the important components in GEFS, which generates perturbations for model 

variable tendency to simulate the uncertainty existing in the model formulations. The 

initialization schemes are compared with and without STTP.  

The comprehensive comparison shows that EnKF is comparable with ETR without STTP 

except that the ensemble mean forecast is slightly degraded in the SH. The EnKF performs 

better in terms of CRPS and ensemble-mean RMSE in the first week for some variables. Over 

dispersive ensemble spread is found in EnKF for the first several days, which leads to some 

degradation in the EnKF. Although the amplitude of initial perturbations in EnKF is much 

larger than ETR especially in the SH, the spread growth is slower than the growth of forecast 

error. Under-dispersion is common in both ETR and EnKF for longer lead times. 

EnKF remains superior to ETR in the NH with STTP in terms of CRPS, similar to the 

group of experiments without STTP. Nevertheless, the application of STTP increases ensemble 

spread considerably in the SH, which results in significant degradation not only for the 

ensemble mean forecast but also for CRPS.  In the tropics, CRPS becomes significantly higher 

in EnKF than ETR. 
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Tropical cyclone track errors are verified for two summer seasons.  Inclusion of a tropical 

cyclone relocation scheme is beneficial to improving ensemble-mean track forecasts for EnKF. 

With the application of the tropical cyclone relocation scheme in both ETR and EnKF, tropical 

cyclone track forecasts are found to be similar. 

STTP used in the current operational GEFS is tuned well with ETR, which not only improve 

the spread-error relationship but also improve the ensemble forecast skills for ETR.  However, 

including STTP is beneficial for EnKF. Consistent with the nature of these two schemes, the 

amplitude of the initial perturbations is generally smaller in ETR than EnKF. The inclusion of 

STTP in EnKF results in overdispersive ensemble spread thus degrades the performance of 

EnKF. On the other hand, the forecast ensemble initialized by EnKF perturbations cannot 

generate sufficient ensemble spread in the medium- range forecasts without model perturbations. 

Given that the performances of EnKF with and without STTP are not as good as the current 

operation GEFS, one solution is to rescale the EnKF perturbation size for GEFS. A set of 

experiments was performed and presented in a separated paper (Ma et al. 2014). Another 

solution is to reduce EnKF perturbation size in hybrid data assimilation cycles with the 

precondition of no negative impact on data assimilation. It is worth noting that EnKF in the next 

implementation will reduce additive perturbations significantly and add stochastic physics in 

model. The stochastic representation is made up of three components; 1) stochastic kinetic-

energy backscatter (SKEB), 2) perturbed boundary-layer humidity (SHUM) and 3) stochastically 

perturbed physics tendencies (SPPT).   The performance of the GEFS by using the updated 

EnKF perturbations will be discussed in another paper.  The impact of replacing the current 

STTP with a combination of these three stochastic schemes in GEFS is also under assessment. 

EnKF background (prior) ensemble instead of posterior ensemble is used as the initial 
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perturbations in the EnKF experiments. The former represents the uncertainties of the 

background in forecast environment instead of the analysis after assimilation. Better performance 

is expected when the posterior ensemble is used, but this is not practical in the current NCEP 

operational environment. The potential alternative to the current configuration is to move the 

EnKF to the GFS cycle or to run a separate EnKF as part of the early cycle with a reduced set of 

observations. However, the corresponding cost-benefit  analysis is required for practicality.  
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Figure titles 

Fig. 1 The vertical profiles of initial perturbation spread in terms of total dry energy in the ETR 

and EnKF experiments over a) NH, b) SH and c) Tropics.   Three EnKF profiles represent 

the spread of EnKF perturbations after multivariable inflation (blue curves), addition 

inflation (red) and 6-hr forecast (green). The profiles are averaged from 1 July – 17 Oct. 

2011. 

Fig. 2 Seasonally-averaged ensemble spread of initial kinetic energy at 500 hPa for a) ETR, b) 

EnKF and c) the difference for 2011 summer.   

Fig. 3 Seasonally averaged ensemble spread of 96-hr forecast kinetic energy at 500 hPa for a) 

ETR, b) EnKF and c) the difference for 2011 summer.   

Fig. 4 Seasonal mean spectra of eigenvalues of ensemble based initial spread of 500 hPa 

Geopotential Height for 2011 summer normalized by the global spread for ETR and EnKF 

Fig. 5 Ensemble mean rms error (solid) and ensemble standard deviation (dotted) for 500-hPa 

geopotential height over a) NH and b) SH. The verification scores for ETR (black) and 

EnKF (red) are averaged during the period from 1
st
 July 1 – 17 th October 2011. The 

lower panels show the difference of RMSE (EnKF minus ETR, black lines) and bootstrap 

significant test (green bars). The difference is significant at 95% confidence level when 

value is beyond the bar ranges. c) and d) as same as a) and b) except for ensemble mean 

predicted pattern anomaly correlations of Z500 

Fig. 6 a) Ensemble mean rms error and spread, b) ensemble mean pattern anomaly correlations 

averaged from 1
st
 July to 17

th
 Oct.  2011. 
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Fig. 7 Continuous ranked probability skill scores for (a) 500 hpa height over NH, (b) 500 hpa 

geopotential height over SH and 850 hPa horizontal wind u component over Tropics .  

Fig. 8 As same as Fig. 5 except for the experiments with STTP on (averaged from 1
st

 July to 30th 

Sep. 2012) 

Fig. 9 As same as Fig. 6 expect for the experiments with STTP averaged from 1
st
 July to 30

th
 Sep. 

2012. 

Fig. 10 As same as Fig. 7 except for the experiments with SSTP averaged from 1
st
 July -30 th 

Sep. 2012 

Fig. 11 Ensemble-mean tropical cyclone track error (solid) and spread (dashed line) for a) 2011 

and b) 2012 summer.  
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Fig. 1 The vertical profiles of initial perturbation spread in terms of total dry energy in the ETR 

and EnKF experiments over a) NH, b) SH and c) Tropics.   Three EnKF profiles represent 

the spread of EnKF perturbations after multiplicative inflation (green curves), addition 

inflation (red) and 6-hr forecast (blue). The profiles are averaged from 1 July – 17 Oct. 

2011. 

a) 

b) 

c) 
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Fig. 2 Seasonally-averaged ensemble spread of initial kinetic energy at 500 hPa for a) ETR, b) 

EnKF and c) the difference for 2011 summer 

 

a) 

b) 

c) 
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Fig. 3 Seasonally averaged ensemble spread of 96-hr forecast kinetic energy at 500 hPa for a) 

ETR, b) EnKF and c) the difference for 2011 summer.   
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Fig. 4 Seasonal mean spectra of eigenvalues of ensemble based initial spread of 500 hPa 

Geopotential Height for 2011 summer normalized by the global spread for ETR and EnKF 

  



 

35 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Ensemble mean rms error (solid) and ensemble standard deviation (dotted) for 500-hPa 

geopotential height over a) NH and b) SH. The verification scores for ETR (black) and 

EnKF (red) are averaged during the period from 1
st
 July 1 – 17 th October 2011. The 

lower panels show the difference of RMSE (EnKF minus ETR, black lines) and bootstrap 

significant test (green bars). The difference is significant at 95% confidence level when 

value is beyond the bar ranges. c) and d) as same as a) and b) except for ensemble mean 

predicted pattern anomaly correlations of Z500. 
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Fig. 6 a) Ensemble mean rms errors and spread, b) ensemble mean pattern anomaly correlations 

and c) continuous ranked probability skill scores for 850 hPa horizontal wind u component 

over Tropics averaged from 1
st
 July to 17

th
 Oct.  2011. 
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Fig. 7 Continuous ranked probability skill scores for 500 hpa height over (a) NH and (b) SH. 
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Fig. 8 As same as Fig. 5 except for the experiments with STTP averaged from 1
st

 July to 30th 

Sep. 2012. 
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Fig. 9 As same as Fig. 6 expect for the experiments with STTP averaged from 1st
 July to 30

th
 Sep. 

2012.  
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Fig. 10 As same as Fig. 7 except for 1
st
 July -30 th Sep. 2012 
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Fig. 11 Ensemble mean tropical cyclone track errors (solid) and spread (dashed line) for a) 2011 

and b) 2012 summer.  

 

a) b) 

Case No.232    218   187     171   150              119                89                66 

 
Case No. 206  186  171    155     141            111               85                63 

 

 


