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ABSTRACT

This paper proposes a method for multi-model ensemble forecasting based on Bayesian model averaging (BMA),
aiming to improve the accuracy of tropical cyclone (TC) intensity forecasts, especially forecasts of minimum surface
pressure  at  the  cyclone  center  (Pmin).  The  multi-model  ensemble  comprises  three  operational  forecast  models:  the
Global  Forecast  System  (GFS)  of  NCEP,  the  Hurricane  Weather  Research  and  Forecasting  (HWRF)  models  of
NCEP, and the Integrated Forecasting System (IFS) of ECMWF. The mean of a predictive distribution is taken as the
BMA forecast.  In  this  investigation,  bias  correction  of  the  minimum surface  pressure  was  applied  at  each  forecast
lead  time,  and  the  distribution  (or  probability  density  function,  PDF)  of Pmin was  used  and  transformed.  Based  on
summer season forecasts for three years, we found that the intensity errors in TC forecast from the three models var-
ied  significantly.  The  HWRF had  a  much  smaller  intensity  error  for  short  lead-time  forecasts.  To  demonstrate  the
proposed methodology, cross validation was implemented to ensure more efficient use of the sample data and more
reliable testing. Comparative analysis shows that BMA for this three-model ensemble, after bias correction and distri-
bution transformation, provided more accurate forecasts than did the best of the ensemble members (HWRF), with a
5%–7% decrease  in  root-mean-square  error  on average.  BMA also  outperformed the  multi-model  ensemble,  and it
produced “predictive variance” that represented the forecast uncertainty of the member models. In a word, the BMA
method used in the multi-model ensemble forecasting was successful in TC intensity forecasts, and it has the poten-
tial to be applied to routine operational forecasting.
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1.    Introduction

Remarkable  progress  has  been  made  in  tropical  cyc-
lone (TC) track forecasting in recent years, owing to ad-
vanced assimilation methods  with  multi-source  observa-
tions,  improved  understanding  of  atmospheric  physical
processes and the air–sea interaction, and the application
of  ensemble  forecasting  using  multiple  models.  How-
ever,  due to limited knowledge on the cloud physics as-
sociated  with  TCs  and  the  various  uncertainties  in  the

air–sea  interaction  process  (Emanuel,  2000),  there  have
been fewer improvements  in  TC intensity  forecasts  than
in  their  associated  track  forecasts  (Qian  et  al.,  2012).
Therefore,  TC  intensity  forecasting  remains  a  challenge
for the international research and operational forecasting
community.  After  several  strong  hurricanes  (e.g.,  Kat-
rina,  Rita,  and  Wilma)  impacted  the  United  States  and
caused serious economic losses and numerous casualties
in  2005,  the  Hurricane  Forecast  Improvement  Project
(HFIP) was initiated by the National Oceanic and Atmo-
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spheric Administration (NOAA) in 2008. HFIP aimed to
reduce the average error in TC intensity forecasts by 20%
in its first 5 yr and by 50% by the end of its 10-yr dura-
tion;  it  also  was  designed to  improve the  efficiency and
accuracy  of  probabilistic  forecasts  of  rapidly  intensify-
ing hurricanes (Gall et al., 2013).

Currently,  statistics,  statistical  dynamics,  and  en-
semble  techniques  are  widely  applied  to  TC  intensity
forecasting by operational forecasting centers worldwide
(Chen et al., 2012; Yu et al., 2012). In 2004, based on the
Statistical Hurricane Intensity Prediction System (SHIPS),
the  National  Hurricane  Center  (NHC)  implemented  en-
semble  forecasting  of  hurricane  intensity  in  the  opera-
tional  system for  eastern  Pacific  and Atlantic  (DeMaria,
1996; DeMaria and Kaplan, 1999). High skill scores were
achieved  for  long  lead-time  forecasts  by  employing  the
Logistic  Growth  Equation  Model  (LGEM)  and  Decay-
SHIPs in ensemble forecasts from the models such as the
Hurricane  Weather  Research  and  Forecasting  (HWRF),
Geophysical  Fluid  Dynamics  Laboratory  (GFDL),  Glo-
bal Forecast System (GFS) of NCEP, and ECMWF (ad-
ded in 2015) models (DeMaria,  1996; DeMaria and Ka-
plan, 1999; DeMaria et al., 2005; Wang et al., 2015). Yu
et  al.  (2015) also  demonstrated  encouraging  operational
applications of ensemble forecasts of TC intensity. They
calibrated  the  multiple  model  results  with  a  consensus
method by selecting major environmental  variables with
a step-wise regression.

Introducing probabilistic forecasts from traditional de-
terministic  forecasts  is  a  current  trend  in  weather  fore-
casting  (Zhu,  2010; Slingo  and  Palmer,  2011).  Simple
deterministic  forecasts  from  numerical  models  do  not
consider the objective forecast uncertainty that limits the
transfer of complete information and proper guidance to
forecasters  and  users  (Krzysztofowicz,  1985).  Probabil-
istic  forecasts,  in  contrast,  provide  quantitative  expres-
sions of forecast uncertainty (Kelly and Krzysztofowicz,
1997)  and  more  complete  and  comprehensive  informa-
tion about future weather conditions. In recent years, the
ensemble-based  Bayesian  method  has  widely  been  used
to  forecast  surface  temperature,  surface  pressure,  and
precipitation (Herr and Krzysztofowicz, 2005; Raftery et
al.,  2005; Sloughter et al.,  2007; Zhi et al.,  2014, 2015),
among  others.  However,  no  advanced  studies  exist  that

forecast  TC intensity using an ensemble-based Bayesian
method. In this study, we examine whether an ensemble-
based Bayesian method could improve TC intensity fore-
casts through multi-model application. These predictions
from  the  Bayesian  model  averaging  (BMA)  method
could provide probabilistic (and/or uncertainty) forecasts
rather  than  deterministic  forecasts.  Notably,  the  forecast
uncertainty is quantitatively expressed, which allows for
advanced  scientific  interpretation  of  the  forecasts  (Zhu,
2005).

The  TC intensity  forecasts  and  observational  datasets
are  described  in  Section  2.  The  error  analysis  and  bias
correction are discussed in Section 3. The BMA method
and its application are summarized in Section 4 and 5, re-
spectively. Conclusions are then made in Section 6.

2.    7C intensity forecasts and observational
datasets

The locations and intensities of  an observed TC were
determined  from  the  tropical  cyclone  best-track  dataset
for  the  western  North  Pacific,  available  from  the  Joint
Typhoon Warning Center (JTWC, http://www.usno.navy.
mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/wpindex.php).

Forecast data from three models, including two global
models  and  a  regional  model  (Table  1),  were  obtained
from the database created by the NCEP’s Environmental
Modeling Center (NCEP/EMC). The global ECMWF In-
tegrated  Forecasting  System  (ECMWF-IFS)  (Morcrette
et al., 2009) utilizes four-dimensional variational data as-
similation  and  had  a  resolution  of  9  km  in  2016.  It  is
truncated  at  wavenumber  1279  and  divided  into  91  hy-
brid layers perpendicular to the vertical direction, with a
model top pressure of 0.01 hPa. The model is initialized
twice per day at  0000 UTC and 1200 UTC. NCEP-GFS
is also a global model that was developed by NCEP, and
it uses the Global Data Assimilation System. The model
was truncated at wavenumber 574 in 2014 and at 1534 in
2015  and  2016.  The  GFS  consists  of  64  hybrid  layers
perpendicular  to  the vertical  direction,  with  a  model  top
pressure  of  0.27  hPa.  Its  resolution  was  22  km  in  2014
and  13  km  in  2015  and  2016.  It  is  initialized  at  0000,
0600, 1200, and 1800 UTC each day. The NCEP-HWRF
model  adopts  the  Gridpoint  Statistical  Interpolation  as-
similation system. It has 61 layers, a top pressure of 0.27

7able 1.   Overview of the three forecast models

Model name Type Developer Model resolution Is a bogus
TC used?

Is a vortex relocation
technique used?

Lead time and
daily frequency

Time
period

ECMWF-IFS Global model ECMWF 9 km/L91 No No 240 h, 2 times per day 2014–16
NCEP-GFS Global model NCEP/EMC 13 km/L64 No Yes 240 h, 4 times per day 2014–16
NCEP-HWRF Regional model NCEP/EMC 2 km/L61 Yes Yes 120 h, 4 times per day 2014–16
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hPa, and an inner domain resolution of 2 km. Its forecast
is initialized four times per day.

TC intensity is normally represented by the maximum
wind speed near the cyclone center (Vmax) or the minim-
um  sea-level  pressure  at  the  cyclone  center  (Pmin).  Re-
search has shown that Pmin has more significant linear re-
lationships with initial error and forecast error than does
Vmax (Knaff and Zehr, 2007; Yu et al., 2013). Therefore,
this  study  used Pmin as  its  TC  intensity  indicator.  This
study focused on 24-  to  120-h forecasts  for  all  TCs that
occurred  in  the  western  North  Pacific  basin  during
2014–16, as produced by the three aforementioned mod-
els  at  6-h  intervals.  TC  intensity  forecast  error  refers  to
the  difference  between  the  analyzed  value  from  the  JT-
WC best-track data and the Pmin forecast by the models.

3.    (rror analysis and bias correction

Error  analysis  of  the  forecasts  from  the  aforemen-
tioned models for 2014–16 was performed in an attempt
to  capture  the  forecast  error  characteristics.  Prior  to  the
BMA  adjustment,  the  systematic  errors  for  the  indivi-
dual forecast  models were corrected to improve forecast
reliability.

Forecast  error  is  calculated  as  the  difference  between
the  annual  average  of  the  observed  and  forecast Pmin
value at each lead time. The results are presented in Fig. 1.
Both  the  GFS  and  HWRF  include  the  vortex  relocation
technique,  while  the  HWRF  also  includes  a  bogus  TC
technique. The Pmin values predicted by the HWRF mo-
del for 2014 and 2015 are about 10 hPa smaller than the
observed values.  In  2016,  the  model’s  forecast  bias  was
–2.4 hPa, which was a significant decline that can likely

be  attributed  to  major  model  changes.  In  particular,  the
error  in  the 120-h forecast  was weak and changed signs
(Fig. 1, third bar). This suggests that the systematic fore-
cast  errors  in  2014 and 2015 are different  from those in
2016.  The  GFS  forecasts  for Pmin in  2014  were  10–
20  hPa  higher  than  the  corresponding  observed  values,
while the GFS forecasts for 2015 were 12–20 hPa lower
than  the  observations.  Errors  in  the  GFS  forecasts  for
2016 had absolute values no greater than 3 hPa. There is
no  consistent  sign  of  model  error  for  these  three  years.
Therefore,  no  correlation  was  found  between  this
model’s  forecast  errors  throughout  the  three  years.  The
European  Centre  (EC)  model  was  the  only  one  that  de-
monstrated  consistently  negative  forecast  error  (or  bias)
throughout  the  three  years.  As  the  lead  time  varied,  the
forecast errors in 2014 and 2015 showed significant cor-
relations with the forecast error in 2016. Therefore,  bias
correction  for  the  EC’s Pmin forecasts  in  2014–15  may
substantially  improve  its  forecasts  for  2016,  while  the
GFS and HWRF are unsuitable for bias correction, due to
lack of a systematic pattern of error variation during the
three years.

The  analysis  above  reveals  that  only  the  EC  model’s
forecast  errors  followed  a  regular  pattern  of  distribution
across  the  years,  and  its Pmin forecasts  were  relatively
high overall (indicating a weak TC). Bias correction was
applied to the EC forecasts for 2016 based on the pattern
of  error  distribution  across  2014–15  from  the  following
formula: Pmin(bc; t)  = Pmin(t)  –  Bias(t),  where t repres-
ents forecast lead time. This was achieved by subtracting
17, 15, 16, 13, and 11 hPa, respectively, from every 24-
to  120-h  forecast. Figure  2 compares  the  root-mean-
square error (RMSE) of the forecasts from the three mod-

 
Fig. 1.   Histogram of errors (hPa) in the model forecasts for 2014–16. The blue, red, and green bars represent the intensity forecast errors at dif-
ferent lead times (24, 48, 72, 96, and 120 h) for 2014, 2015, and 2016, respectively. Here, the bias = observation – forecast.
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els  and  the  bias-corrected  EC,  denoted  as  EC-BC.  The
Pmin forecasts  from  the  regional  model  HWRF  were
much  more  accurate  than  those  from  the  global  models
EC and GFS, as indicated by the comparatively lower er-
rors at all  lead times (Fig. 2).  This is possibly due to its
higher  resolution and the  use  of  a  bogus  TC.  Compared
to the RMSE of the EC forecasts, the RMSE of the EC-
BC forecasts were significantly reduced: by 4.6 hPa at a
lead time of 120 h and by 7–8 hPa at other lead times.

We also plotted the error distribution map for the three
original  models  (not  presented  in  this  paper)  to  identify
any  regularity  in  the  error  distribution  across  latitudes
and regions for further removal of systematic errors. Un-
fortunately,  those  error  distributions  were  more  random
and provided little useful information.

4.    %ayesian model averaging

4.1    7he theoretical basis for %MA

Bayesian model averaging (BMA) is a method of data
post-processing  based  on  Bayesian  theory.  It  has  mul-
tiple advantages over  other  statistical  prediction models.
For  example,  it  considers  subjective  prior  information
and unavoidable unpredictability in models, allowing for
the effective and accurate extraction of information from
model forecasts. It has been successfully applied to tem-
perature,  pressure,  wind  speed,  and  precipitation  fore-
casts.

There are several  key steps in BMA. The first  step is
to  calculate  posterior  probability.  The  second  step  is  to
derive the posterior probability density function (PDF) of
a BMA probabilistic forecast by assuming that the likeli-
hood function and prior PDF follow normal linear distri-

butions (including the Poisson distribution, gamma distri-
bution,  Weibull  distribution,  and  similar  distributions).
These  posterior  model  probabilities  are  then  adopted  as
the  weights  for  the  models,  and  the  expectation  of  the
BMA model  is  obtained  by  weighted  averaging  of  indi-
vidual model forecasts (i.e., weighted average forecasts).

∑K
k=1 wi = 1 f̃k

fk,gk(y| f̃k)
f̃k

BMA  can  be  used  to  combine  forecasts  and  infer-
ences  from  multiple  models  (or  ensembles  of  forecast
models)  and  determine  the  predictive  variance  of  the
PDF  of  corresponding  forecast  variables.  According  to
studies by Madigan and Raftery (1994) and Hoeting et al.
(1999), BMA forecast models can be constructed by ex-
tending  the  law of  total  probability  [see  Eq.  (1)  below],
where y represents  the  forecast  variable,  e.g., Pmin; fk is
the kth forecast; Zk is the weight for the kth forecast, i.e.,
the  optimal  posterior  probability  of  forecasts  from  the
corresponding model, which indicates each model’s con-
tribution to forecast skill over the training period and sat-
isfies ;  and  is  the  bias-corrected  value  of

 that  denotes  the  conditional  PDF  for k fore-
cast models about :

p (y| f1, . . . , fk) =
∑K

k=1
wk ·gk(y| f̃k).

f̃k,s,t

In the BMA model, the predicted value of the forecast
variable y is the weighted means of the models’ expecta-
tions,  which  were  obtained  by  weighting  the  expecta-
tions with Zk [see Eq. (2)]. The BMA model’s total vari-
ance is expressed as a relationship between the observed
values of ys, t and  at site s (TC-observed) and time t.
It  consists  of  two  components:  inter-model  and  intra-
model variances [see Eq. (3)] (Raftery, 1993):

 
Fig. 2.   RMSE of Pmin forecasts from the four models at different lead times. The bars in each case, from left to right, denote the RMSE of the
forecasts from HWRF (dark grey), GFS (light grey), EC (grey), and EC-BC (red), respectively.

OCTOBER 2018 2onC 7. )., Y. ). Zhu, ). Y. PenC, eP aH. 797



E (y| f1, . . . , fk) =
∑K

k=1
wk · f̃k,

Var
(
ys,t | f̃1,s,t, . . . , f̃K,s,t

)
=

∑K

k=1
wk

(
f̃k,s,t −

∑K

i=1
wi · f̃i,s,t

)2
+

∑K

k=1
wk ·σ2

k .

σ

σ

Next, we need to solve for Zk and  in the BMA mo-
del  and  iteratively  solve  for  maximum  expectations  us-
ing  the  maximum  likelihood  expectation.  The  repres-
ents  all  weights  and  variance.  The  iterative  process  in-
cludes two steps: calculating expectations and solving the
maximization  problem.  The  expectation  calculation  in-
volves  estimating  the  likelihood  function  and  expecta-
tions for the full dataset from a known variable and cur-
rent parameter estimates. In the second step, the parame-
ters  are maximized in the full  dataset  from the first  step
through re-estimation, provided that the estimation in the
first  step  is  correct.  The  likelihood  does  not  decrease  at
any iteration, indicating that this algorithm is convergent.
This guarantees that it converges to the maximum in the
dataset. The operation in the second step is iterated until
convergence [see Eq. (4)]:

l (θ) =
∑

s,t
log

(∑K

k=1
wk ·gk(ys,t | f̃k,s,t)

)
.

f̃k,s,t
f̃k,s,t

σ

σ

σ Ẑ j
k,s,t

σ Ẑ j
k,s,t

Assume that there is a latent variable =k,s,t whose value
is 1 if  is the best forecast at site s (TC-observed) and
time t ;  and is  zero if  represents  the worst  forecast.
An  initial  guess  is  given  to  both Zk and .  The  equal
weight  can  be  used  as  the  initial  guess  for Zk,  and  the
empirical  history of the forecast variable can be adop-
ted  as  the  initial  guess  for .  After  is  obtained  by
using Eq. (5), Zk and  can be calculated from  with

Eqs. (6) and (7), respectively:

Ẑ j
k,s,t =

w j−1
k g(ys,t | f̃k,s,t,σ j−1

k )
∑K

i=1 w j−1
i g(ys,t | f̃i,s,t,σ j−1

i )
,

w j
k =

1
n

∑

s,t
Ẑ j

k,s,t,

σ2 j
k =

∑
s,t Ẑ j

k,s,t ·
(
ys,t − f̃k,s,t

)2

∑
s,t Ẑ j

k,s,t

,

where n is the number of cases in the training set, i.e., the
number of distinct values of (s, t).

4.2    Assumption and transformation of P')

Since  the  BMA  method  relies  on  a  normal  distribu-
tion  assumption  (Raftery  et  al.,  2005),  we  first  need  to
ensure  that  the  BMA input  variables  follow normal  dis-
tributions.  In Fig.  3a,  we  construct  a  histogram  (with  a
10-hPa  bin  width)  with  2246 Pmin values  obtained  from
the  best-track  data  for  the  years  2014  and  2015.  As
shown in the figure, the best-track observed TC intensity
is  generally skewed toward the high Pmin values.  There-
fore, we must transform it into a normal distribution. Fol-
lowing Chou et al. (1998), we use the logistics transform-
ation  method  based  on  the  empirical  formulas  in  Eqs.
(8)–(10).  The coefficients  in  the  empirical  equations  are
obtained  through  numerous  comparisons  and  tests.  The
transformed  distribution  (see Fig.  3b)  appears  closer  to
the  normal  distribution.  This  study  emphasizes  the  real-
time application of  forecasting Pmin.  If  we treat  the data
from 2014–16 as the full sample, then the real-time fore-
cast  will  only  have  the  data  from  2014–15  available  as

 
Fig. 3.   Histograms of (a) Pmin and (b) f(y). There are 2466 samples from the best-track data for 2014–15 in panel (a), whereas there are 1265
samples for the 24-h forecasts from the three forecast models in panel (b) when best-track data are available.
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the  training  sample.  Although  we  acknowledge  that  in-
cluding 2016 data in the training sample would likely im-
prove the results, we chose to perform our analysis in the
same way as the real-time operational practice.

First, the observations were ranked in ascending order
of Pmin as  in  Eq.  (8),  and  the  maximum  and  minimum
values  of Pmin in  this  sample  were  determined.  We  let
y(i) (with a value range of 0–1) denote the original vari-
able Pmin [see  Eq.  (9)].  A function f(y(i))  was  then  con-
structed  by  changing  the  natural  exponential  [Eq.  (10)];
its  distribution  is  closer  to  normal  than  is  the  historical
Pmin distribution.  For  example,  when y(1)  is  equal  to  0,
f(y(1))  is  equal  to  0;  when y(i)  is  equal  to  0.5, f(y(i))  is
equal to 0.38; and when y(n) is equal to 1, f(y(n)) is equal
to 1:

pobs
min (i)

∣∣∣i=1,n ∼
(
pobs

min (1) , pobs
min (2) , pobs

min (3) , · · · , pobs
min (n)

)
,

where Pmin
obs(i) is sorted from low to high, and

y (i) =
Pobs

min (i)−Pobs
min (1)

Pobs
min (n)−Pobs

min (1)
,

f (y (i)) =
ey(i)−1

e−1
.

Figure  3b illustrates  the  distribution  of f(y)  that  was
obtained  by  matching  the Pmin values  in  the  best-track
data  for  2014–16  to  the  24-h  forecasts  from  the  three
models  after  the  logistics  transformation  (sample  size:
1265). As can be seen in this figure, high frequencies are
largely concentrated around the mean of the f(y) distribu-
tion.

A  normality  test  is  needed  to  determine  whether  the
f(y) distribution is normal or approximately normal.  The
standardized  skewness  and  kurtosis  of  the  distribution
were calculated by using Eq. (11) and (12), respectively:

g1 =

∑N
i (xi− x̄)3/N

s3 ,

g2 =

∑N
i

(xi− x̄)4
/N

s4 −3.

x̄In  the  above  equations,  and s denote  the  sample
mean and sample standard deviation,  respectively.  After
the  logistics  transformation,  the  skewness  changes  from
–0.31 to 0.15, which is closer to zero. This demonstrates
that  the  transformation  changes  the  originally  right-
skewed distribution of  the sample data  to  a  left-skewed,
approximately  symmetric  one  (it  is  perfectly  symmetric
when the skewness is zero). After a subtraction of 3 from
Eq.  (12)  (Westfall,  2014),  the  final  kurtosis  is  closer  to

zero. The transformation changes the kurtosis of the dis-
tribution  from  –0.78  to  –0.59,  which  suggests  that  the
resulting distribution is closer to a standard normal distri-
bution.

The dimensions  of  the  variables  were  standardized to
facilitate  subsequent  validation  and  comparison.  After  a
BMA  model  was  constructed  and  used  to  predict f(y),
Eqs. (9) and (10) were rearranged to create Eqs. (13) and
(14),  in  which f(y)  has  the same units  as Pmin.  This  step
will not be detailed in Section 5:

y(i) = ln
[
(e−1) · f (y (i))+1

]
,

Pmin (i) = y (i) ·
(
Pobs

min (i)−Pobs
min (1)

)
+Pobs

min (1) .

5.    Forecasts from the %MA model and analysis

5.1    %MA model construction

To construct a BMA model, we first conducted a full-
sample  forecast  experiment.  All  the  data  for  2014–16
were  used in  the  training period.  The TC intensity  fore-
casts  for  the same period were considered in the valida-
tion. Figure  4 shows  the  experimental  forecasts  for  the
No.  1623  TC  called  “MEARI”  (WP26),  initialized  at
1200 UTC 6 November 2016. Of the three forecast mod-
els, HWRF had the highest weight, at 0.55, compared to
the  GFS’s  0.25.  The  weight  of  EC  for  the  raw  forecast
was  0.2,  which  is  lower  than  that  of  the  other  models.
The weights of the three models totaled one.

The full-sample forecasts for this study were obtained
from  all  2014–16  model  forecasts  with  the  bias  correc-
tion  for  EC,  the  transformation  of  the Pmin distribution,
and dimensional standardization. Additionally, an equally
weighted ensemble (EQW) of the three models was used
as a benchmark for comparison. As shown in Table 2 and
Fig. 5, the BMA forecasts had the lowest average RMSE
during  the  three  years,  and  the  average  RMSE  of  the
EQW  forecasts  was  lower  than  those  of  the  three  indi-
vidual  forecasts.  The  proportions  of  weights  for  the
members of the BMA model show that HWRF was more
skillful than the other members at each lead time. As the
lead time increased, the weight for EC-BC increased sig-
nificantly, while the GFS’s weight tended to decline.

The  experimental  results  demonstrate  that  the  con-
structed BMA model has the best performance. However,
this experimental scheme cannot solve or prevent the oc-
currence of possible overfitting in future applications. To
make the experiment closer to the actual operational TC
forecasting  approach  and  achieve  full  usage  of  the  lim-
ited sample, it  is necessary to design a sample-matching
scheme  that  does  not  require  coincidence  between  the
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training period and the forecast period.

5.2    Cross validation

The  main  purpose  of  cross  validation  is  to  extract  as
much  information  as  possible  from  the  limited  sample
data to make up for the deficiency caused by the limited
sample  size  and  to  avoid  overfitting  wherever  possible.

This  study  adopted  an  eight-fold  cross  validation.  The
dataset  from 2014–16 was divided into  eight  folds:  sev-
en folds for training and the remaining one for validation.
The results of this validation are presented in Table 3 and
Fig. 6. The sample sizes are slightly different from those
in Table 2 to allow for  even division of  the sample size
by eight for the eight-fold cross validation in Table 3. As

 
Fig. 4.   Distributions of Pmin of the “MEARI” (WP26) TC as forecasted by the three individual models and the BMA model, initialized at 1200
UTC 6 November 2016. The purple, green, and blue thin lines represent the forecasts from the EC, GFS, and HWRF models, respectively; the
thick black line represents the BMA model’s forecast. Also shown in the figure are the plus and minus one standard deviation (ı) (black dotted
lines) and the observed value (OBS; the red line).

 
Fig. 5.   RMSE of Pmin forecasts for 2014–16 from the models at different lead times, with the three individual forecasts shown in light grey, the
EQW forecasts shown in dark grey, and the BMA forecasts shown in red.

7able 2.   RMSE of the forecasts  from the three individual  models,  the EQW, and the BMA model for  2014–16 at  different  lead times.  Also
shown in the table are the weights for the three individual members in the BMA model (BMA-weight)

2014–16 BMA-weight RMSE (hPa) CaseHWRF EC-BC GFS HWRF EC-BC GFS EQW BMA
  24 h 0.55 0.20 0.25 17.1 22.5 21.5 16.6 15.7 1265
  48 h 0.48 0.29 0.23 21.9 25.4 26.4 21.3 20.9 1171
  72 h 0.45 0.32 0.23 24.1 26.6 29.5 23.4 22.9 1030
  96 h 0.48 0.33 0.19 25.0 26.5 30.4 23.8 23.2   811
120 h 0.43 0.40 0.17 27.0 26.6 32.4 24.8 23.9   623
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can  be  seen  in  the  figure,  after  cross  validation,  the
RMSEs of the BMA forecasts were the lowest at  differ-
ent lead times and decreased about 5%–7% from those of
the forecasts from HWRF, which was the best individual
model.  The predictive variance ( )  of  the normal  distri-
bution of the BMA forecasts was slightly lower than the
corresponding  RMSE.  This  further  confirms  the  applic-
ability of BMA to TC intensity forecasting.

In addition, BMA can also be used to quantify the un-
certainty in TC intensity forecasts and to provide a prob-
abilistic forecast product. In Table 3, the predictive vari-
ance from BMA can be seen to be statistically similar (or
equal) to the BMA errors. This indicates that BMA may
not only provide the best mean forecasts (those with the
smallest errors) but also offer reliable forecast uncertain-
ties (probability).

For  example,  a  forecast  was  initialized  at  0000  UTC
12  September  2016. Figure  7 displays  the Pmin values
predicted  by  the  BMA  model  using  a  box  plot,  which
visualizes the uncertainty and dispersion in the forecasts.
The  figure  reveals  that  the  degree  of  dispersion  in  the
forecasts  increased  with  an  increasing  length  of  lead
time. In the box plot, the upper and lower bounds of each
box  indicate  the  forecast  values  when  the  cumulative
probability  was  75%  and  25%,  respectively.  The  black
line in the middle of each box indicates the forecast value

at a cumulative probability of 50%. The upper and lower
ends of each dotted line represent the maximum and min-
imum Pmin forecasts at each lead time.

Compared  to  deterministic  forecasting,  the  probabili-
stic forecasting method based on BMA can provide fore-
casts  with  higher  accuracy  and  more  comprehensive  in-
formation. It also outperforms the forecasting method of
equally  weighted  ensemble  averaging.  Moreover,  the
BMA  model  can  quantify  reliable  forecast  uncertainty,
which is a distinct advantage over other models.

6.    Conclusions

This study aims to improve the accuracy of TC intens-
ity  forecasts,  especially  forecasts  of  the  minimum  pres-
sure at  cyclone center  (Pmin).  Based on Bayesian statist-
ics,  the  posterior  PDF  of  the  BMA  probabilistic  fore-
casts was derived by normal approximation to the likeli-
hood function and the prior PDF. Weighted averaging of
forecasts  from  multiple  models  was  implemented.  The
following conclusions can be drawn from the dataset pro-
cessing and forecast experiments.

(1) The TC intensity (Pmin) forecasts from the HWRF,
EC, and GFS models were tested and assessed. The res-
ults  show  that,  among  the  three  models,  the  regional
model  HWRF has  the  highest  accuracy,  due to  its  relat-

 
Fig. 6.   RMSE of Pmin forecasts from the models at different lead times after cross validation, with the individual forecasts shown in grey and the
BMA forecasts shown in red.

7able 3.   RMSE of Pmin forecasts from the three individual models, the EQW, and the BMA model, and the predictive variance of the BMA
forecasts (BMA-predictive variance) after cross validation

Cross validation RMSE (hPa) BMA-predictive variance CaseHWRF EC-BC GFS EQW BMA
  24 h 17.0 22.5 21.5 16.9 15.8 15.4 1264
  48 h 22.0 25.5 26.4 21.5 20.8 19.9 1168
  72 h 24.1 26.6 29.5 23.9 22.8 21.9 1024
  96 h 25.1 26.5 30.4 24.3 23.1 22.2   808
120 h 26.9 26.6 32.4 25.1 23.8 22.5   616
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ively high resolution and application of a bogus TC. The
Pmin values predicted by the EC were high overall, indic-
ating low TC intensities. Bias corrections can be applied
to the EC model forecast  to improve its  results,  because
the model demonstrates consistency in its biases.

(2) In the probabilistic forecast experiment using BMA,
bias correction for the EC forecasts was performed. The
Pmin PDF was  approximated  by  an  assumed distribution
and then transformed. After that, cross validation was im-
plemented  to  process  the  data  for  more  efficient  use  of
the  sample.  The  validation  results  show  that  the  BMA
model outperformed the HWRF, which was the best indi-
vidual model. The RMSE of the BMA forecasts was 5%–
7%  lower  than  those  of  other  forecasts  at  various  lead
times.

(3)  The  forecasts  from  the  BMA  process  provided
probabilistic  forecast  guidance  (i.e.,  mean  forecasts  and
uncertainty forecasts) that could provide more useful in-
formation for our future research and for forecasters.

This study could be extended to enhance forecast skill
by applying BMA to a pressure field and then projecting
an associated wind field based on the pressure–wind rela-
tionship.

If  we  could  remove  systematic  error  (or  bias)  for  the
NCEP-GFS and NCEP-HWRF, the results could be even
better;  if  the  three  models  exhibit  similar  forecasting
skills,  the  BMA  method  may  have  an  even  greater  ad-

vantage in improving the final forecasts.
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