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ABSTRACT

The National Center for Atmospheric Research Community Climate Model | was used as an experimental
prediction model to assess the value of reassigning model levels in the vertical based on an optimizing hypothesis.
The model was considered for T31 horizontal truncation and 12 vertical levels. The levels were relocated in a
model called zest, and the model with the conventional levels was denoted standard. Both models were integrated
for 5 days with six independent initial states, and the results were composited. Analyses of the composites for
both models were compared to actual observations. The results of the experiments indicate that the barotropic
component of the flow was predicted with equal quality by both models but that the baroclinic component was
predicted better by the test model. This observation may be explained by the increased fidelity of the vertical
structure in the test model, since it has more resolution in the stratosphere.

Additional analyses were performed using a hypothesized three-dimensional scale index that relates the vertical
to the horizontal truncation. The results of those analyses were sufficiently suggestive to encourage further
studies to find optimum truncation in all three dimensions simultaneously.

1. Introduction

Current numerical weather prediction models pro-
duce successful forecasts despite the fact that the dis-
crete representation of prediction equations is not se-
lected by a systematic process designed to optimize
forecast results and minimize nonlinear aliasing errors.
It is our contention that discovery and utilization of a
completely systematic truncation procedure should
lead to further improvements in model forecasts, and
it is the purpose of this report to provide some infor-
mation on advances toward the development of an op-
timum truncation technique.

The process required to convert a nonlinear set of
equations to computational form is to create a finite
vector set of unknown quantities that represent the
dependent variables, and develop a time-extrapola-
tion process whereby that vector set can be calculated
into the future from a known initial vector. How this
vector is chosen and how it should be truncated is ba-
sically the issue that we will consider. Traditionally,
the vector is chosen on a grid of points that represents
the geometric domain spanned by the variables. Since
the domain of the atmosphere is three dimensional, a
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three-dimensional set of points is selected. Alternately,
if the variables can be represented by some global
functions, the vector set will be represented by the coef-
ficients of those global functions. This latter procedure
is generally known as the “spectral method” and may
be applied in any or all of the three dimensions, al-
though little success has yet been achieved by using an
expansion in the vertical dimension. The question to
be answered is how the grid points are to be chosen
(or which global functions are to be used), how the
total set is to be truncated (a necessary condition to
create a soluble problem), and finally, how the trun-
cation should be coupled in all three dimensions.

Numerical analysis indicates that, because the ap-
plicable equations are differential equations in space,
equal spacing of points should be most efficient. More-
over, simple scale analysis suggests that scale decom-
position of functions represented on a uniform grid
will accommodate all scales from the largest possible
over the domain to the smallest, which has a length
equal to two grid intervals. The global-function ap-
proach also allows a scale representation since each
global function will describe some scale. In addition,
the number of scales thereby represented could also
span the same set given by a specified grid of points.
The choice of global functions, however, is somewhat
discretionary, although some sets are clearly preferable
to others, depending on the relevant dynamics and do-
main of interest.
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Some insight into the nature of global functions that
might be suitable to the atmospheric prediction prob-
lem may be gained by performing an empirical or-
thogonal function (EOF) analysis of the dependent
variable fields to be represented. This has been done
several times (see, for example, Holmstrom 1964; Baer
1974; Bradley and Wiin-Nielsen 1968) for the flow field
and the temperature field. Such functions could be used
as the global basis functions in a prediction model.
Unfortunately, although these functions describe much
of the atmospheric variance in the mean, they are very
sensitive to time fluctuations and may not always be
suitable; in particular, they are highly sensitive to sea-
sonal changes. Moreover, models using such functions
are exceptionally complex to create and program for
computation, and may be very inefficient.

Perhaps a more appropriate procedure for devel-
oping global functions and corresponding scales is to
generate them from the model itself. Although nonlin-
ear systems do not have characteristic solutions from
which such functions can be determined, linear systems
do have eigensolutions, and we can find reasonable
global functions by linearizing the prediction equations.
If we linearize on a realistic basic state, the global func-
tions are coupled in all dimensions and are far too
complex to prove useful. Consequently, the equations
are normally linearized about a state of rest (a highly
simplified condition), and the resulting linear equa-
tions decouple dimensionally and allow for a set of
global functions in each dimension independently.
Since scales are associated with each function (they are
eigenvalues of the eigenfunctions), truncation can be
made scale dependent and realistic truncation can be
assessed by noting the amount of variance associated
with each function when observed data is projected
onto it. This procedure does not determine, however,
the appropriate truncation of the entire three-dimen-
sional system in terms of truncation in each of the
separate dimensional global-function sets.

Applying the simplified linearization (alluded to
above) to the atmospheric prediction system—motion
equations, continuity, and thermodynamic equa-
tions—separation leads to the shallow-water equations
for the horizontal dependence and a vertical-structure
equation depending on some static-stability distribu-
tion. The separation constants are associated with the
various equivalent depths of the finite atmosphere. The
shallow-water equations are solved in terms of two in-
dependent global-function sets, Fourier series in lon-
gitude, and Hough functions in latitude. Since Hough
functions can be expressed as series of associated Le-
gendre polynomials (and these polynomials are more
simple to manipulate ), the global functions in latitude
are generally represented by them. Scales in terms of
wavelengths are easily defined from these two global
function sets. Moreover, it is shown that if scaling is
associated with the Laplace operator, only the scales
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related to the Legendre polynomials need be considered
in the horizontal domain. Projection of atmospheric
data on selected horizontal surfaces in terms of these
functions indicates that maximum amplitucle resides
in the largest scales and decays rapidly with decreasing
scale. Thus, scale truncation in the horizontal achieved
by cutting the expansion series at some index in the
shorter scales is meaningful and is, of course, done
regularly.

If spectral functions based on the linearized vertical-
structure equation were usable in a model, vertical
scaling could be associated with the separation con-
stants (denoted as equivalent depths), and thus, a set
of vertical-scaling indices would be available to deter-
mine three-dimensional scaling. Unfortunately, it
proves more practical to use a gridpoint representation
in the vertical, thereby requiring a finite-difference ap-
proach to the vertical-structure equations as well as a
coupled finite-difference, spectral representation for the
fully three-dimensional model. Since the equivalent
depths for the vertical-structure problem differ de-
pending on whether one solves the differential equation
or a difference equation on a set of grid points, appro-
priate scaling in the vertical is not clearly evident. Sev-
eral studies in the last few years suggest that scales as-
sociated with the equivalent depths determined from
the differential equation solutions to the vertical-struc-
ture problem are appropriate (see, for example, Stan-
iforth et al. 1985; Sasaki and Chang 1985). To make
the vertical scaling appropriate on a grid of points, Baer
and Ji (1989)—to be hereafter denoted as BJ89—de-
veloped a procedure that adjusts the points in such a
way that the eigenvectors of the differential vertical-
structure problem are orthogonal on these adjusted
vertical grid points. The difference in vertical scales
(equivalent depths) between such a carefully selected
grid and a more arbitrarily chosen one can be seen; for
example, by comparing the eigenvalues derived by
BJ89 to those given by Kasahara and Puri (1981).

If one represents the atmospheric prediction system
by an expansion in global functions horizontally and
on a selected vertical grid over which the vertical-struc-
ture functions are orthogonal, scaling is available in
each dimension and potential scale truncation is pos-
sible, which might optimize a forecast by minimizing
nonlinear aliasing. As a preliminary to studying this
problem, BJ89 demonstrated through integrations with
the National Center for Atmospheric Research Com-
munity Climate Model 0 (NCAR CCMO), using both
standard levels and optimally selected levels in the ver-
tical based on their procedure, that forecasts are sen-
sitive to this type of scaling in the vertical. Because of
severe model simplifications, however, it was not pos-
sible to compare the forecast results to the real atmo-
sphere. Subsequently, Ji and Baer (1992 ) showed that
by application of the quasigeostrophic potential-vor-
ticity equation, as first suggested by Charney (1971),
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the scale indices in the horizontal and vertical could
be coupled and a three-dimensional scaling index could
be derived. Experiments, again with the NCAR CCMO,
indicated that errors due to nonlinear dynamics can
be minimized by appropriate three-dimensional scale
truncation and that such truncation is consistent with
the truncation based on the aforementioned three-di-
mensional index.

Since sensitivity to selecting appropriate vertical
scaling has been demonstrated, the next step is to de-
termine whether improved forecasts can be achieved
by this procedure. Experiments with the NCAR Com-
munity Climate Model 1 (CCM1) have been per-
formed to test for forecast improvements, and it is the
results of those experiments that will be reported herein.
The NCAR CCM1 was selected as a possible model
for such a test, but it does not contain many of the
detailed forecast qualities that would make the test
highly definitive. In particular, we know that detailed
representation of the boundary layer is essential to good
forecasting, but the CCM 1 does not include much de-
tail in that domain. Thus, we have chosen not to sep-
arate out levels in the boundary layer. In a continuing
study currently underway with the National Meteo-
rological Center (NMC) global model and recognizing
the impact of the boundary layer, we have adjusted
the model levels above the boundary layer, keeping the
lowest four levels of the model boundary layer un-
changed.

Nevertheless, the NCAR CCM1 includes realistic
forcing and is a forecast system that has potential for
reasonably accurate predictions over a short time scale,
up to five days. By comparing forecasts from that model
using both optimally selected vertical levels and stan-
dard levels with actual observations of the atmospheric
system for a number of initial states, we may assess the
potential value of using a vertical representation that
has more accurate scaling. These experiments, how-
ever, were not designed to optimize the truncation three
dimensionally, principally because of programmatic
difficulties. Plans for such studies are discussed in the
Conclusions.

2. Scaling

Our task, to find an optimum three-dimensional
model truncation scheme, is twofold. We must establish
appropriate truncation in each dimension and find
suitable coupling between the linear dimensional rep-
resentations so that truncation can be established by a
single index. A detailed discussion of the problem and
its relation to scaling parameters has been presented
by Ji and Baer (1992), and we will only summarize
here what is needed to describe our study.

Horizontal truncation is customarily determined by
truncating a spectral expansion of a global model at
some scale index N. Although sophisticated expansion
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functions, such as Hough functions, are available that
accurately describe linearized atmospheric flow (see,
for example, Kasahara 1976), accepted present practice
is to use associated Legendre polynomials, global func-
tions whose scaling is determined by the order of the
polynomial and designated n < N. If the truncation of
the expansion set is determined triangularly at the scale
index n = N, Baer (1972) has shown that »n can be
considered a two-dimensional scale index in the hor-
izontal domain.

Since models are represented on a numerical grid
in the vertical, it is not evident that characteristic
structure functions with unique scaling exist that cor-
respond to the aforementioned horizontal scaling. Us-
ing linear analysis, characteristic scaling functions that
satisfy the vertical-structure equation have been derived
(Kasahara and Puri 1981, for example ), and their scal-
ing is associated with the equivalent depths that ensue
from the solutions. Unfortunately, these structures sat-
isfy the difference equation on the vertical grid and do
not necessarily satisfy the differential equation that ap-
plies to the problem. BJ89 described a method whereby
the vertical grid could be adjusted such that the eigen-
structures that satisfy the differential vertical-structure
equation are also the eigenstructures on the adjusted
grid. The corresponding eigenvalues (equivalent
depths) of that solution give scaling to the vertical
structures chosen. Thus, an appropriate test of a mod-
el’s forecast accuracy could be assessed by performing
integrations on the appropriately readjusted vertical
grid.

The appropriate number of vertical levels and its
association with the horizontal truncation based on
the index N, however, has not yet been defined. Some-
how, the equivalent depths that correspond to vertical-
scaling indices should be involved. This question has
been addressed by Ji and Baer (1992), and they estab-
lish a unique relationship between the horizontal and
vertical scaling and, thus, define a three-dimensional
scaling index that suggests an optimum truncation for
all space dimensions. Their arguments are based on
quasigeostrophy of the large-scale atmosphere and fol-
low from the development of the potential vorticity
equation, as first considered by Charney (1971) and
subsequently by Baer (1981). That equation can be
written as

(£+ V-V)L(¢) LB

acos¢8_>\ -

ot 0. (1)
where notation is standard: V is the horizontal velocity
vector, ¢ is the streamfunction, (X, ¢) are spherical
surface coordinates for longitude and latitude, respec-
tively, and 8 is the Rossby parameter. Note that L is
a three-dimensional space operator,

stuf—%i(i")

— 2
p 0z\N?az (2)
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involving the vertically dependent density p and Brunt—
Viisdld frequency N; the operator linearly separates
the horizontal from vertical dependence. If one chooses
the streamfunction to be represented by horizontal
eigenfunctions (associated Legendre polynomials)
Y7(A, ¢) and vertical eigenstructures, as discussed
above and defined as G(z), the total streamfunction
becomes a series of these eigenfunction products:

¥ =2 ()Y Gy

(3)

Substitution of (3) into (1) using (2) yields, upon ap-
plication of the properties of the Legendre polynomials
and the structures Gy,

s=gs(n, m, k).

2,2
*(n, k)= +1 +a—f°,
s°(n, k) =n(n ) i

(4)
where 4, are the equivalent depths associated with the
structures G. The indices s have been nondimension-
alized, and link the horizontal-scale indices n to the
vertical-scale indices /.

It might be expected that, for flows that are predom-
inately potential vorticity conserving under the ap-
proximations studied, truncation based on a termi-
nating index (Smax) might be optimum. This clearly
relates the maximum number of vertical levels and
corresponding grid points to be chosen (kpn.,) for a
selected N truncation index in the horizontal, or vice
versa. We will take this scaling procedure into consid-
eration in our subsequent discussions involving model
output testing.

How the s index compares to the horizontal index
n and the vertical mode, as described by the index k,
is shown in Fig. 1. Here we present lines of constant
s, chosen by (4) and using equivalent depths selected
from Table 2, in the column denoted “test.” The sig-
nificance of this choice will soon become apparent. It
is worth noting that if a model is truncated at a fixed
vertical mode k and a given horizontal scale # (a choice
that is straightforward from a modeling viewpoint), it
is not truncated for fixed s, ... To truncate at Spa,
spectral-model output must be projected onto the ver-
tical modes and suitably filtered during the integration,
unless the model is represented spectrally in all three
dimensions, which is a computationally unrealistic ex-
pectation at this time.

An analysis of consistent truncation in the spatial
domain was presented by Lindzen and Fox-Rabinovitz
(1989), and their results support those presented above
based on spectral scaling. One limitation to the spectral
approach is the requirement that the vertical-structure
functions cannot be chosen with geographic depen-
dence. Thus, the tropical modes cannot be different
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FiIG. 1. Isolines of the three-dimensional scale index s as it depends
on the horizontal index # and the vertical index k [see Eq. (4)].
Composite s-scale groups s,, s;, and s,, are depicted by alternate
shading and lack of shading. Analysis of a statistical global data sample
of KE as a function of s is superimposed; values are denoted as the
logarithms of square meters per second.

from those in the midlatitudes. If the projection of
tropical fields onto the selected modes gives a poor
representation, then nonlinear aliasing could become
a problem. Most models use sufficient resolution so
that the structural representation by the modes includes
most of the variance in the data. Nevertheless, opti-
mization requires a globally integrated process and
cannot be assessed locally. Similar considerations must
be given to forcing functions that are projected onto
the selected global modes. If the projections are inad-
equate over much of the domain, serious aliasing
problems will arise. Alternately, the integrated eflect
over the entire domain may prove satisfactory. These
effects must be established by model experiments of
the type to be presented herein.

3. The model

Ideally, the test for optimum truncation should be
made with a perfect model whose only source of error
would be truncation. Unfortunately, no such model is
available, nor is it practical to experiment with models
that demand exceptionally complex reprogramming.
We have already tested a piece of the puzzle, the read-
justment of levels (see BJ89) with the NCAR CCMO,
and found the forecasts to be sensitive to such adjust-
ments. The next step in testing would be to choose a
model that has potential for realistic predictions and
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to compare predictions from such a model with ob-
servations. We have chosen a suitable model and pre-
pared integrations with and without adjusted vertical
levels to assess the forecast potential consequent on
more appropriate vertical scaling, deferring the test for
full three-dimensional truncation to a subsequent
study.

The basic model that was chosen was the NCAR
CCM1, which has been described in complete detail
by Williamson et al. (1987). The model has a signifi-
cant variety of physics that includes vorticity, diver-
gence, temperature, specific humidity, surface pressure,
and soil moisture as dependent variables. Specific
physics include radiation, a cloud routine, ozone, con-
vective adjustment, vertical and horizontal diffusion,
surface fluxes, and surface energy balance. These fea-
tures allow the model to provide predictions that might
be realistic over a short period of time. Note that it is
somewhat deficient in boundary-layer detail.

The model is presented in spectral form on spherical
surfaces and uses a finite-difference grid in the vertical
(see Bourke 1974). It has various truncation capabil-
ities, and triangular truncation has been selected. Since
much of the physics is sensitive to the number of ver-
tical levels and since the number of levels the model
was tuned to was 12, 12 levels were chosen for the
experiments. Correspondingly, T31 was chosen as the
truncation cutoff. If we were to attempt an accurate
truncation in a three-dimensional index, as suggested
by (4), a 12-level model should be truncated at T36
(see Ji and Baer 1992); however, it proved more con-
venient programmatically for the experiment to use
the T31 truncation.

The model is programmed at a set of vertical levels
that are designated as standard. The levels are listed in
Table 1, and the top of the model is set at ¢ = 0, where
o is the surface pressure normalized vertical pressure
coordinate. As noted already, the linearized vertical-

TABLE 1. Vertical sigma levels for the standard CCM1 and our
test model. Also listed are the levels at which initial data were available.

Data (hPa) Test Standard
10 0.012 0.009
20 0.018 0.025
30 0.026 0.060
50 0.039 0.110
70 0.057 0.165

100 0.084 0.245
150 0.123 0.355
200 0.181 0.500
250 0.265 0.664
300 0.491 0.811
400 0.818 0.926
500 0.984 0.991
700
850

1000
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TABLE 2. Equivalent depths associated with the CCM 1 for standard
levels and for test levels. Note that test-level eigenvalues represent
the exact solutions to the vertical-structure equation.

Vertical
modes Standard Test
1 9689.09 9340.00
2 3169.95 2247.00
3 806.46 702.50
4 281.08 310.50
5 131.86 183.40
6 70.02 125.60
7 30.51 88.06
8 14.24 62.97
9 6.98 47.84
10 2.70 38.76
11 1.06 31.85
12 0.33 26.09

structure equation when solved on the standard grid
yields eigenvectors and corresponding eigenvalues that
are the equivalent depths. These depths are listed in
Table 2. To assess the effect on the model of choosing
the standard levels rather than what we consider op-
timum levels based on scaling considerations, we have
calculated the optimum levels for a 12-level model that
we denote as test levels, using the optimization tech-
nique recommended in BJ89, and these levels are listed
in Table 1. For these levels the model top was chosen
at ¢ = 0.01; this level was selected so that the first
interior level at the top would be near the corresponding
level in the standard-level set. Moreover, a top level
must be selected so that a discrete set of vectors can
be established to correspond to the solutions to the
ODE representing the aforementioned vertical-struc-
ture equations. BJ89 discussed the sensitivity of the
vertical structures to the choice of model top. They
found that, for a reference model with a fixed top and
number of levels, models with more levels and higher
tops showed structures in the domain of the reference
model that were quite similar to the reference model
structures, with (of course) additional structure above
the reference top. This suggests, from forecasts in the
range of numerical weather prediction as contrasted to
climate prediction, that our choice of model top for
the test model should be reasonable for comparison
with the standard model.

Table 1 demonstrates that the test levels (our current
effort at optimum levels) show more resolution in the
stratosphere and less in the troposphere; a result that
is consistent with the expected variability of vertical
structures in the atmosphere in response to the mean
thermal stratification. Experiments using a higher res-
olution in the stratosphere by Boville and Cheng (1988)
and Boville and Baumhefner (1990) demonstrate the
sensitivity of model predictions to increased strato-
spheric resolution and the need for such increase to
improve forecasting. Moreover, the distribution sug-
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gested by BJ89 and used in the test model also sub-
stantiates the results of Lindzen and Fox-Rabinovitz
(1989). Indeed, this distribution is not far from a log-
arithmic one, and one could use such a distribution.
We determined, however, that the structures that are
closest to those for the exact solutions of the ODE arise
if one chooses the levels based on the selection process
outlined by BJ89. Since we are limited in computing
resources, we chose to perform the experiment to be
described with those levels that best satisfy the linear
system.

The equivalent depths associated with the optimum
(test) levels are by definition the eigenvalues of the
solutions to the exact differential equation that de-
scribes the vertical structure of the linearized prediction
equations. Since we choose the first 12 of these solutions
(structures), their equivalent depths are listed in Table
2. It 1s clear that the equivalent depths associated with
the standard and test levels differ substantially following
the fifth mode. The eigenvectors (structures) associated
with these modes also show substantial differences, and
details of those differences can be found in BJ89. Be-
cause of the nonlinear character of the prediction sys-
tem, one may anticipate redistribution of energy in the
test-level model to be different from that in the model
with standard levels. It is these differences and how
they relate to the observed evolution of the atmosphere
that we will discuss in the following sections.

It should be noted that the model is designed to allow
level reassignments. Thus, the forcing functions can
be set to accommodate our test levels. However, forcing
functions such as those represented by a radiation
package are tuned to produce their most realistic results
at the standard levels and would require excessive re-
programming to retune them at the test levels. We have
not done this.

4. Experiments

The NCAR CCM 1 model was used for experimental
purposes with the aforementioned 12 levels and T31
truncation. Two companion models were developed
for comparison; each integrated with the same initial
conditions. The standard model used the vertical levels
normally assigned to a 12-level CCM1 configuration,
and the test model had modified levels. The levels used
can be found in Table 1. Ozone, albedo specifications,
and lower-boundary conditions were the same for both
models. Radiation calculations were performed every
12 h during the integrations, which used a 15-min time
step. Model output was available every 6 h during an
integration.

Six integrations were performed with each model,
and the results were composited. In this way, the effects
on integration of special events in any initial state were
minimized, but a realistic number of integrations were
chosen to make the computer requirements realistic.
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Data was selected from the FGGE III SOP1 because it
was convenient and because the time sequerice of the
data allowed for easy comparison of forecasts with ob-
servations. To reduce time correlations in the initial
states chosen, data were selected at 9-day intervals. The
actual datasets used were at 0000 UTC on the following
dates: 1 January, 9 January, 17 January, 25 January,
2 February, and 10 February 1979. The data were
available on 15 pressure surfaces (see Table 1) and
were evaluated at the required model levels by cubic-
spline interpolation.

At each output time, data were available in all the
dependent variables: vorticity, divergence, temperature,
moisture, and surface pressure, including the relevant
energies. From each dataset, composites were formed
that included global values, values on different vertical
surfaces, interpolation to standard levels, and (of
course ) values assigned to each horizontal and vertical
scale, as discussed earlier. We will refer to results in
each of these formats subsequently.

S. Results of integrations

To assess the quality of the predictions, we normalize
all predicted variables by their initial values and com-
pare the evolution for both the test model (described
in the figures as TEST) and the standard model (STD)
to the observations (OBS). The maximum time of in-
tegration for any experiment was 5 days. We consider
first the global properties of the variables. Then, because
the principal change in modeling is in the vertical rep-
resentation, we explore the evolution in terms of ver-
tical scales. Finally, since our ultimate goal is to isolate
an optimum three-dimensional scale, we analyze the
predictions in terms of the scale index defined by (4).

The variables have all been projected onto the rel-
evant scale components, which include the planetary
wavenumber m, the ordinal or two-dimensional index
n, and the vertical-mode index k. Note the relationship
between m and # for the triangular truncation that has
been applied. The amplitudes of various parameters in
each scale element (m, n, k) are defined as follows:

total KE = KE, = KE, + KE,;
n(n+1)

rotational KE = KE, = ——>— [Ymmil®s
nn+1
divergent KE = KE, = ——(—-2——2 [ Xom i) %
n(n + 1)]?
enstrophy = ES = [_(—a“—)] (Yo nk )%

and
available PE = APE = 4| T, .« |2. (5)

In (5), ¥ represents the streamfunction, X is the velocity
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potential, a is the mean radius of the earth, 4 is the
scaling constant first introduced by Lorenz (1955), and
T’ is the temperature deviation from its global mean.
For composite values, these quantities are averaged
over all six integrations, and it is the composites that
we shall discuss. To establish global values, the variables
are summed over all allowed values of the indices. For
values in a vertical mode, the quantities are summed
over all allowed horizontal indices. For values in a given
three-dimensional scale, quantities are summed over
the included n, m, and k indices, as prescribed by (4),
noting that contributions from all m indices for a given
n must be included.

To determine the forecast quality of any particular
wave, such as a baroclinic wave, one must also inves-
tigate the evolution of phase. The prediction of indi-
vidual waves is relevant only when such waves have a
significant amplitude. Thus, analysis of phase becomes
a complex process, and it is not amenable to conven-
tional statistical analysis of composite values. Since the
model we have chosen has serious limitations in its
representation of the boundary layer, we felt that de-
tailed analysis of phase was not appropriate. Current
experiments in process with the NMC forecast model,
however, will be analyzed in detail. Nevertheless, the
analysis of amplitudes for the composited data should
give a good indication of forecast quality based on level
distribution.

The levels of the test model have been chosen to
optimize vertical scaling based on the structures of the
vertical-structure equation. We have therefore elected
to analyze the model output in terms of these structures
rather than to perform interpolations to selected pres-
sure levels. Moreover, since the test modes are the best
scaling structures available, we have projected all the
data (observations, standard model, and test model)
onto the test modes. Note that the external mode, be-
cause of its reasonable uniformity in height, represents
the mean state of the atmosphere quite well, and could
therefore be substituted for some mean level like the
500-hPa level. By analogy, the first internal mode
should compare well to the large-scale shear field in
the atmosphere, say the 700-300-hPa field.

a. Global characteristics

We show in Fig. 2 the development in time of the
total global kinetic energy as determined from both the
test and standard models and as compared to the ob-
servations. There is a significant decay in the energy
field for both models during the first two days of in-
tegration, but the test model recovers much more ef-
fectively as prediction time proceeds. That this recovery
is a consequence of the superior prediction of the baro-
clinic rather than the barotropic properties of the test
model is supported by Fig. 3b, which shows that the
vertical shear of the total vorticity is predicted better
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by the test model, whereas the mean vorticity as rep-
resented by its 500-hPa value is very similar to the
standard model output. We use vorticity here because
the rotational component of the velocity field is the
dominant contributor to the total kinetic energy. Note
from Fig. 3a, however, that it is the mean temperature
that is predicted better by the test model. This is con-
sistent with the results from the vorticity data insofar
as the relationship between the horizontal gradient of
mean temperature and vertical shear of rotational flow
on the global scale is strong. Whereas it is the mean or
barotropic prediction statistics that are traditionally
used as a measure of forecast success, the baroclinic
component has a dominant impact on the ultimate
flow evolution.

b. Vertical-mode properties

The principal difference between the test and stan-
dard models is the placement of vertical levels and the
consequent vertical-structure functions that can be
represented. It is thus worthwhile to assess the model
predictions in terms of their projections onto the ver-
tical modes. Using all of the observational data avail-
able to our experiments, we show statistics of various
variables taken from those data and how they distribute
in terms of the vertical-structure functions. Figure 4
shows the amplitudes of kinetic energy, enstrophy, and
available potential energy [see (5)] projected onto each
of the 12 vertical modes denoted by their index k and
normalized by their global value. The kinetic energy,
enstrophy, and APE are given for projection both onto
the test modes and onto the standard modes. It is ev-
ident that except for the first three modes there is a
significant difference in the amplitude of kinetic energy
in the vertical modes of the two models, and substan-
tially more amplitude resides in the higher modes of
the test model; a similar observation applies to the en-
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F1G. 2. Global kinetic energy predictions normalized to their initial
values for the standard and test models and for the corresponding
observations.
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FIG. 3. (a) Global predictions of temperature and vorticity normalized to their initial values on the 500-hPa surface and the corresponding
observations. (b) Same as (a) except that values are given for the differences between the 200- and 850-hPa surfaces.

strophy and APE. This is to be expected, since there is
more structure in the stratosphere of the test modes
and they are able to represent the data in this region
more accurately. Because of nonlinear exchange among
the scale components, this difference could easily affect
the prediction of the lowest and principal energy-con-
taining vertical modes. To identify this process we
present Fig. 5. This figure describes the total kinetic
energy evolution in each of the first four vertical modes
for both models and the observed values as the inte-
gration proceeds. Note the consistency of these results
with those shown in Fig. 3. Since the first mode is es-
sentially the barotropic mode, projection onto it should
correspond to the results seen in the mean atmosphere,
which is roughly at 500 hPa. Moreover, the second
mode is the primary baroclinic mode, as seen from
Fig. 4, and its evolution when comparing the test to
the standard model follows the evolution of ‘the shear
flow as seen in Fig. 3. This result supports our conten-
tion that, by resolving the vertical structure of the at-
mosphere better in the test model, that model should
predict the evolution of the baroclinic part of the flow
more successfully.

The kinetic energy projections on the remaining
vertical modes (k > 2) do not show improved predic-
tions with increasing time for the test model when
compared to the standard model and observations.
Note, for example, the third mode described in Fig. 5,
which is also subject to some diurnal forcing by the
model. The higher modes, however, do not contain
much energy and may be subject to other modeling
defects. Nevertheless, their structure plays a significant
role in the time evolution of the lower modes, as is
demonstrated specifically by the development of the
energy in the second (baroclinic) mode and which is
particularly well forecasted by the test model.

¢. Three-dimensional scale characteristics

Our goal, as previously stated, is to find a multidi-
mensional coupling of scales so that a global model
could be truncated in an optimum way. One possible
approach is to develop a three-dimensional scale index,
and we have discussed such an index in section 2. Since
the redistribution of vertical levels represented in our
test model allows for unique scale coupling (in a linear
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FIG. 4. Distribution of kinetic energy, enstrophy, and available
potential energy as a function of vertical modes. Data are composites
of all the observational data included in the study and are given as
projections onto the standard (STD) and test (TEST ) modes.

sense ), we present in this subsection the representation
of variables projected onto the s index defined by (4).
We note that the truncation for our experiments is not
optimum with reference to the hypotheses presented
by Ji and Baer (1992), nor is the truncation based
entirely on a fixed three-dimensional scale index s
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= Smax; See for example Fig. 1, which describes s for
the truncation at T31 and & = 12.

To demonstrate how kinetic energy from the global
atmosphere distributes in terms of s scales, Fig. 1 pre-
sents the rotational kinetic energy plotted on an n-k
diagram, with isolines of s superimposed. Again, note
that all values for m scales associated with each 7 scale
must be summed. The data presented are for twice-
daily global kinetic energy fields from the FGGE IIIb,
SOP1 for 1-6 January 1979. Ideally, if the isolines of
kinetic energy were to follow isolines of constant s for
suitably large s, truncation at sy, would be most ap-
propriate. Although the data show a tendency toward
this type of distribution, it would be naive to expect a
perfect correlation. The relationship derived for s(#,
k) is based on the quasigeostrophic assumption and
clearly is inadequate in the tropics. Thus, for this reason
alone we cannot expect a perfect correspondence.
Nevertheless, since this index is our first approach to
three-dimensional scaling, distributions in the s-index
domain should prove interesting and insightful.

Our total data sample, whose statistical distribution
in vertical modes we described in Fig. 4, can be seen
in terms of its distribution with the s index in Fig. 6,
where we show the total kinetic energy and enstrophy.
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FI1G. 5. Total kinetic energy predictions normalized by their initial values and projected onto the first four test vertical modes
as produced by the standard and test models and by the corresponding observations.
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Note that the logarithmic decay of energy with this
scale is approximately —2.25 in the range 11 < s < 31.
This is somewhat less steep than the decay with the
horizontal scale » for individual vertical-mode projec-
tions, which follow more closely the expected statistical
—3 decay rate. Additionally, the enstrophy distribution
is rather uniform throughout much of the scale range.

For convenience of representation and discussion,
we have composited scales into four scale categories as
follows:

S,=1<s<4; planetary

S;i=4<s<11; long
S,,=11 <s<31l; medium
S, =31 <s; short/residual.

Note from Fig. 1, in which these groups are indicated
by alternate shading and lack thereof, that S, (clear)
constitutes primarily the largest planetary waves and
the external vertical mode; S; (shaded) includes the
lower structured internal vertical modes with the baro-
clinically active horizontal scales; and S,, (clear) in-
cludes the shorter synoptic scales associated with the
more highly structured baroclinic vertical modes. The
kinetic energy and enstrophy in these groups distribute
quite differently from the distributions in other scale
composites, as seen from Fig. 6. The kinetic energy in
the three principal groups is quite uniform, but the
enstrophy increases significantly in the .S,, group.

To see how integration variables evolve in this rep-
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resentation, we present Fig. 7. The figure shows the
time evolution of enstrophy in the three groups, .Sy,
S, and S,,;, and their sum for both the test and standard
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FI1G. 7. Predicted enstrophy normalized to its initial value in the
composite s groups for the standard and test models and for the
corresponding observations. Projections are on the test modes.
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models, together with the actual observed data. We see
that both the models forecast the S, group well. This
is consistent with our earlier observation that the baro-
tropic component of the flow is well predicted. The
larger synoptic scales included in S) are predicted com-
parably by both models, but there is significant loss of
enstropy relative to observations throughout the inte-
gration period. Only in the shorter synoptic scales (.S,,,)
do we note a significant improvement in prediction by
the test model when compared to the standard model,
which is also reflected in the total composite enstrophy
including all scales s < 31. Despite the somewhat su-
perior prediction by the test model, a significant
amount of enstrophy is lost during the prediction that
is not reflected by the observations. This may be a con-
sequence of nonsystematic truncation between the
vertical and horizontal scales, the failure to truncate at
constant Smax, Or other mode! deficiences.

6. An optimum truncation experiment

To address the question associated with the effect of
truncating a model at a given s.,,,, we performed a
preliminary study, integrating the test and standard
models for only one set of initial conditions taken from
the six initial condition sets defined earlier. It was con-
venient in terms of model programming to leave the
maximum number of vertical levels at 12. The appro-
priate sm.« associated with 12 vertical levels, as sug-
gested by the study of Ji and Baer (1992), is 36, which
would require a truncation in the horizontal greater
than T36 (see Fig. 1 for the abscissa intercept of s
= 36). We therefore integrated the test and standard
models with 12 levels and T42 truncation (a resolution
available without significant reprogramming). To as-
sure appropriate truncation to Syax = 36, the test model
output was filtered after each eight integration steps (2
h), and the integration proceeded for 5 days. As noted
from Fig. 1, all components (7, k) for which s > 36
were filtered.

The integration results may be seen in Fig. 8, where
we present the evolution in time of the rotational ki-
netic energy for both models and observations in the
scale group S}, S,,, and for all s < 31, and the additional
filtered test model results that are denoted by the sym-
bol TSTF. It is evident from the composite results for
s < 31 that filtering reduces the energy systematically,
whereas the nonfiltered models predict close to the ob-
servations. Most of the loss comes in the largest scales,
s < 11, and the filtered model energy stays closer to
the observed values during the entire integration period
for the S,, group. This reflects a somewhat improved
prediction of the energy in the first two internal vertical
modes, as may be seen more directly from Fig. 9. It is
evident that higher resolution is needed to make this
experiment more definitive, since less energy will be
lost by filtering a model with higher resolution.
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filtered.

7. Conclusions

Recent studies with alternate placement of model
vertical levels suggest that a more systematic approach
to assigning those levels in a model and coordinating
the choice of both level location and number to the
selection of horizontal truncation might yield superior
predictions. To test this possibility further, we have
performed a series of experiments using the NCAR
CCM1 as our base model.

Theoretical considerations provide a formula, dis-
cussed in the text, that can be used to optimally place
vertical levels. In addition, some indications of the
number of levels appropriate to give horizontal trun-
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FIG. 9. Predicted normalized kinetic energy projected onto the
second and third test vertical modes and summed for the standard
and test models, as well as for the filtered test model.

cation are also available. Using this approach, we have
integrated the model at T31 for 12 levels, which is also
a standard truncation for that model. To average out
possible initial-value fluctuations, composites of six in-
dependent predictions were used. The model was run
at currently used model levels, and it was concurrently
run at levels selected to be optimum. The integration
results using these two distributions were compared to
each other and to observations.

Prediction results show that whereas the barotropic
component of the flow was forecast with equal quality
by the model with standard levels and the one with the
optimum levels, the baroclinic component was forecast
more successfully by the optimum-level model. On the
global scale this was seen in the mean temperature and
in the vorticity shear field. Since the optimum levels
distribute with more resolution in the stratosphere, this
result suggests that the internal-mode structure of the
atmosphere is represented more accurately by the op-
timally selected levels. An analysis in which the model
output was projected onto the vertical modes of the
linearized model confirmed the aforementioned result.
The energy projected onto the first internal vertical
mode was forecast more accurately by the model using
the optimally selected levels.

To understand how three-dimensional truncation
based on scaling could be used to identify model pre-
diction and perhaps identify skills and deficiencies in
models, the forecast output and the corresponding ob-
servations were projected onto the three-dimensional
scales defined in the text. Interpretation of the forecast
data in this mode was somewhat more difficult than
in conventional representations, probably because this
is a pioneering venture not previously attempted and
we have yet no experience explaining data in this for-
mat. Nevertheless, the prediction results using more
conventional analysis, as noted earlier, could by suit-
able interpretation be confirmed in this new represen-
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tation. Finally, an integration in which model data was
periodically filtered to simulate optimum three-di-
mensional truncation showed some promise in suc-
cessfully predicting the internal structure of the flow
variables.

The results described herein are sufficiently encour-
aging to invite further experimentation. If three-dimen-
sional optimum truncation is to be applied, sufficient
resolution is needed so that filtering does not remove
significant energy. Moreover, differences in vertical
structures between the equatorial and midlatitude re-
gions must be considered and incorporated in any ex-
tended composite scale-index hypothesis. While such
studies are under way, we have recently performed an
integration with the NMC T80, 18-level model, adjust-
ing those levels according to our optimization hypothesis
and including boundary-layer levels. Additional inte-
grations are planned with the European Centre for Me-
dium-Range Weather Forecasts (ECMWEF) model.
These studies should enhance our understanding of the
value of model level placement as we proceed with more
accurate forecast models.

We have noted that the optimization process places
more levels into the stratosphere at the expense of levels
in the troposphere. Should more levels be needed in
the troposphere to account for physical processes there,
the total number of levels must be increased. Such an
increase would then require a reconsideration of the
horizontal truncation, in particular if optimum three-
dimensional truncation is desired, as our experiments
suggest. If this problem is thoroughly addressed, a de-
finitive truncation in all dimensions should ensue,
which would diminish, if not remove, the need to make
arbitrary truncation choices.
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