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The NCEP Global Ensemble Forecast System with the EnKF 

Initialization  

Abstract 

A new version of the Global Ensemble Forecast System (GEFS) with all available upgrades is 

tested and compared with the operational version in a 2-year parallel run (00z only) in 

preparation for its implementation in NCEP operations. In the new GEFS, the main upgrades 

include the initialization scheme, the GFS model, and the horizontal and vertical resolutions. The 

ensemble initialization scheme, the breeding-based Ensemble Transformation with Rescaling 

(ETR) in the operational GEFS, is replaced by the EnKF scheme. The global forecast model used 

the recently implemented Global Forecast System (GFS) model (GSM 12.0.0). The horizontal 

resolution of GEFS increases from Eulerian T254 (~52 km) for the first eight days of the forecast 

and T190 (~70 km) for the second eight days to semi-Lagrangian T574 (~34 km)   and T384 

(~52 km). The sigma pressure hybrid vertical layers increase from 42 to 64 levels. 

 The verifications of geopotential height, temperature and wind fields at selected levels for the 

operational and new GEFS are performed against their own analyses. It is found that the new 

version significantly outperforms the operational up to day 8-10 except for larger warm bias over 

land in extra tropics.  The results for probabilistic forecasts of precipitation show that the new 

system has similar performance to the operational in a two year period except for better 

reliability for the short range forecast in the warm seasons. The performance of the ensemble 

mean tropical cyclone track forecast varies with the basin and hurricane season. Slightly better 

skill for tropical cyclone tracks is found over Atlantic and Eastern Pacific based on the statics in 

four hurricane seasons (2011-2014). The improvement of track forecasts over the Western North 

Pacific is significant.  
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1. Introduction  

The Global Ensemble Forecast System (GEFS) has been the one of the most important 

components of the NOAA’s environmental prediction operation systems since its operation in 

1993 (Toth and Kalnay 1993 and 1997). The forecast skill of the GEFS has improved 

significantly since then, benefiting from the upgrades of the initialization scheme (Wei et al. 

2006 and 2008), the inclusion of the model uncertainty (Hou et al. 2006), higher model 

resolution and larger ensemble size, as well as the continuous improvement of the GFS model 

(Han and Pan 2011; Juang 2011 and 2014; http://www.emc.ncep.noaa.gov/GFS/impl.php) and 

the Global Data Assimilation System (Wu et al. 2002; Kleist et al. 2008ab; Wang et al. 2013; 

Kleist and Ida 2015).  

GEFS has a long history of using the breeding scheme to provide an initial ensemble 

perturbation for medium-range ensemble prediction (Toth and Kalnay 1993 and 1996). The basic 

idea is to simulate the analysis cycling but without observation data involved. The initial 

ensemble uses the forecast perturbations from a previous cycle with regional rescaling. The 

perturbations generated from the breeding cycles represent fast growing forecast errors. It is 

expected that the breeding vectors (BV) can estimate the fastest forecast error growth, thus 

improving the forecast (Kalnay 2001). 

 In 2005, the Ensemble Transformation was introduced into the breeding method (Wei et al. 

2006 and 2008). The forecast perturbations from the breeding cycles are multiplied by a 

transformation matrix to ensure that analysis perturbations would be consistent with the analysis 

error covariance provided by the user. It expected that the ensemble-based variance with ETR 

spans more directions than the one without ETR. Wei et al. (2008) compared the probabilistic 

scores of the BV and ETR. They found that the ETR had better performance than the BV.  

http://www.emc.ncep.noaa.gov/GFS/impl.php
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Another major source of the uncertainty is from the model itself. The model uncertainty in 

GEFS is represented by using the Stochastic Total Tendency Perturbation (STTP) scheme (Hou 

et al. 2006). It was implemented in the operational GEFS in 2012. In the STTP scheme, the 

stochastic forcing is added every 6 hours to the total tendencies of ensemble perturbations for the 

model variables (temperature, specific humidity and winds, Hou et al. 2006 and 2008). The total 

time tendency for each variable is perturbed randomly after multiplying by a rescaling factor. 

The rescaling factor is a function of the location and lead time, which is used to control the 

perturbation’s amplitude based on previous experience.  Generally, the extratropics have larger 

perturbations than the tropics and the perturbations grow with lead time. The inclusion of the 

model uncertainty increases ensemble spread, thus reducing the RMSE and gaining higher 

probability skill (Hou et al. 2006). 

There was one major operational upgrade to the Global Data Assimilation (GDAS) system 

at NCEP in May 2012: an Ensemble Kalman Filter (EnKF) was implemented in the NCEP 

GDAS (Whitaker and Hamill 2002; Whitaker et al. 2008; Wang 2010; Wang et al. 2013, Kleist 

and Ide 2015). The analysis was performed using a hybrid variational-ensemble data assimilation 

system in which the flow-dependent background error covariance, based on the short-range 

ensemble forecasts from EnKF, is incorporated with the static background error covariance of 

the Gridpoint Statistical Interpolation (GSI), a 3DVAR algorithm (Wu et al. 2002; Kleist et al. 

2009). A dual resolution strategy was applied in the hybrid system to reduce computational cost. 

The analysis of GSI was performed at the model resolution T574 while the 80-member EnKF 

ensemble ran on T254 resolution. In the hybrid system, the error covariance estimate combined 

the static and ensemble solution with 25% and 75% weighting respectively. The implementation 

of the hybrid system improved the quality of analysis substantially (Kleist and Ide 2015). The 
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success of EnKF in the NCEP GDAS provides an alternative source of ensemble initial 

conditions for the operational GEFS. A direct benefit of the use of EnKF perturbations is the 

computational savings since EnKF had already been a part of the NCEP operation system. 

Zhou et al. (2015) compared the GEFS performance with the GEFS operational (ETR) and 

EnKF initialization schemes.  It is found that EnKF is comparable with ETR except for slight 

degradation in Southern Hemisphere due to overspread. Large spread in EnKF to some degree is 

favorable for the data assimilation to avoid filter divergence but not favorable for the medium 

range weather forecast especially when STTP is included as in the operation. The ensemble 

covariance inflation (e.g, Whitaker and Hamill 2002, 2012) and additive noise inflation (e.g., 

Whitaker et al. 2008, Houtekamer et al. 2005) is carried out on the posterior ensemble to 

parameterize the other error sourcse including the model itself in the 2012 EnKF 

implementation. It is a challenge for EnKF to satisfy the data assimilation and the medium range 

forecast at the same time.  

In the recent EnKF implementation (Q1FY2015), a new stochastic physics suite was 

employed to represent the model error in order to replace the artificial additive inflation. The 

stochastic physics suite has three components:  stochastically perturbed physics tendencies 

(SPPT, Buizza et al., 1999; Palmer, 1997 and 2001), stochastically perturbed PBL humidity 

(SHUM) and stochastic kinetic energy backscatter (SKEB, Shutts, 2005). All use auto-regressive 

process of first order (AR(1)) random pattern generators to produce spatially and temporally 

correlated perturbations ( Li et al. 2008; Berner et al. 2009). Both GSI and EnKF analysis were 

performed at same model resolution T574. 
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The main goal of this paper is to perform a comprehensive comparison between the current 

operational GEFS and the new version with all available updates. In addition to the change of the 

ensemble initialization scheme, we also upgraded the GFS model to correspond to the Jan. 2015 

GFS upgrade and increased the ensemble model resolution. 

Section 2 presents a brief introduction of proposed changes in GEFS. Section 3 mainly 

focuses on traditional verification. The performance of precipitation forecasts and tropical 

cyclone track forecasts are demonstrated in section 4 and 5.   The last section includes the 

conclusion and discussion. 

2. GEFS upgrade 

Table 1 lists the major updates in the new system. The present operational GEFS was 

implemented on Feb. 2012 with the horizontal resolution Eulerian T254 (~52 km) for the first 

eight days of the forecast and T190 (~70 km) for the second eight days. The new version 

increases resolution to the semi-Lagrangian T574 (~34 km) and T384 (~52 km). The number of 

sigma pressure hybrid vertical layers increases from 42 to 64. The increased resolution is chosen 

to fit the wall time window in the operational environment (about 60 mins).  With the increase of 

the model resolution, the new GEFS version provides 0.5 degree GRIB2 files at 3 hr time 

intervals up to day 8. 

The GFS model is updated to GSM version 12.0.0. The details of the updates to the GFS 

model can be found at http://www.emc.ncep.noaa.gov/GFS/impl.php. The model configuration 

follows the settings of the high-resolution deterministic operational GFS T1534 except for some 

resolution-depended parameters such as convective gravity wave drag and the critical relative 

humidity which allows the formation of the partial cloudiness. The major change in the GFS 

http://www.emc.ncep.noaa.gov/GFS/impl.php
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model is the replacement of Eulerian dynamics with the Semi-Lagrangian with the use of 

Hermite interpolation in a hybrid vertical coordinate and a reduced Gaussian grid in the 

horizontal. The advantage of the Semi-Lagrangian GFS is to allow the use of a larger time step 

thus integrating the high-resolution model more efficiently (Harold et al 1995; Juang and Hong 

2010). A time step of 900 seconds is applied for the Semi-Lagrangian GFS at T574 with 

equivalent horizontal resolution 34 km, whereas the operational Eulerian T254 (~ 52 km) uses a 

300 seconds time step.  

As mentioned in the previous section, the major upgrade in the recent EnKF implementation 

is the use of the stochastic physics in EnKF ensemble forecasts. The short-range forecast in the 

EnKF cycling uses the same horizontal and vertical resolution as the new GEFS version 

(T574SLL64). ENKF 6hr ensemble forecast perturbations are used instead of the analysis 

ensemble since only the EnKF from the previous cycle is available at the time when GEFS starts 

in the NCEP operational environment.  This is because the EnKF is only run as part of the late 

cycle within the global data assimilation system for the purposes of prescribing background error 

covariance in the cycle that follows. Figure 1a shows that the artificially inflated perturbations 

damp quickly in 6 h forecast. The amplitude of EnKF perturbations remains much larger than the 

perturbations in ETR. Figure 1 shows that the amplitude of the EnKF perturbations from the 

recent implementation becomes similar to that of the ETR. In addition, the amplitude of the 

EnKF perturbations with the SPPT suite increases in 6-hr forecast although the growth rate is 

rather small. The updated EnKF has become suitable to provide the initial ensemble for the 

GEFS.  

  The ensemble size remains the same as the operation (20 members and one control run) due 

to the limitation of computer resources. The initial perturbations are from EnKF 6-hr forecast 
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ensemble instead of the breeding cycle. The EnKF has 80 members every 6 hours. 20 of 80 

members are selected to initialize the ensemble forecast for each cycle so that every member is 

used for a GEFS medium range forecast once per day.  

As in the operation, the tropical cyclone perturbations are separated and updated separately. 

The ensemble forecast fields are separated into the environment and tropical cyclone (TC) 

components when TCs are active over the ocean (Kurihara et al. 1993 and 1995). The TC 

perturbations are calculated and added to the analysis after the vortex of each ensemble member 

is relocated to the observed location. The TC perturbation adjustments (P) to the initial state of  

each ensemble member are calculated by the following formula (Liu et al. 2000 and 2006): 

𝑃 = 𝐶 ∙ (𝑋 − 𝑋𝑐) ∙ ‖𝑋𝑐‖/‖𝑋 − 𝑋𝑐‖ 

 

X represents the model variables of the TC component such as the wind, temperature, mixing 

ratio,or sea level pressure for the ensemble member.  Xc corresponds to the same variable for the 

control. ||X|| is the square root of the sum of X over the whole hurricane area. The TC 

perturbations are calculated from the difference of TC components between the ensemble 

member and the control forecasts. A scaling factor C is artificially set to 0.05 to scale down the 

perturbation amplitude, which is about5% of the magnitude of the TC component in the control 

forecasts.  

The parameters in the STTP scheme are tuned slightly due to the new perturbation scheme, 

the increased model resolution and other model changes. The surface pressure tendency is no 

long perturbed to avoid numerical instability. The perturbation amplitude of other model state 

variables around the time of model truncation (192 hours) is increased to obtain better error-skill 

relationship in the day 8-16 forecast. 
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3. Verification of model variables  

A two-year parallel run (June 2013 – May 2015, 00Z cycle only) was performed and 

compared with operational forecasts. All of the 20-member ensemble forecast data are 

interpolated to a 2.5 X 2.5 degree horizontal resolution. The ensemble forecast is verified against 

its own analysis using the NCEP ensemble verification package (Zhu et al. 1996; Zhu and Toth 

2008; Zhu. 2005). The scorecard summarizes the performance of the forecasts of geopotential 

height at 500 hPa and 1000 hPa levels, wind fields at 10 m, 850 hPa and 250 hPa levels, 

temperature at 2 m and 850 hPa level over Northern America (NA), NH, SH and tropics (Fig. 2). 

The comparison of these two systems is quantified by the root mean square error (RMSE), 

pattern anomaly correlation (PAC), ensemble mean forecast bias, the Continuous Rank 

Probability Score Skill (CRPSS), and Brier Skill Score (BSS). Verifications by additional 

methodologies can be found at the website 

http://www.emc.ncep.noaa.gov/gc_wmb/xzhou/Para_2013-2015_test.HTML. 

The scorecard shows that the new system generally outperforms the operation up to day 8 

over extratropical regions. The ensemble mean forecasts of all verified variables are more 

accurate and the probability scores (CRPSS and BSS) are significantly higher over NH, SH, as 

well as NA. The improvement is generally significant as shown by the bootstrap test at the 95 % 

confidence level up to day 8. Degradation is seen in the probabilistic scores at lead times longer 

than 12 days, but this negative influence is considered negligible since the probability forecast 

skills are already very low at these lead times.  
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The ensemble mean forecast for wind fields over the tropical region is much better at all 

lead times with respect to AC and RMSE, but there is no clear evidence of improvement with 

respect to other variables and probability scores over the tropics. CRPSS and BSS are generally 

degraded beyond day 3. 

The evaluation of the 500 hPa geopotential height field shows that underspread is common 

in both systems especially in week 2. The updated GEFS has slightly smaller spread than the 

operational in week 1 but becomes the same in week 2 (Fig. 3a). The RMSE of 500 hPa 

geopotential height is significantly smaller over NH to day 9.   

The anomaly correlation of 500 hPa forecasts is a measure of the models’ overall 

performance for large-scale weather patterns.  A threshold value of 0.6 is regarded as an 

indication of a useful forecast in which the locations of trough and ridges at 500 hPa are well 

predicted. The new GEFS extended the skillful forecast from 9 days to 9.5 days in terms of AC 

(Fig. 3b). Another threshold which is defined as a headline score in ECMWF’s Strategy 2011-

2020 is a 500 hPa geopotential anomaly correlation of 80%. The forecast lead time for this 

threshold increases from 8.4 to 8.7 days in the new GEFS.  

 The new GEFS significantly improves on the operational for the first 10 days with respect 

to the 850 hPa temperatures over NH. The another headline score defined in ECMWF is the 

forecast lead time when CRPSS for ensemble probabilistic forecasts of 850 hPa temperature is 

greater than 25% for the NH. This score remains 8.8 days with a very slight increase in the new 

GEFS (Fig. 4). 

A major concern is the larger bias error in the new system than in the operational. The 

degradation in bias is consistent with the performance of the high resolution GFS deterministic 
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forecast (ref). The new GFS has warm/dry bias over some land areas. Fig. 5 shows the absolute 

error and bias error of 2-meter temperature over NA averaged for the two-year period. The two 

systems have same absolute error but the warmer bias in the new system.  The time series of 2-m 

temperature bias over NA shows that bias varies with season during the two-year period (Fig. 6). 

The large degradation in terms of surface temperature bias is more evident in summer. The 

operational usually has warm bias in the summer and changes to cold bias in winter. The new 

system increases the warm bias in summer but reduces the cold bias in winter. The distribution 

of temperature bias (Fig.7) shows the summer warm bias over NA mainly located in Central 

America. It is suggested by the GFS development group that the land surface update in GFS 

2015 implementation resulted in lower soil moisture when the Global Land Data Assimilation 

System (GLDAS) /the Coupled Forecasting System (CFS) soil moisture climatology at T574 

(~27 km) replaced 1 degree bucket soil climatology. Evaporation parameters were not retuned as 

part of the 2015 implementation which used drier soil climatology. Dry soil allows too much 

sensible heat flux and too little latent heat flux in hot air masses over cropland. Further testing 

had been proposed and will be upgraded in the next implementation. 

This kind of the systematic model errors can be removed with postprocessing algorithms. 

Bo et al. (2012) developed a Kalman filter type algorithm to accumulate the decaying averaging 

bias and produce the bias-corrected ensemble, in which the decaying averaged bias is updated 

with a weight of 2% given to the most recent data, thus the bias contains the accumulated 

information about the behavior of the ensemble forecasting system in the recent 50-60 days. This 

post processing technique, as one of the operational components in NCEP, is applied to the 

ensemble forecasts of both NCEP and Meteorological Service of Canada before generating joint 

products of the North American Ensemble Forecast System (NAEFS). This method is also 
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performed for our parallel experiments to generate bias-corrected ensemble products. Fig. 8 

shows the bias corrected ensemble forecasts for the NH 2-meter temperature averaged over one 

year. The parallel raw forecast degrades the surface temperature forecast compared to the 

operational, likely related to its larger bias errors. Bias correction improves both the operational 

and the parallel runs, especially the latter. RMSE in the bias corrected parallel forecast is 

significantly less than in the bias-corrected operational forecast or either uncorrected forecast.  

4. Precipitation verification 

Several verification scores are used to assess the skill of the ensemble-based probability 

precipitation forecast. The quantitative precipitation forecast (QPF) and probabilistic QPF with 

uniform 1 degree horizontal resolution is verified against the Climatology-Calibrated 

Precipitation Analysis (CCPA) over the contiguous United States (CONUS) using both 

continuous and categorical verification approaches (Hou et al. 2014).  

The continuous verification methods include the continuous ranked probability score 

(CRPS), RMSE/SPREAD, MERR/absolute error. CRPS measures the area difference 

between the cumulative distributions of forecasts and observations. RMSE is measured as 

one aspect of the comparison but the results of RMSE are not presented since it does not 

objectively measure the complex spatial distribution of precipitation, and it is sensitive to the 

discontinuities and large values of precipitation.  

For categorical verification, the precipitation is categorized by the 24-hr accumulated 

precipitation with the threshold amount greater than 1 mm, 5 mm, 10 mm and 20 mm 

respectively.  The evaluation methods include, Brier score/Brier skill score (BS/BSS), reliability, 

bias, the equitable threat score (ETS) and true skill score (TSS) 

(http://www.emc.ncep.noaa.gov/gmb/yluo/GEFS_VRFY/GEFS_PARA_SUMMARY.html). The 
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Brier score is the mean square error of a probability forecast from the observed probability which 

is either 1 or 0 depending on whether the categorized precipitation event occurred or not. Brier 

skill score calibrates the Brier score to the 10-year mean of CCPA as the climatology to avoid 

the dependence of BS on the frequency of the event. A reliability diagram which displays the 

observed precipitation probabilities conditioned with the forecast probabilities of all precipitation 

forecast samples provides information about probability forecast bias for the GEFS. ETS, TSS 

and bias are based on the 2 X 2 contingency table in which the frequencies of the occurrence of 

forecasting precipitation greater or less than the thresholds are counted and calibrated with 

CCPA.  

The performance of the precipitation forecast of the new system is generally similar to the 

operational. There is no significant difference between these two systems in terms of CRPS, ETS 

and TSS (not shown). RMSE and the ensemble spread of the precipitation are greater in the new 

version than the operational (not shown). There are some suggestions that the new version has 

better BS/BSS during the first three days (Fig. 9a), less bias during the first week for the light 

precipitation forecast (not shown) and greater reliability (Fig. 10a) for short-range forecasts (day 

1-3) for precipitation greater than 1 mm/24 hr and 5 mm/24 hr. In a perfect forecast, the 

predicted probabilities should be exactly equal to observed probability. Fig. 10 shows that both 

systems are overconfident for the probability forecast of precipitation greater than 5mm/24 hr. 

The reliability diagram for the new version is slightly closer to the diagonal line, which is the 

main contribution to a better BSS for the short range forecast of precipitation.   More careful 

examination shows that the better reliability is only seen in the warm season (April-October) for 

the forecast of precipitation greater than 1 mm and 5 mm in 24 hrs at day 1-3, which is also the 

main contributions to the higher BSS (Figs. 9ab and Figs.10ab). The performance of the 
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precipitation ensemble forecast is unchanged in the cold seasons (November to next March, not 

shown).  

 

5. Tropical cyclone track forecast 

The hurricane activities in the North Atlantic in 2013 and 2014 were well below average. 

There were only 8 named tropical cyclones in 2014 compared to a climatological mean of 12.1. 

The total number of tropical cyclones in 2013 (14) exceeds the climatology but only 2 

(Hurricanes Humberto and Ingrid) reached hurricane intensity (6.4 in climatology) with no 

storms reaching hurricane category 2 intensity.  To increase the sample, we have run the medium 

range forecast for the 2011 and 2012 hurricane seasons (June – October 2012).  

Fig. 11 shows the ensemble mean forecast errors of tropical cyclone tracks over the North 

Atlantic, Eastern Pacific and Western North Pacific up to day 7.  The mean track errors over 

Atlantic are slightly smaller in the new version up to day 6 and turn larger in longer lead times 

than the operational, but the difference is generally insignificant. Similar performance is found 

over EP. The new version is slightly better but not significantly. The ensemble-mean track 

forecast error is significantly reduced over WNP; the track error in day 5 is reduced 20% from 

250 nmi to 200 nmi.  

The performance of TC track forecast varies with season. One concern is the significant 

degradation of the day-6 to 7 TC track forecast in the 2012, 2013 and 2014 hurricane seasons 

over Atlantic (not shown). No significant difference is identified in the 2011 season.  There are 

77 cases for day 6 forecasts with 61 cases occurred in 2012 and 8 each in 2013 and 2014. Fig. 12 

shows the displacements of forecasted TCs positions for day 6 from their observed locations for 

the operational and parallel. The forecast TCs spread to larger error radii in the parallel run and 
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more cases have track error larger than 500 km. The TCs in the parallel run tends to have larger 

south and east bias. Note that the degradation of the parallel run came from the forecasts of 

Hurricanes Nadine (2012), Michael (2012) and Edouard (2014).  

 As the fourth longest-lived hurricane over Atlantic on record (10 Sep. - 4. Oct. 2012), 

Hurricane Nadine contributes to 30 of 77 cases of 6 day forecasts. The storm moved 

northwestward in its early stage and then turned northward and eastward later. Thereafter, 

Nadine weakened and accompanied with an unusual rotating movement over the ocean. It moved 

clockwise and then counterclockwise before transitioned to an extratropical low system. The 

forecast locations for day 6 initiated from the early stage were generally located northwest of the 

observed locations as a result of a slow northeastward turning compared with the observed one 

(Figs. 13 a).   The eastward deviations resulted from the poor forecasts of the TC’ unusual 

movement at the late stage. Fig. 13a shows that the storm in the parallel run moved eastward 

instead of a cyclonical turning. This contributes to larger track forecast errors. 

Hurricane Michael (2012) moved northward slowly after it formed from a mid- to upper-

level short wave disturbance followed by zig-zag movement as a result of a change of the large 

scale steering flow. The TC in the parallel system moved to the east instead of the north, 

resulting to large track forecast errors. 

Hurricane Edouard (2014) was a typical storm steered by the large-scale flow around a 

subtropical ridge. The recurve from the northwestward to northeastward is well predicted in both 

the operation and the parallel, except that the later has much slower northward speed, resulting in 

much larger track errors. 
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6. Conclusion and discussion 

The primary goal of this study was to introduce the new Global Ensemble Forecast 

System in NCEP and provide a comprehensive verification compared to the current operational 

version. Identification of the aspects of the GEFS performance that can be improved is helpful 

for future development and a comprehensive evaluation is very useful for GEFS users.   

The major upgrade to the GEFS is the ensemble initialization scheme. The ETR scheme, 

an updated breeding scheme implemented in the operational GEFS in 2005, will be replaced by 

the EnKF scheme.  An operational upgrade of the NCEP GFS/GDAS was implemented on Jan. 

14, 2015. The new EnKF perturbations have similar amplitude to the current operational ETR. 

The STTP which is used to represent the uncertainty of the model itself is slightly tuned to obtain 

optimal error-spread relationship. There is a direct benefit for the operational computer resource 

to replace ETR with EnKF since the latter has been implemented as an important part of the 

operational GDAS at the GEFS upstream and the computing resources for the breeding cycles 

and the calculation of the transform matrix in ETR can be saved. 

Another upgrade is the GFS model (GSM version 12.0.2) itself and GDAS. The new 

GEFS uses the same version of the global model as the operational high-resolution deterministic 

GFS which was implemented on January 14 2015. The forecast model was changed significantly 

with the most notable change being the upgrade from Eulerian to Semi-Lagrangian dynamics. 

The model resolution increased from Eulerian T254 (~52 km) to Semi-Lagrangian T574 (~34 

km) and increased the resolution from 42 to 64 vertical levels. 

The new GEFS is generally more skillful than the operational up to day 8-10 over 

extratropical regions with respect to the ensemble mean and probability forecasts of the model 

variables such as geopotential height, temperature and wind fields. The improvement is 
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significant at the 95% confidence level as evaluated by a bootstrap test. The new system 

improved on the operational AC of 500hPa forecasts by extending the skillful forecast from 9 to 

9.5 days.  

The new GEFS has a warm surface temperature bias over Central America in summer. 

The GFS development group suggested that the land surface update in GFS 2015 implementation 

results in lower soil moisture due to a change of soil climatology data. This systematic 

temperature bias can be corrected by subtracting the decaying averaged bias from the ensemble 

raw forecasts (Cui et al. 2012).  

The new GEFS outperformed the operational in forecasting tropical wind fields in the 

upper and lower layers. The AC scores for the ensemble mean wind fields are significantly better 

for 16 day forecasts. Nevertheless, there is no clear evidence that the new system has a positive 

impact on the probability forecasts over tropics. 

The probabilistic forecasts of precipitation over CONUS were evaluated against CCPA 

with a set of verification tools including both continuous methods and categorical methods. The 

performance of the precipitation forecast is unchanged overall compared with the operational, 

except for higher reliability and BSS scores in the short-range forecast. The similar performance 

for precipitation forecasts is likely related to the similar physics in these two systems. The major 

upgrade to the GFS model is its dynamics and there are no significant changes to physical 

process.  

Based on the statistics of four hurricane seasons (2011-2014), we found that the upgraded 

GEFS improved the tropical cyclone track forecasts over WNP significantly but the 

improvement over EP and Atlantic is very limited. Instead, there is a slight degradation in day 6-
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7 track forecast, especially for 2012, 2013 and 2014. The large track forecast errors mainly came 

from the forecasts of three long-lived hurricanes especially Hurricane Nadine (2012).   

This performance of GEFS depends strongly on the skill of the GFS model. The warm 

surface bias over CONUS is consistent with the performance of the high-resolution deterministic 

GFS in spite of lower horizontal resolution in the ensemble forecast. This systematic bias in the 

operational GFS was noticed in the surface temperature forecast over Central America and a fix 

was proposed and implemented in new GFS. The degradation of 6-7 day track forecast in GEFS 

is also consistent with the performance of GFS. The reason of the degradation is not clear. We 

noticed that the GEFS TC track forecasts for 2015 Atlantic hurricane season is much better than 

operational. With limited sample size, it is not clear that the degradation in the long lead time for 

previous seasons is just a bad luck or a systematic deficiency. 
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Table 1. The GEFS Configuration in operational and parallel runs 
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Fig. 1 The vertical profiles of initial perturbation spread for the horizontal wind 

component averaged over NH, SH and tropics in the 2015 (a) and 2012 (b) implementations. 
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Fig.2 Scorecard for the parallel run versus the operational, verified against their respective 

analyses 
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Fig. 3 Two-year average verification scores (1
st
 June 2013 to 31

st
 May 2015) for the 500hPa 

geopotential height over NH: (a) Ensemble mean RMS error (solid) and ensemble 

standard deviation (dotted), b) anomaly correlation and c) CRPSS. The lower panels show 

the difference and bootstrap significance test (green bars). The difference is significant at 

the 95% confidence level when value is outside the bars.  
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Fig. 4 As Fig. 3c except for 850hPa temperature. 
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Fig.5 Ensemble mean bias (solid line) and absolute error (dashed line) of 2m temperature 

over NH. 
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Fig. 6 The time series of 2m temperature bias over Northern America from May 15 2013 

to May14 2014 (a) and from May 15 2014 to May14 2015 (b). 
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Fig. 7 The bias of surface temperature over North America for the parallel run averaged 

over June-August 2013 (a) and 2014 (b). 
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Fig. 8 The RMSE and spread of raw and bias-corrected 2m temperature over NH for the 

operational and parallel runs. 
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Fig. 9 BSS for the precipitation greater than 5mm/24 hours averaged over two years (a), 

from May 15 to Oct. 15 2013 (b) and May 15 to Oct. 15 2014. 
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Fig.10 Reliability diagram of the 21 probability categories from 21-member 

ensemble. The upper left inset in each plot shows the proportion of cases in each 

probability category 
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Fig. 11 Ensemble mean track forecast errors for 2011-2014 hurricane seasons over 

Atlantic (a), EP (b) and WNP (c). 
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Fig. 12 The deviation of the 6-day forecast TC locations from the OBS over Atlantic 

(2012-2014) for the production (a) and parallel (b).  
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Fig. 13 The observed TC tracks (hurricane signal) and the 168-hr ensemble-mean forecast tracks 

for Hurricane Nadine (a), Michael (b) and Edouard (c) in the production (left panel) and the 

parallel run (right panel)  
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