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ABSTRACT

The ensemble transform with rescaling (ETR) method has been used to produce fast-growing components

of analysis error in theNCEPGlobal Ensemble Forecast System (GEFS). The rescalingmask contained in the

ETR method constrains the amplitude of perturbations to reflect regional variations of analysis error.

However, because of a lack of suitable three-dimensional (3D) analysis error estimation, in the operational

GEFS the mask is based on the estimated analysis error at 500 hPa and is not flow dependent but changes

monthly. With the availability of an ensemble-based data assimilation system at NCEP, a 3D mask can be

computed. This study generates initial perturbations by the ensemble transformwith 3D rescaling (ET_3DR)

and compares the performance with the ETR. Meanwhile, the ET_3DR is also applied within the ensemble

Kalman filter (EnKF) method (hereafter EnKF_3DR).

Results from a set of experiments indicate that the 3Dmask suppresses perturbations less in unstable regions.

Relative to the ETR, the large amplitudes of the ET_3DR initial perturbations at 500hPa better reflect areas of

baroclinic instability over the extratropics and deep convection over the tropics. Furthermore, the maxima of

the vertical distribution for the ET_3DR initial perturbations correspond to the heights of the subtropical

westerly and tropical easterly jet regions. Such perturbations produce faster spread growths. Results with

EnKF_3DRalso showbenefits fromanorthonormalizationby the ensemble transform algorithmand amplitude

constraint by the 3D mask rescaling. Thus, the EnKF_3DR forecasts outperform the EnKF.

1. Introduction

Ensemble generation methods seek to create a set of

initial perturbations representative of analysis errors in

a numerical weather prediction system, with the goal

to improve its probabilistic forecast performance. The

analysis errors can be decomposed into nongrowing and

growingmodes (Toth andKalnay 1997). The nongrowing

error modes, mainly stemming from observational errors,

have a large dimensional subspace, and cannot be sam-

pled well with a limited number of ensemble members;

thus, these error modes will typically lose their amplitude

rapidly. The growing errors, dynamically generated from

the short-range forecast in the analysis cycle by the use of

initial conditions with errors and an imperfect model,

amplify quickly and will eventually dominate the forecast

error. Therefore, the success of an ensemble generation

method lies in how well its perturbations sample the re-

gions with the fastest-growing errors in the analysis.

The breeding vector (BV) method (Toth and Kalnay

1993, 1997) creates perturbations that grow rapidly by

inserting rescaled errors from previous cycles. After

several cycles, the growing component amplifies, and the

nongrowing component is eliminated. However, the BV

method alone is insufficient to systematically capture all

initial uncertainties (Annan 2004; Buizza et al. 2005).
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Therefore, an improved version of the BV, the ensemble

transform (ET)method has been introduced to generate

initial perturbations that are globally transformed from

the forecast perturbations (Bishop and Toth 1999; Wei

et al. 2008). As with the BV method, the ET also gen-

erates a flow-dependent error covariance spatial struc-

ture and can represent fast-growing components of

analysis errors with minimal computer expense. The ad-

vantages of the ET are that the perturbations have the

maximum number of effective degrees of freedom and

aremore consistent with the data assimilation system due

to their orthogonalization in the inverse analysis error

variance norm (Wei et al. 2008); more importantly ET

outperforms BV in standard probabilistic skill scores.

In fact, there are some shortcomings in the ET initial-

ization. Although the ET perturbations are globally de-

pendent on the analysis error variance during the

transformation, the distribution of the initial spread can

be regionally inconsistent with the analysis error variance

due to the limited ensemble size compared with the state

dimension (McLay et al. 2008; Wei et al. 2008). McLay

et al. (2010) performed the local ET by partitioning the

global domain into latitude bands or latitude–longitude

blocks, resulting in better agreement with the analysis

error variance and improved ensemble performance.

In addition, the ET perturbations should project into

fast-growing modes, but the distribution of the fast-

growing modes is not the same as the analysis un-

certainties, due to unevenly distributed observations and

model errors. Therefore, the energy of the initial pertur-

bations needs to be redistributed. At theNational Centers

for Environmental Prediction (NCEP), a regional rescal-

ing process is imposed onto the ET initialization period-

ically to suppress high-amplitude perturbations in areas

FIG. 1. The regional rescaling (a) 2Dmask and (b) 3Dmask at the 500-hPa level as the average

for the period 1 Sep–30 Nov 2012. The contour interval is 0.2m s21.
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where the analysis uncertainties are relatively low. This

regional rescaling improves both the distributional spread

of initial perturbations and most probabilistic scores with

respect to the ET without rescaling (Wei et al. 2008).

Magnusson et al. (2009) compared the ensemble trans-

form with rescaling (ETR) and singular vector (SV)

methods within the same model and data assimilation

system. The results indicated that ETR had more advan-

tages than SV. Wei et al. (2008) compared the ETR and

ensemble transform Kalman filter (ETKF) methods and

showed that ETR performed better than ETKF for most

skill scores. Further, X. Zhou et al. (2014, unpublished

manuscript) showed that the ensemble Kalman filter

(EnKF) outperformed ETR in terms of the continuous

ranked probability skill score over the Northern Hemi-

sphere whereas the ensemble mean forecast is more

skillful in ETR.

The regional rescaling factor is designed as the ratio

of the mask and the square root of a special norm of

analysis perturbations at each grid point. The choice of

mask is the key to the regional rescaling. In the NCEP

operational scheme, the mask is calculated using a long-

term-averaged root-mean-square of analysis error vari-

ance in the kinetic energy norm at the 500-hPa level

obtained from the variational data assimilation system

(Szunyogh and Toth 2002; Wei et al. 2008). However,

the current mask does not adequately represent analysis

uncertainties for use in the context of the ensemble

forecast system. First and foremost, the two-dimensional

(2D) mask cannot represent the vertical structure of

analysis uncertainties. To compensate for the resultant

underestimate of analysis error, empirically derived ad-

ditional inflation factors have to be applied to the mask

for levels below 500hPa. This is obviously suboptimal for

application of regional rescaling. Second, the mask was

computed from a decade’s worth of past climatological

data, during which the density and accuracy of observa-

tions, as well as the data assimilation technology itself,

have greatly changed. Thus, there is a need to update the

mask with new estimates of analysis errors based on

the current real-time data assimilation system to make

the initial perturbations more consistent with the obser-

vations and the data assimilation system.Wei et al. (2008)

found that, due to the mask, the ETR failed to show

high spread in the Southern Ocean storm-track area in

comparison to the ET method, which indicated a more

accurate time-dependent mask was necessary. Third, the

total energy norm may be a more reasonable measure of

the magnitude of initial perturbations than the kinetic

energy norm. Palmer et al. (1998) found that total energy

is more consistent with analysis error statistics than the

streamfunction, enstrophy, or kinetic energy metrics.

Some previous studies have designed different masks to

address some of these issues. Wang and Bishop (2003)

chose the square root of the seasonally and vertically

averaged initial wind variance across the ETKF ensemble

as the mask applied in the BV method. Magnusson et al.

(2009) designed a vertically integrated estimation of

analysis errors using the total energy norm from four-

dimensional variational data assimilation (4D-Var) sys-

tem as themask. In this paper, a newmask will be defined

by 3D analysis uncertainty measured by the total energy

norm obtained from the 80-member ensemble analysis

generated by the NCEP’s hybrid 3D-Var/EnKF system

(Wang et al. 2013). The sensitivity of ETR perturbations

and forecast skill to the mask in the NCEP Global En-

semble Forecast System (GEFS) will be explored.

Relative to a variational data assimilation method

with static background error, ensemble-based data as-

similation provides the additional ability to provide

flow-dependent estimates of the background error.

Moreover, ensemble-based data assimilation generates

an initial analysis for an ensemble of predictions in the

next cycle and provides an estimate of the analysis error,

which unifies the ensemble forecast and data assimila-

tion steps. Consequently, many numerical weather pre-

diction (NWP) centers are adopting the use of ensemble

technology, including the Meteorological Service of

Canada (MSC; Buehner et al. 2010a,b) and the European

FIG. 2. The global average vertical distribution of the 2Dmask and

3D mask for the period 1 Sep–30 Nov 2012.
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FIG. 3. The vertical profile of the square root of total energy (m s21) of perturbations at

(a) the initial time, (b) 12-h, (c) 48-h, and (d) 96-h forecast time for the ETR (red) and ET_3DR

(black) experiments as an average for the period 11 Sep–30 Nov 2012: (left) NH, (middle) SH,

and (right) TR.
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Centre for Medium-Range Weather Forecasts (ECMWF;

Buizza et al. 2008, 2010). A hybrid 3D-Var/EnKF data

assimilation system became operational on 22May 2012 at

NCEP (Wang et al. 2013). In this system, the background

error is created by a combination of static background

error from the 3D-Var system and flow-dependent

background error produced from the EnKF. Further-

more, EnKF perturbations are recentered within the

hybrid analysis. The hybrid 3D-Var/EnKF has pro-

vided better analyses and forecasts than the previous

operational 3D-Var system (see http://www.emc.ncep.

noaa.gov/GFS/impl.php).

The availability of the EnKF in the NCEP Global

Data Assimilation System (GDAS) provides an

alternative ensemble initial condition set for the op-

erational GEFS. The performances of the EnKF and

ETR perturbations in the NCEP operational envi-

ronment are compared in X. Zhou et al. (2014, un-

published manuscript). It is found that the amplitude

of initial perturbations is larger in EnKF than in ETR

especially over the Southern Hemisphere, which

leads to overdispersive ensemble spread and larger

root-mean-square error (RMSE) of ensemble mean.

Since the ETR method is able to maximize the ef-

fective degrees of perturbation freedom and con-

strain the amplitude of initial perturbations to vary in

accordance with regional variations of analysis un-

certainties without an undue burden on computer

FIG. 4. The square root of total energy (m s21) of initial perturbations for the (a) ETR and

(b) ETR experiments at the 500-hPa level as an average for the period 11 Sep–30 Nov 2012.
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resources, applying the ETR across other analysis

ensembles (e.g., multicenter analyses, or analysis

from ensemble-based data assimilation) may have

a positive impact on the quality of initial conditions.

In this study, the EnKF initial perturbations will be

transformed and rescaled by the ensemble transform

with 3D rescaling (ET_3DR) method and the impact

will be explored.

In the next section, the methodology of ET_3DR and

the ensemble transformwith 3D rescaling applied within

the ensemble Kalman filter (EnKF_3DR) are described.

Section 3 investigates the horizontal and vertical

FIG. 5. The correlation coefficients between the Eady index and the square root of total energy of initial perturbations that are sta-

tistically significant at the 95% confidence interval for 500-hPa level over the period 11 Sep–30 Nov 2012 for the ETR experiments in the

(a) NH and (c) SH; and the ET_3DR experiments in the (b) NH and (d) SH.
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distributions of perturbations generated by the ETR and

ET_3DR, and compares their forecast performances. In

section 4, the characteristics of perturbations generated

by the EnKF and EnKF_3DR are analyzed, and the

methods’ forecast skills are compared. The conclusions

are summarized in section 5.

2. Initialization methodologies and experimental
design

a. Initialization methodologies

1) THE ET_3DR METHOD

In the ETR scheme (Wei et al. 2006, 2008), the anal-

ysis perturbations matrix Xa is generated from the

forecast perturbations matrix Xf through an ensemble

transformation matrix T as follows:

Xa5XfT , (1)

where n analysis perturbations x0ai (i 5 1, 2, . . . , n)

are listed as columns in the matrix Xa, and n forecast

perturbations x0fi (i 5 1, 2, . . . , n) are listed as columns

in the matrix Xf . After the transformation, all pertur-

bations are orthogonal. As shown in Wei et al. (2008)

and Ma et al. (2012), the transformation matrix T is

given by

T5CG21/2 , (2)

where columns of the matrix C contain the ortho-

normal eigenvectors (ci, i5 1, 2, . . . , n) of the matrix[1/

(n2 1)] (Xf )T(Pa)21Xf , and the diagonal matrix G con-

tains the corresponding eigenvalues (li, i5 1, 2, . . . , n), in

which the first n2 1 eigenvalues are nonzero and the last

eigenvalue is zero. A diagonal matrix Ғ is defined by set-

ting the zero eigenvalue in G to a nonzero constant a. The

diagonal matrix Pa contains the analysis error variances.

Then, a simplex transformation (Wang et al. 2004) withCT

is performed on all analysis perturbations to center them

on the analysis as indicated byEq. (13) ofWei et al. (2008),

but perturbations become quasi orthogonal at this step.

To make the amplitude of initial perturbations vary in

accordance with regional changes of analysis un-

certainties,Xa is rescaled using a rescaling factor g that is

designed as

g5

8><
>:

mask

pertb
, if mask, pertb

1, if mask$ pertb

. (3)

Here, mask denotes a long-term-averaged root-mean-

square of analysis error variance; pertb is the square root of

a special norm from Xa at each grid point. If the ratio is

larger than 1.0, the rescaling factor will be set to 1.0, which

means the perturbations can grow freely; otherwise, the

amplitude will be rescaled to the size of the mask. In other

words, the mask only suppresses the amplitude of pertur-

bations in areas where the analysis uncertainties are rela-

tively low, and not locally increases the amplitude.

The mask used in the current NCEP operational

GEFS is a 2D mask, which is computed from a long-

term-averaged root-mean-square of analysis error vari-

ance in the kinetic energy norm at the 500-hPa level

obtained from a variational data assimilation system

(Szunyogh and Toth 2002; Wei et al. 2008).

As discussed in section 1, an ensemble of analyses

can be obtained from the NCEP operational hybrid

3D-Var/EnKF data assimilation system directly, which

can provide a flow-dependent estimate of analysis error.

In this study, the 3D mask is defined by the root-mean-

square of the deviation total energy normTE (Magnusson

et al. 2009) computed from 80-member EnKF analysis:

TE5
1

80
�
80

i51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
(u02i 1 y02i 1 kT 02

i )

r
, (4)

where u0i, y
0
i, and T 0

i (i 5 1, 2, . . . , 80) are the deviations

corresponding to the ith EnKF member for the wind

components and temperature. The quantity k5 cp/Tr

equals approximately 4:0 J kg21 K22
, in which cp is the

special heat at constant pressure and Tr is the reference

temperature. For the purpose of representing typical

FIG. 6. The average OLR at the 500-hPa level over the period 11 Sep–30 Nov 2012. The contour interval is 20Wm22.
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large-scale components in reference to most recent

available set of analysis uncertainties, the decaying av-

erage method (Cui et al. 2012) is employed to accumu-

late the mask, given by

TEave(t)5 (12w) TEave(t2 1)1wTE(t) . (5)

Here, the averaged mask TEave(t) is updated by the

prior-period-averaged mask TEave(t2 1) and the most

recent TE(t) with the weight coefficient w. Sensitivity

tests with different w (1%, 2%, and 5%, respectively)

(not shown) indicate that the ensemble performance is

not sensitive to the weight. The 2%weight is used in this

study. To preserve most of the dynamical balance in the

perturbations, the mask is smoothed horizontally with

the Laguerre filter (King and Paraskevopoulos 1977),

which is a smoothing filter based onLaguerre polynomials.

The smoothing is controlled by a scaling parameter which

FIG. 7. The zonal average of the square root of total energy (m s21) of initial perturbations for

the (a) ETR and (b) ET_3DR experiments as an average for the period 11 Sep–30 Nov 2012.
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is proportional to the characteristic scale of the filter. In

this study,p/40 is chosen as the scaling parameter based on

several experiments.

Figures 1a,b show the horizontal distribution of

the 2D and 3D masks at 500 hPa over the period 1

September–30 November 2012. The 2D mask obtained

from static analysis error estimation has large amplitude

over the poorly observed oceans and small amplitude

over the data-rich continents. The analysis error should

be not only associated with the observational network

but also the distribution of the atmospheric instability

(Hamill et al. 2003). The 3D mask is more flow-

dependent relative to the 2D mask. For example, over

the northern and southern extratropics, the 3D mask

has areas of maximum amplitude around 608N and 608S,
corresponding to main regions of baroclinic energy

conversions, but the maximum areas are over the poles

in the 2Dmask. This result may solve an existing problem

in which the old method of rescaling cannot reduce

the amplitudes enough at higher latitudes (Toth and

Kalnay 1997). Another striking difference is located in

the tropics, which will be discussed in the next section.

Figure 2 shows the global average vertical distribution of

the 2D and 3D masks over the same period as in Fig. 1.

In the 3D mask, the amplitude increases with altitude,

and then decreases after reaching a maximum between

300 and 100 hPa. This vertical structure cannot be rep-

resented with the 2D mask.

2) THE ENKF_3DR METHOD

The following steps are performed to initialize the en-

semble with the EnKF_3DR method. First, the EnKF

method (Whitaker and Hamill 2002) is used to generate

an ensemble analysis. In this study, the 80-member 6-h

EnKF forecasts from the previous cycle obtained from the

NCEP hybrid 3D-Var/EnKF data assimilation system are

used as the EnKF initial conditions, because operationally

the EnKF analyses valid for this cycle will not have been

FIG. 8. The ensemble mean RMSE (solid) and ensemble spread (dashed) for (a) U250, (b) Z500, (c) U850, and (d) T850 over the NH for

the period 11 Sep–30 Nov 2012. The vertical bars represent the [0.025, 0.975] confidence interval from a paired block bootstrap.

NOVEMBER 2014 MA ET AL . 4061



generated yet. Next, the 80-member ensemble set of de-

viations and their mean are generated. Finally, the

ET_3DR method as described in section 2a(1) is applied

onto the 80 EnKF perturbations to generate 80

EnKF_3DR perturbations.

b. Experimental design

Four sets of ensemble generation experiments (ETR,

ET_3DR, EnKF, and EnKF_3DR) are performed us-

ing the NCEP Global Forecast System (GFS) model

with a T254 horizontal resolution and 42 s–p hybrid

vertical levels. The analysis is truncated from the

T574L64 analysis provided by the NCEP GDAS. The

ETR initial conditions are obtained from the opera-

tional GEFS. The EnKF initial conditions are 6-h

forecasts from the previous cycle obtained from the

operational hybrid 3D-Var/EnKF data assimilation

system, again because in the operation the EnKF analy-

ses valid for this cycle have not been generated yet. The

methods used to generate the ET_3DR and EnKF_3DR

ensemble initial perturbations are described in section 2a.

The perturbations are updated every 6 h for the 80

members and only 20 members are chosen for medium-

range forecasts due to limited computational resources.

The simplex transformation is imposed on these 20 per-

turbations again to ensure they are centered around the

analysis. The ET_3DR initial perturbation cycles are

performed from 1 September to 30 November 2012 and

the first 10 days are used for the system to spin up. The

8-day-long forecasts of the four sets experiments are pro-

duced once per day (0000 UTC) between 11 September

and 30 November 2012 (81 cases). To represent model

error, all experiments use the stochastic total tendency

perturbation (STTP; Hou et al. 2006, 2008) as in the

NCEP operational GEFS. Verification results are pre-

sented for 50- and 500-hPa geopotential height (Z50 and

Z500); 850-hPa temperature (T850); and the 250-hPa,

850-hPa, and 10-mu components ofwind (U250,U850, and

U10m) over the extratropics of the Northern Hemisphere

(NH; 208–808N), the extratropics of the Southern Hemi-

sphere (SH; 208–808S), and the tropics (TR; 208S–208N).

3. ETR versus ET_3DR

a. Initial perturbation distribution

Figure 3 shows the vertical profile of the square root of

the total energy of perturbations at different lead times

for the ETR and ET_3DR experiments. Over the NH,

the ETR has larger initial amplitude compared to the

ET_3DR at the lower levels and a maximum also exists

for ETR initial perturbations at 250 hPa, which is slightly

smaller than in the ET_3DR (left panel of Fig. 3a). The

left panels of Figs. 3b–d show that the ET_3DR grows

faster than the ETR. After 12 h, the amplitude of

ET_3DRperturbations is close to that of the ETRbelow

700 hPa, and the difference becomes larger with time

above 700 hPa. After 48 h, the perturbations of the

ET_3DR are larger than the ETR for all levels. Over the

SH (middle panels of Figs. 3a–d), the results are similar

to those in the NH. The growth rate over the TR (right

panels of Figs. 3a–d) is lower than that over the NH and

SH. At the upper levels, the maximum of the ETR

(ET_3DR) initial perturbations is at 200 hPa (100 hPa)

and their growth rates are comparable. At the lower

levels, the amplitude of the initial perturbations is much

larger than for the ET_3DR, but their amplitudes be-

come similar by 96 h. The fast growth of the ET_3DR

perturbations is probably because the 3D mask calcu-

lated from theEnKF analysis allows the perturbations to

grow more in unstable regions than the 2D mask. To

FIG. 9. The ensemble mean RMSE (solid) and ensemble spread

(dashed) for (a) U850 and (b) U10m over the TR for the period

11 Sep–30 Nov 2012. The vertical bars represent the [0.025, 0.975]

confidence interval from a paired block bootstrap.
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further illustrate the details of the initial perturbations, the

horizontal and vertical distributionswill be analyzed below.

Figure 4 shows the horizontal distribution of the square

root of total energy of initial perturbations on the 500-hPa

level for the two experiments. It is found that the distri-

butions of initial perturbations for the ETR and ET_3DR

experiments are similar to their respectivemasks as shown

in Fig. 1, which indicates that the regional rescaling masks

have great impact on the resulting initial perturbations.

To investigate the connection between the initial

perturbations and baroclinic instability, the correlation

coefficients between the Eady index and the square root

of total energy of initial perturbations over the NH and

SH for both experiments are shown in Fig. 5 (shading

indicates correlations that are statistically significant at

the 95% confidence interval). The Eady index, which is

a simple measure of the most unstable baroclinic mode

in a continuously stratified atmosphere, is defined as

(Hoskins and Valdes 1990)

sE5 0:31
f

N

du

dz
, (6)

where f is the Coriolis parameter, N is the static sta-

bility, and u is the magnitude of the vector wind. Here,

N5 (gd lnu/dz)1/2 and du/dz are computed using the

300- and 1000-hPa potential temperature and wind from

the NCEP Final Analyses. Over the NH (Figs. 5a,b), the

areas of initial perturbations for the ET_3DR which are

statistically significantly correlated with the Eady index

are larger than the ones for the ETR. Notably, the cor-

relation coefficients are higher than 0.6 and even up to

0.8 over the western part of the Pacific Ocean and the

Atlantic Ocean in the ET_3DR experiment. Over the SH

(Figs. 5c,d), the correlations in the two experiments are

low compared to those over the NH. These results agree

well with Magnusson et al. (2009).

Over the TR, deep convection has an important role in

the development of perturbations through the release of

FIG. 10. The CRPS for (a) U250, (b) Z500, (c) U850, and (d) T850 over the NH for the period 11 Sep–30 Nov 2012. The vertical bars

represent the [0.025, 0.975] confidence interval from a paired block bootstrap.
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latent heating. To illustrate the relationship between the

initial perturbations and deep convection, the outgoing

longwave radiation (OLR), a common surrogate for the

intensity of tropical convection, is plotted in Fig. 6. Low

values of OLR represent intense tropical convection. For

the ET_3DR (Figs. 4b and 6), the locations of the maxima

of initial perturbations accurately coincide with zones of

intense deep convection (low OLR) except for the maxi-

mum over the eastern Pacific Ocean. This connection

cannot be detected at all in the ETR experiment (Figs. 4a

and 6). These flow-dependent ET_3DR initial perturba-

tions will be beneficial for obtaining a sufficiently dis-

persed ensemble for use in medium-range forecasting.

Figure 7 shows the zonal average of the square root

of total energy of initial perturbations. The distri-

butions agree well with the respective masks for the

ETR and ET_3DR experiments. Since the 2D mask

is vertically constant, the initial perturbations for

the ETR are of a barotropic nature (Fig. 7a). Below

the 200-hPa level, the minima of initial perturbations

in both hemispheres are around 608N and 408S,
respectively. Over the TR, there are two maxima at

108N, located at 300 and 950 hPa. Above the 200-hPa

level, the perturbations decrease with height around

the globe. For the ET_3DR (Fig. 7b), the large

amplitudes of initial perturbations correspond to the

locations of the atmospheric instability due to the

3D mask applied. The maxima are around 558N
and 558S at 300 hPa, which correspond with the sub-

tropical jet regions. Over the TR, the maximum occurs

around 108N at 100 hPa, near the tropical easterly jet

region.

b. Ensemble forecast skill

The verification methods used to evaluate the ensemble

forecast skills for the ETR and ET_3DR experiments in-

clude RMSE of the ensemble mean and the continuous

ranked probability score (CRPS; Hersbach 2000). The

paired block bootstrap algorithm is used to estimate the

statistical significance of differences in scores. More details

are available inHamill (1999). In this study, the [0.025, 0.975]

FIG. 11. The CRPS for (a) U850 and (b) U10m over the TR for

the period 11 Sep–30 Nov 2012. The vertical bars represent the

[0.025, 0.975] confidence interval from a paired block bootstrap.

FIG. 12. The vertical profile of the square root of total energy (m s21) of perturbations at the

initial time for the EnKF (red) and EnKF_3DR (black) experiments as an average for the

period 11 Sep–30 Nov 2012: (left to right) NH, SH, and TR.
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confidence interval is computed from a bootstrap re-

sampling from the 81 cases using 1000 random samples.

It is worth mentioning that the results of verification

against the analysis can be affected by the analysis un-

certainties. Especially, the analysis fields of winds in the

tropics have large uncertainties due to a lack of reliable

observations and because the forecast model is unable to

capture convective scale variability. However, we could

ignore this issue for long forecast lead time when the

analysis uncertainty is relatively smaller compared to

the forecast error itself.

1) RMSE AND ENSEMBLE SPREAD

Figures 8a–d show the ensemble mean RMSE and

ensemble spread for U250, Z500, U850, and T850 over

the NH. Comparing the RMSE of the ETR and ET_3DR

experiments, the results have no significant differences

for all lead times. Regarding the ensemble spread, there

are substantial differences between the two experiments.

For U250, the ET_3DR and ETR have the same size of

initial perturbations, but the ET_3DR spread grows

faster than that the ETR and maintains consistency with

FIG. 13. The mean eigenvalue spectra of the covariance matrix for the square root of total

energy (m s21) of perturbations at the initial time (black), after 48h (red), and 96 h (blue) for the

ETR (dashed) and ET_3DR (solid) experiments at the (a) 250-, (b) 500-, and (c) 850-hPa levels

during the period 11 Sep–30 Nov 2012 over the globe.
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the RMSE for all lead times just as a perfect ensemble

forecast system should (Fig. 8a). For the indirect model

variable Z500, Fig. 8b shows that the ET_3DR starts with

a larger spread and overestimates the ensemble mean er-

rors, but the amplitude of initial perturbations could be

tuned further to give a similar spread to the errors at the

initial time. For U850 and T850, the ET_3DR initial per-

turbations are much smaller than the ETR, but after 24h

this discrepancy is reduced and the spread approaches the

RMSEgradually (Figs. 8c,d). Over the SH (not shown), the

results are similar to those for theNH.Additionally, at Z50

(not shown) the two methods’ ensemble mean RMSEs

are close to each other and the ensemble spread for the

ET_3DR is larger than that for the ETR, but these

measures grow in parallel. Because the amount of ob-

servations in the stratosphere is overwhelmingly less

than in the troposphere, the analysis depends more on

the forecast. For short lead times, the ET_3DR pro-

duces much larger spread than the RMSE. With

increasing forecast length, the spread and RMSE be-

come close. But the spread for the ETR is much smaller

than its RMSE.

Figures 9a,b show the RMSE and spread for U850

and U10m since the wind field is of more interest than

the mass field over the TR. The ETR starts from a

much larger spread than the ET_3DR and decays

during the first 2 days. The spread of ET_3DR has

a higher growth rate than the ETR especially for the

first 2 days. As found in section 3a, this is attributed

to the close connection between the ET_3DR ini-

tial perturbations and the deep tropical convection.

The ETR has significantly higher RMSE than the

ET_3DR at 12-h lead time. Both experiments pro-

duce smaller spread than the RMSE. Because the

growth in the ensemble spread over the TR is mostly

determined by physical processes, whereas those over

the NH and SH are mainly influenced by dynamic

instability, sampling the model-related errors plays

a more important role on the ensemble spread over

the TR.

Overall, the main advantage of the ET_3DR is the

higher growth rate of the spread, which is especially

obvious at lower levels and over the TR. The higher

growth rate of the ET_3DR spread does not lead to

reduction of the RMSE, because the ensemble mean is

not sensitive to ensemble spread.

2) CONTINUOUS RANKED PROBABILITY SCORE

The CRPS is used to measure the reliability and res-

olution of ensemble-based probabilistic forecasts

by calculating the distance between the predicted and

the observed cumulative distribution functions of scalar

variables. The smaller the score, the better is the quality

of the probabilistic forecast. Over the NH, the CRPS for

U250 is similar for the two experiments (Fig. 10a). The

ETR has significantly smaller score than the ET_3DR

for the first 12 h for Z500 (Fig. 10b) probably due to the

overdispersion as shown in Fig. 8b. There are more

improvements on the probabilistic forecast score for

lower levels compared to upper levels using the

ET_3DR initial perturbations. For U850, the ET_3DR

produces a statistically significantly better probabilistic

forecast for the first 4 days than the ETR (Fig. 10c). For

T850, the ET_3DR has slightly, but statistically signifi-

cantly, better performance for the first 2 days than the

ETR (Fig. 10d). Over the SH (not shown), the results are

generally similar to that over the NH, except that the

ET_3DR presents statistically significantly smaller

scores than the ETR only for lead times up to 12 h for

U850 and T850. Over the TR (Fig. 11), the ET_3DR has

statistically significantly better performance than the

ETR for almost all lead times except for 1.5–2.5 days for

FIG. 14. PECA value for T850 over the (a) globe, (b) NH, (c) SH,

and (d) TR as an average for the period 11 Sep–30 Nov 2012.
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U850. For U10m, the ET_3DR has a statistically sig-

nificant advantage over the ETR for the first day. Large

CRPS differences compared for short lead times are due

to the spread differences in Fig. 9.

4 EnKF versus EnKF_3DR

a. The perturbations

Figure 12 shows the vertical profile of the square root

of the total energy of initial perturbations for the EnKF

and EnKF_3DR experiments. The EnKF has larger

initial amplitude than the EnKF_3DR between 250 and

700 hPa over the NH (left panel of Fig. 12). The difference

is much larger over the SH for levels below 200hPa

(middle panel of Fig. 12). The EnKF initial perturbations

are slightly smaller than the EnKF_3DR over the TR

(right panel of Fig. 12). In the data assimilation, the EnKF

will not give enough weight to observations if the back-

ground error covariances are underestimated, so large

perturbations of the EnKF are favorable. During the

generation of the EnKF ensemble analyses, there is mul-

tiplicative inflation applied to account for unrepresented

error sources (Whitaker and Hamill 2012). But large am-

plitude will not be beneficial for medium-range fore-

casting. Therefore, rescaling theEnKFwith amaskmay be

helpful for the improvement of its performance.

Ensemble perturbations should span asmany unstable

dimensions of the atmospheric state as possible with

a limited number of ensemble members. The eigenvalue

spectra of the covariancematrix of the perturbations can

be used to evaluate the distribution of the perturbation

magnitudes across independent directions (Wang and

FIG. 15. The ensemble mean RMSE (solid) and ensemble spread (dashed) for (a) U250, (b) Z500, (c) U850, and (d) T850 over the

NH for the period 11 Sep–30 Nov 2012. The vertical bars represent the [0.025, 0.975] confidence interval from a paired block

bootstrap.
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Bishop 2003; Magnusson et al. 2008). Figure 13 shows

the mean eigenvalue spectra for the square root of total

energy of perturbations at different lead times andmodel

levels during the period 11 September–30 November

2012 over the globe. It is found that the initial perturba-

tions of the EnKF are overly accounted for by the di-

rection of the first mode. The EnKF_3DR has a flatter

eigenvalue spectrum than the EnKF due to the ortho-

normalization by the ET. The result implies that the

EnKF_3DR members are more independent than the

EnKF, which may have a potentially positive impact on

the ensemble performance.With increasing forecast lead,

the difference between the methods gradually decreases.

It is also found that the differences at 250 (Fig. 13a) and

500hPa (Fig. 13b) are slightly smaller than that at 850 hPa

(Fig. 13c).

Perturbation versus error correlation analysis

(PECA) values for T850 are shown in Fig. 14 and used

to evaluate the quality of ensemble perturbations by

measuring how well ensemble perturbations can ex-

plain forecast error variance (Wei and Toth 2003). The

results indicate that the EnKF_3DR improves PECA

values in all domains for all lead times, especially over

the SH.

b. Ensemble forecast skill

The results of the EnKF and EnKF_3DR experiments

will be compared in this section using the same verifi-

cation methods as in section 3b.

1) RMSE AND ENSEMBLE SPREAD

In Fig. 15, the RMSE and ensemble spreads for U250,

Z500,U850, and T850 over theNH are shown. Comparing

the RMSE, the EnKF_3DR is slightly better than the

EnKF for U250 and Z500 (Figs. 15a,b), but the difference

FIG. 16. As in Fig. 15, but over the SH.
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is not statistically significant for U250 and only significant

for the first day for Z500. Results for U850 and T850

(Figs. 15c,d) show that the EnKF_3DR has significantly

smaller RMSE than the EnKF for the first 3.5 days. Re-

garding the ensemble spread, the growth rates are basically

similar for the two experiments. For U250 and Z500, the

initial spread for the EnKF_3DR is slightly smaller than

the EnKF, and the spread for the EnKF_3DR is more

consistent with the RMSE compared to the EnKF until

4 days forU250 and at all lead times for Z500 (Figs. 15a,b).

For U850 and T850, the spread grows somewhat slower

than the RMSE for short lead times, but becomes almost

equal to the RMSE with increasing of the forecast lead

time (Figs. 15c,d).

Over the SH, the RMSE in the EnKF_3DR is

slightly smaller than the EnKF for U250, but not sig-

nificant (Fig. 16a). The EnKF_3DR has significantly

smaller RMSE than the EnKF out as far as 6.5-day lead

time for Z500 (Fig. 16b). For U850 and T850, the

EnKF_3DR produces smaller RMSE than the EnKF,

and the difference is statistically significant for all lead

times (Figs. 16c,d). The spreads for U250 and Z500

in the EnKF_3DR experiment aremore consistent with

the RMSEs, while in the EnKF experiment there is

overdispersion (Figs. 16a,b). Similar to the result for

the NH, the spread for U850 and T850 grows slower

than the RMSE during the first 3–4 days, and then

becomes almost equal to the RMSE with increasing of

forecast lead.

Results for the TR (Fig. 17) show that U850 and

U10m for both experiments appear to produce much

lower spread compared to the RMSEs due to the

undersampling of the model related errors. The spread

for the EnKF_3DR grows slightly slower than the

EnKF, but the RMSE is still substantially smaller than

for the EnKF.

2) CRPS

The CRPS for U250 shows similar scores between the

two experiments for both hemispheres and only differs

significantly for the first 12h over the SH (Figs. 18a and

19a). For Z500, theEnKF_3DRproduces a slightly better

probabilistic forecast than the EnKF over the NH, and

the difference is significant for up to 2 days (Fig. 18b).

Over the SH, the improvement becomes more appar-

ent by 6.5 days (Fig. 19b). For U850 and T850, the

EnKF_3DR has substantially better performance than

the EnKF for both hemispheres. The difference is sta-

tistically significant until 4 days over the NH, and for all

lead times over the SH (Figs. 18c and 19c). The results

indicate that the large amplitudes degrade the perfor-

mance of the EnKF and that applying ET_3DR on the

EnKF has a positive impact. Over the TR, for all lead

times, the EnKF_3DR shows significantly better scores

for both U850 and U10m (Fig. 20).

5. Conclusions and discussion

In the ETR method, the rescaling mask plays a critical

role to constrain the amplitude of initial perturbations to

reflect regional variations of analysis error. While the

ETR used in the NCEP GEFS has improved the spread

and probabilistic skill of the ensemble forecasts over both

the BV and ETmethods, its mask has several limitations,

which we attempt to address in this study. There are three

main modifications to the mask presented herein. First

and foremost, for representing the vertical structure of

analysis error, a 3D mask is employed instead of the

original 2D mask. This is the most advantageous im-

provement of the ET_3DR compared to the ETR. In the

FIG. 17. The ensemblemean RMSE (solid) and ensemble spread

(dashed) for (a) U850 and (b) U10m over the TR for the period 11

Sep–30 Nov 2012. The vertical bars represent the [0.025, 0.975]

confidence interval from a paired block bootstrap.
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ETR method, due to the vertically constant mask used,

additional inflation has been applied to the mask for

levels from the model bottom to 500hPa with empirical

factors to compensate for the underestimate of analysis

errors. Second, with the availability of an ensemble of

analyses from the hybrid 3DVar-EnKF data assimilation

system, on each data assimilation cycle a flow-dependent

error variance is computed with real observations, which

is associated with both the dynamics of the day and the

observational density distribution. This new analysis er-

ror variance replaces the static analysis error variance.

Third, a total energy norm is used instead of a kinetic

energy norm to measure the magnitude of initial per-

turbations. Results with the ETR and ET_3DR experi-

ments performed from 11 September to 30 November

2012 using the NCEP GFS indicate that these updates

have direct impact on the perturbations. The horizontal

distribution of the ETR initial perturbations at 500hPa

coincides with the distribution of oceans and continents,

but is not consistent with the flow. Because of the flow-

dependent mask applied in the ET_3DR, the large am-

plitudes of the initial perturbations correlate better with

areas of baroclinic instability over the NH and areas of

deep convection over the TR, which is beneficial for ob-

taining a sufficiently dispersed ensemble in the medium

range. The variations of the vertical distribution of the

ETR perturbations are small due to the vertically

constant mask, while the maxima of vertical distribu-

tion for the ET_3DR perturbations correspond to the

subtropical jet region and tropical easterly jet region.

Since the amplitude of the initial perturbations for the

ET_3DR is more consistent with the typical locations

of atmospheric instability, the spread growsmuch faster

than for the ETR, especially at the lower levels and over

FIG. 18. The CRPS for (a) U250, (b) Z500, (c) U850, and (d) T850 over the NH for the period 11 Sep–30 Nov 2012. The vertical bars

represent the [0.025, 0.975] confidence interval from a paired block bootstrap.
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the TR. Consequently, the choice of mask is important to

perturbation growth and ensemble performance for the

NCEP GEFS.

Since the ETR method is able to maximize the ef-

fective degrees of perturbation freedom and constrain

the amplitude of initial perturbations without additional

computing cost, with the availability of the EnKF anal-

yses from the NCEP GDAS, the EnKF_3DR method is

designed in this study by applying ET_3DR on EnKF

perturbations. The eigenvalue spectra of the covariance

matrix of the initial perturbations show that the ensemble

members of the EnKF_3DR are more independent than

the EnKF. Furthermore, the EnKF_3DR perturbations

can better explain forecast error variance measured by

the PECA values. By evaluating the ensemble perfor-

mance, it is found that the EnKF_3DR is substantially

better than the EnKF, especially at the lower levels and

over the TR.

The EnKF may be considered to be the potential can-

didate for the NCEP operational GEFS initial perturba-

tion method in the next implementation. However, from

the results of this study, we find that applying ET_3DRon

EnKF is more beneficial for the improvement of the en-

semble forecast performance than the EnKF. Further

studies will explore the results of using this strategy during

other seasons. Furthermore, because of the merits of the

ETR method, it may be also considered for application

across multicenter sets of analyses within a consensus

modeling ensemble framework.

Although the results of this study indicate that the im-

provement of themask benefits the ensembleperformance,

this regional rescaling is only a pragmatic solution to the

complex problem of making the initial spread distribution

agree with the analysis error variance regionally. There-

fore, future research effort should focus on practical ac-

counting of all sources of analysis uncertainties.

FIG. 19. As in Fig. 18, but over the SH.
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