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ABSTRACT

Two widely used precipitation analyses are the Climate Prediction Center (CPC) unified global daily gauge

analysis and Stage IV analysis based on quantitative precipitation estimate with multisensor observations.

The former is based on gauge records with a uniform quality control across the entire domain and thus bears

more confidence, but provides only 24-h accumulation at 1/88 resolution. The Stage IV dataset, on the other

hand, has higher spatial and temporal resolution, but is subject to different methods of quality control and

adjustments by different River Forecasting Centers. This article describes a methodology used to generate

a new dataset by adjusting the Stage IV 6-h accumulations based on available joint samples of the two analyses

to take advantage of both datasets.A simple linear regressionmodel is applied to the archived historical Stage IV

and the CPC datasets after the former is aggregated to the CPC grid and daily accumulation. The aggregated

Stage IV analysis is then adjusted based on this linear model and then downscaled back to its original resolution.

The new dataset, named Climatology-Calibrated Precipitation Analysis (CCPA), retains the spatial and

temporal patterns of the Stage IV analysis while having its long-term average and climate probability dis-

tribution closer to that of the CPC analysis. The limitation of the methodology at some locations is mainly

associated with heavy to extreme precipitation events, which the Stage IV dataset tends to underestimate.

CCPA cannot effectively correct this because of the linear regressionmodel and the relative scarcity of heavy

precipitation in the training data sample.

1. Introduction

At the National Centers for Environmental Prediction

(NCEP), some postprocessing procedures, namely bias

correction and downscaling, are applied to numerical

weather prediction (NWP) products such as temperature

and wind from the Global Ensemble Forecasting System

(GEFS) and the North America Ensemble Forecasting

System (NAEFS). These techniques have demonstrated

significant benefits in improving local forecasts over the

contiguous United States (CONUS) domain (Cui et al.

2012; B. Cui et al. 2012, unpublished manuscript). The ap-

plication of the same procedures to precipitation is hin-

dered by the lack of a satisfying precipitation dataset.

The required dataset should be our best estimate of 6-h

accumulation, on an approximately 53 5 km2 grid such

as the National Digital Forecast Database (NDFD) grid,

and it should be accurate and quality controlled.

Atmospheric scientists and hydrologists have been

studying the behavior of precipitation over a wide range

of spatial and temporal scales.However, because of paucity

of data and the intermittency of precipitation, especially
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precipitation associated with cumulus convection, anal-

ysis of observed rainfall distributions is often compro-

mised as a tradeoff between spatial and temporal

resolution: for example, hourly fields at catchment scales

(Onof andWheater 1996) versusmonthlymeans at global

scales (Chen et al. 1996).

Objective techniques have been developed and ap-

plied to construct analyzed fields of precipitation over

global land areas from surface gauge observations

(e.g., Xie and Arkin 1996; Chen et al. 2002). Spaceborne

measurements of precipitation, with continuous devel-

opments and refinements of retrieval algorithms, have

yielded operational precipitation products based on

satellite observations of infrared (Arkin and Meisner

1987; Susskind et al. 1997; Xie and Arkin 1998), passive

microwave (Wilheit et al. 1991; Spencer 1993; Ferraro

1997), and spaceborne precipitation radar (Kummerow

et al. 2000). Although combining information from mul-

tiple satellite sensors as well as gauge observations and

numerical model outputs yields analyses of global pre-

cipitation with stable and improved quality (e.g., Huffman

et al. 1997; Xie and Arkin 1997; Xie et al. 2003), the

merged precipitation products have one deficiency—

that is, their quantitative uncertainty over land (e.g.,

Nijssen et al. 2001; Fekete et al. 2004).

Among the individual inputs used to define the com-

bined precipitation analyses, both the satellite estimates

and the model predictions are indirect in nature and

need to be calibrated or examined using the gauge ob-

servations (e.g., Ebert andManton 1998; McCollum et al.

2002).Therefore, gaugeobservations (SeoandBreidenbach

2002) play a critical role in constructing precipitation

analyses over land. Gauge-based monthly precipitation

analysis has been constructed over the global land do-

main (e.g., Xie and Arkin 1996; Dai et al. 1997; New

et al. 2000; Chen et al. 2002). Similar analyses on sub-

monthly time scales are relatively new because of limited

accessibility of corresponding station observations from

many countries. Nevertheless, the NCEP Climate Pre-

diction Center (CPC) unified global daily gauge analysis

(P. Xie et al. 2012, unpublished manuscript) has generated

products over global land areas. This analysis is defined

by interpolating quality controlled gauge reports at

;30000 stations over the global land areas (about 12000

over CONUS). For the purpose mentioned earlier, this

CPC dataset bears more confidence but it provides only

24-h accumulation at 0.1258 spatial resolution.
During the last decade or so, the advent of high

spatial- and temporal-resolution precipitation analysis over

CONUS made tremendous progress by combining gauge

and radar observations. Currently, each of the 12 River

Forecast Centers (RFCs) of the National Oceanic and

Atmospheric Administration (NOAA) National Weather

Service (NWS) routinely produces a precipitation analysis

over its own domain and 9 of them use radar data. All

RFCs but NWRFC (from which hourly analysis is not

available) produce hourly as well as 6-hourly analyses.

These analyses from individual RFCs are mosaicked at

NCEP into a national product, called the NCEP Stage IV

(Lin and Mitchell 2005).

The Stage IV precipitation dataset is used in the

construction of precipitation statistics at scales that

are sufficiently fine for many hydrologic applications

(Kursinski and Mullen 2008). It is also used as input to

hydrological models (Chen et al. 2007) and as truth for

model verification (Zhao and Jin 2008). As it has a spa-

tial resolution nearly equal to NDFD grid and a tempo-

ral resolution of 6 h, it is an excellent candidate to be

used as the truth for bias correction and downscaling of

precipitation forecast products. However, the product is

subject to different methods of quality control and ad-

justments by different River Forecasting Centers. Al-

though the implementation of Doppler radar at the

national level has greatly improved precipitation esti-

mates, serious limitations still exist. Despite its fine

spatiotemporal resolution, caution must be employed

when analyzing Stage IV data because of the uncertainty

of radar retrievals in regions of complex terrain or melting

hydrometeors. For this reason, some users restrict their

analysis to the region east of 1058W and place highest

confidence east of 1008W (Kursinski and Mullen 2008).

To provide a better proxy of the truth for the pre-

cipitation field over CONUS, it is apparently advanta-

geous to combine the higher climatological reliability of

the CPC dataset and the higher temporal and spatial

resolution of the Stage IV dataset. We describe the de-

velopment of such a new dataset by combining the two

available datasets for this purpose. This paper is orga-

nized as follows: Section 2 provides descriptions of the

Stage IV and CPC datasets used in the study; section 3

describes the methodology, including the statistical al-

gorithm and the related application procedures; while

the implementation of the new product and generation

of the historical dataset are given in section 4. Qualita-

tive and quantitative evaluations of the methodology

and the new dataset are presented in section 5 and

concluding remarks and further discussions are offered

in section 6.

2. Input datasets

The CPC unified gauge-based analysis is constructed

using the same interpolation algorithm described in Xie

et al. (2007). First, gridded fields of daily precipitation

climatology are constructed. This is done by interpo-

lating the station daily precipitation climatology using
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the inverse-distance technique of Shepard (1968) and

then adjusting the gridded fields against the monthly

climatology of Parameter-Elevation Regressions on

Independent Slopes Model (PRISM). By doing this,

seasonal evolution of precipitation can be captured very

well with consideration of orographic effects. Daily

precipitation analysis is defined by interpolating the

ratio of the observed daily totals to the daily climatology

through the optimal interpolation (OI) algorithm of

Gandin (1965) and multiplying the interpolated ratio to

the daily precipitation climatology.

For the CONUS land domain, the CPC analysis pro-

vides 24-h precipitation accumulations each day (1200–

1200 UTC) at a 0.1258 latitude–longitude mesh. CPC

continuously collects gauge observations, performs ba-

sic quality control, and conducts a temporal version of

the daily analysis on a regular basis. This ‘‘real time’’

CPC analysis uses slightly over 8000 daily gauges pro-

cessed (often with quality evaluation) and sent to NCEP

by individual RFCs. Additional nonreal-time daily gauge

data are received from the National Climatic Data Cen-

ter (NCDC), and this makes a full repository of typically

over 12 000 station reports. A final version of the analysis

can be generated after comprehensive quality control.

For this study, CPC provided the final analysis for the

period from 1 January 2000 to 31 December 2006. As the

final analysis for 2007 and later years was not available,

the temporal version is used for the period from 1 January

2007 through 6 November 2009. By mixing the two dif-

ferent versions, the sample size is increased with assump-

tion that the statistical difference between the temporal

and the final version of the CPC analysis can be neglected.

For simplicity, this dataset is referred to as CPC.

NCEP’s Stage IV precipitation analysis, mosaicked

from the regional analyses produced at the 12 CONUS

RFCs, provides area-averaged, 6-hourly estimates of

precipitation on a 4-km pixel over CONUS. Each RFC

produces a regional analysis over its own domain (see

Fig. 1). The three western RFCs (NWRFC, CNRFC,

and CBRFC) use the PRISM/Mountain Mapper ap-

proach to produce gauge-based analyses. The nineRFCs

east of the continental divide use amultisensor approach

to produce analyses using precipitation estimates from

Weather Surveillance Radar-1988 Doppler (WSR-88D)

radars, hourly gauges, and sometimes satellite data

(when radar data are unavailable). Readers are referred

to the online document on NWS/Advanced Hydrologic

Prediction Service (AHPS) (NWS/AHPS 2011), which

provides a reference on this issue.

The procedure has been operationally running and

the products being archived since 1 January 2002. The

data used in this study consist of 6-hourly (1200–1800,

1800–0000, 0000–0006, and 0600–1200UTC)accumulations

on the 4-km Hydrologic Rainfall Analysis Project

(HRAP) grid and span more than 8 years from 2002 to

2009 with only a few files corrupt or missing. Unlike the

CPC analysis, which is defined only over the CONUS

land area, the Stage IV analysis extends beyond the

CONUS coast and political boundaries and covers some

offshore areas and some bordering regions of Canada

and Mexico (Fig. 2), though one must be more cautious

when using data outside of RFC domains, as RFCs nor-

mally apply much more rigorous quality control inside of

their own domains proper. In this paper, ST4 is used

sometime to refer to the Stage IV data.

It should be pointed out that the CPC daily analysis

and the Stage IV 6-hourly analysis are not completely

independent to each other. There is considerable over-

lap between the gauge data used in the two datasets. For

Stage IV, RFCs generally use all gauge data available to

them. Hourly gauges available throughout the CONUS

include the Hydrometeorological Automated Data

System (HADS) gauges, the hourly Automated Surface

Observing System (ASOS), and the Automated Airport

Weather Stations (AWOS) reports. Locally, Snowpack

Telemetry (SNOTEL) reports are used by western

RFCs, and Integrated Flood Observing and Warning

Systems (IFLOWS) are used by eastern RFCs. Addi-

tional gauges used by someRFCs include those from the

municipal Automated Local Evaluation in Real Time

(ALERT) and from the Limited Area Remote Collec-

tors (LARC). This is likely not a comprehensive list, as

the usage of gauge data and quality control process varies

by each RFC. Our cross comparison of gauge station IDs

shows that over 90% of the ;8000 daily reports used by

the CPC analysis also appear in the HADS/ASOS/

AWOS gauge lists. For gauges that provide both daily

andmore frequent reports, the daily reports used by CPC

FIG. 1. The domains of the 13 NOAARFCs. Note that the Stage IV

analysis covers the 12 RFCs over CONUS.
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are likely to be more reliable than their individual shorter-

time readings (used by Stage IV), as the RFCs often per-

form some quantitative evaluation on the daily totals

(Tollerud et al. 2005). The final version of the CPC anal-

ysis likely contains many more gauges that are indepen-

dent from those used for Stage IV, since it employed

;4000 additional daily gauge reports not available in real

time. Since the Stage IV analysis west of the Continental

Divide (from NWRFC, CNRFC, and CBRFC) are based

on PRISM/Mountain Mapper algorithm similar to that in

the CPC analysis, Stage IV is closer to the CPC analysis in

this region. To the east of theContinentalDivide, the use of

radar precipitation estimates in the multisensor approach

leads to greater independence between the two datasets.

Figure 2 provides a comparison of the two datasets for

a randomly selected but typical example with ST4 ag-

gregated to the same resolution and accumulation pe-

riod as in CPC. While the two analyses have similar

patterns of daily rainfall distribution, there exist signif-

icant differences. In this example, ST4 has more trace

precipitation (,0.5 mm) and extreme values (.40 mm).

CPC recorded a significant area of heavy precipitation

(.20 mm) over northern Montana–Minnesota, which is

missed in ST4.

FIG. 2. (top) The 24-h precipitation from the 0.1258 CPC analysis for 20 May 2006 and

(bottom) the Stage IV analysis aggregated to the same grid and accumulation time period.
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3. Methodology and algorithms

The statistical adjustment of ST4 toward CPC has to

be performed at the CPC grid of lower resolution.

Therefore, the 6-hourly accumulations in the Stage IV

dataset are first aggregated to the resolution of the

CPC—that is, daily accumulation over 0.1258 latitude–
longitude grid boxes. As the next step, a statistical re-

lationship is established between the two datasets at the

CPC resolution and used to adjust the aggregated Stage

IV data to make its climatology look like the CPC da-

taset. Finally, the adjusted Stage IV data are downscaled

back to their original resolution to recover the highly

desired variability in time and space.

a. Aggregation of 6-hourly Stage IV to daily
accumulation at CPC grid

To adjust the Stage IV data toward the climatology of

CPC, one needs to establish a statistical relationship

between the two analyses. As CPC has lower resolution

in both space and time, the first step of the procedure

is to aggregate the Stage IV data to the resolution of

the CPC dataset. The four 6-h accumulations from

1200 UTC of a specific day to 1200 UTC the next day are

first aggregated into a single 24-h accumulation for the

day in consideration. Mathematically, this is written as

ST4H,24h 5 �
4

n51

ST4nH,6h , (1)

where the subscript H indicates the higher spatial reso-

lution associated with the original HRAP grid of the

Stage IV data (abbreviated as ST4). The next step is

interpolating ST4H,24h to the CPC 0.1258 grid (indicated

by subscript L), symbolically written as

ST4H,24h /ST4L,24h , (2)

with the arrow representing an interpolation/extrapolation

scheme.

In this study, a carefully designed budget interpolation

method, used operationally at the NCEP Environmental

ModelingCenter (EMC), is applied to remap precipitation

from the finer ST4 grid to the coarser CPC grid, and vice

versa. To a desired degree of accuracy, the procedure

conserves the precipitation amount in the input grid. The

algorithm simply computesweighted averages of bilinearly

interpolated points arranged in a square box centered

around each output grid point and stretching nearly half-

way to each of the neighboring grid points. Some details

of the algorithm can be found in Mesinger (1996) and

Accadia et al. (2003).

Despite the precipitation conservation of the budget

interpolation algorithm, Eq. (2) is not reversible. In other

words, when ST4L,24h is interpolated from the CPC grid

back to the original ST4 grid, the resulting ST4L-H,24h is

different from ST4H,24h because of the information loss in

the interpolation. Here the subscript L-H represents an

interpolation from the lower-resolution grid to the higher-

resolution grid. Nevertheless, the ratio between the two

fields at each high-resolution grid point—that is,

ST4H,24h

ST4L 2 H,24h

(3)

—can be used to recover the lost information of the fine-

scale patterns.

b. Linear regression for each day of the year
and each CPC grid box

Applying statistical adjustment to precipitation is dif-

ficult because of the noncontinuous nature (i.e., it is

nonnegative) and nonsymmetric probability distribution

of the variable, and no method is satisfactory for all ap-

plications. The probability distribution function (PDF)

matchingmethod iswidely used in calibration of forecasts

against observations but its application requires well-

defined PDFs of the input datasets, which, in turn, re-

quires a sufficiently large sample size.

The purpose of the statistical adjustment of the Stage

IV data is to make its climatology close to that of the

CPC data. Because of the existence of complicated geo-

graphic patterns and orographic features in space and

domination of annual cycle or seasonal variation in the

precipitation observation and analysis (Chen et al. 2002;

Xie et al. 2007), climatology is better defined at each grid

box for each day of the year. With just 7 years of training

data, the sample size may not be sufficiently large for the

PDF matching method. On the other hand, visual exami-

nation of many scatterplots for various locations in the

analysis domain indicated that the relationship between

the CPC and Stage IV analysis are generally very strong,

partly owing to the overlapping information content dis-

cussed in section 2. This suggests that the conventional

linear regression method can be employed. This is not the

optimal approach but it provides a straightforward solu-

tion to the problem and more sophisticated algorithms,

including PDF matching, will be tested in the future when

larger training datasets are available.

Even this linear regression approach requires increased

sample size. A 61-day window is used by including the 30

days before and after the day in consideration with a max-

imum sample size of 427. This choice of the width of the

sampling window is the result of a compromise between a

reasonable actual sample size (wet days) atmost grid points
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for most days and a relatively uniform sample for each day.

The actual sample size is dependent on the geographic lo-

cation of the grid box and the season because only the days

with recordable precipitation indicated by Stage IV are

counted to reduce the impact of the large number of ‘‘dry’’

days. Figure 3 shows the actual sample size for 1 January

and 1 July, as two examples. With this 61-day window, the

actual sample size in the eastern United States is over 200

for most cases, while an empty sample is encountered over

the southwestern desert region during the summer months

(May–September).Note that a spatialwindow is avoided to

retain the higher spatial resolution of the Stage IV data.

For each CPC grid box and each day of the year, a

regression of CPC on the Stage IV precipitation is estab-

lished; that is,

CPC5 aST4L,24h 1 b , (4)

where a and b are the slope and intercept, respectively.

As noted earlier, the subscripts of ST4 are used to

emphasize the difference in the spatial and temporal

resolution between the original data and the aggre-

gated value.

The regression coefficients, a and b, are estimated

with the least squares solution and the fitting error, or

the average of squared residuals [residual sum of squares

(RSS) divided by the sample size] is shown in Fig. 3 for

two special dates. The fitting error is generally less than

100 mm2 except in isolated small areas along the West

Coast and in the South, but larger in the rainy season

(winter in the West Coast and summer to the east of the

Rockies). The quality of the fitting tends to be higher over

the northern part of the Great Plains where the fitting

error is less than 20 mm2 in thewinter.On the other hand,

the lower RSS error over the Southwest may indicate

overfitting with very small sample sizes.

c. Gap filling and temporal smoothing
of the regression coefficients

Figure 4 displays themaps of the regression coefficients

a and b for 1 August, estimated from the data sample.

Both parameters show significant spatial variations with

FIG. 3. (a) The (top) actual sample size and (bottom) regression residual square error (mm) for 1 Jan. (b) As in (a), but for 1 Jul.
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much larger amplitudes and much more finescale pat-

terns over the West, especially in the mountainous areas.

This is consistent with the analysis ofKursinski andMullen

(2008) on the quality of the Stage IV dataset and suggests

that the adjustment by the regression is working in the

correct direction by removing the impact of the terrain.

There are some issues to be addressed with these co-

efficients. First, as discussed earlier and shown in Fig. 3,

the regression is invalid in some areas of the south-

western United States during the summer months, with

the actual sample size close to 0. Second, there are some

abnormally large values of the slope a at a few grid points,

with the maximum being over 100 (see Fig. 5). A careful

investigation of these rare cases suggests that these ex-

treme slopes occur over the Pacific coastal areas where

Stage IV precipitation is systematically smaller than CPC

byone or two orders ofmagnitude. Thismay be caused by

systematic differences in the algorithms of the two anal-

yses and remains to be further investigated but out of the

focus of the current study. Finally, despite the clear sea-

sonal variations, the time series of both coefficients are

characterized by irregular jumps and drops (Figs. 5 and 6).

To deal with the above-mentioned problems, two steps

are taken to modify and refine the slope and intercept

separately. First, an interpolation algorithm is applied

independently to the a and b fields for each day of the

year to fill the spatial gaps and replace the unreliable

values from very small samples. For any grid box where

the coefficients are missing (sample size N , 2) or un-

reliable (sample size less than a threshold,N,Nmin), the

gap is filled by a weighted average of the same coefficient

at the grid boxes in its vicinity. This type of algorithm is

widely used in the analysis of irregularly spaced data

(Shepard 1968) such as precipitation (Xie et al. 2007).

The second step is to smooth the 366-day time series of

each coefficient through Fourier truncation in which the

raw time series is replaced by the accumulation of the first

three harmonic components. Xie et al. (2007) used this

method to remove the high-frequency noises in the daily

climatology of precipitation in their gauge-based pre-

cipitation analysis over East Asia. Experiments with the

number of the harmonic components suggest that three is

a reasonable choice for the coefficients, in contrast to six

used by Xie et al. (2007) for precipitation of daily clima-

tology.As shown in Figs. 5 and 6, the smoothed time series

well represent the annual cycle and long-term trend.

The choice of Nmin may affect this refinement of the

coefficients. However, carefully checking some exam-

ples of time series suggests that interpolated values

during the summer season usually have poor continuity

with the raw values before and after the dry season. As

a result, these unrepresentative values are more subtly

changed in the temporal smoothing step and the results

are not sensitive to the choice ofNmin. Experiments with

Nmin5 2 andNmin5 10 showed little difference and thus

Nmin 5 2 is used. The refined regression coefficients,

while having smoother temporal variations, have little

difference from the raw values on daily maps. The ex-

ample of 1 August is shown in Fig. 7.

d. Application of the regression to the aggregated
Stage IV data

The refined regression coefficients a and b (without

changing symbols) are applied to adjust the aggregated

Stage IV data ST4L,24h; that is,

ST40L,24h 5 aST4L,24h 1b , (5)

where the prime represents the results of the adjust-

ment. FromFigs. 4 to 7, the slope a is between 0.5 and 1.5

and intercept b in the range of 22 to 6 mm for most of

the 0.1258 grid boxes, especially over the eastern two-

thirds of the CONUS domain. Over the mountainous

FIG. 4. Regression coefficients (top) a and (bottom) b, for 1 Aug,

estimated using 7-yr historical datasets and a 61-day time window.
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West, the slope has a larger range, but it is still between
1/7 and 7 except for a very few points. As discussed ear-

lier, even a value as large as 100 is consistent with the

inputs into the regression analysis. As a result, no ex-

treme precipitation is produced because of the abnor-

mally large value of coefficient a. To avoid possible

occurrence of this unexpected situation in the real-time

application, an upper limit of 500 mm is set for ST40L,24h.
On the other hand, the relatively more frequent cases of

negative intercept b can result in negative precipitation

in the adjusted value. Whenever this happens, ST40L,24his
set to be zero.

e. Downscaling the adjusted precipitation
in space and time

The final step of the process is to downscale the ad-

justed Stage IV analysis ST40L,24h in both space and time.

As discussed in section 1, the goal of adjusting the Stage

IV data is to retain the higher spatial and temporal

resolution while adjusting its climatology toward that of

the CPC.As discussed in section 3b, a simple interpolation

of ST40L,24h; that is,

ST40L,24h/ ST40L�H,24h (6)

even using the budget interpolation scheme water vol-

ume conservation scheme, will not achieve this goal

becauseof the irreversibility of (2).Nevertheless, ST40L2H,24h

can be used as the basis for the spatial downscaling.

Recall that the ratio (3) at each high-resolution grid box

can be used to ‘‘remember’’ the finescale structures, which

in turn can be posed to ST40L2H,24h. In other words,

ST40*L2H,24h 5 ST40L2H,24h 3
ST4H,24h

ST4L2H,24h

(7)

can be used to recover the finescale structures with the

asterisk (*) indicating the spatial downscaling.

The temporal downscaling is conceptually straight-

forward: ST40* is disaggregated into the four successive,

FIG. 5. Time series of regression coefficient a for four grid points. The gap-filled raw value (solid) and the smoothed version (dashed)

are shown.
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nonoverlapping 6-h periods with the same proportion as

that in the raw Stage IV records. Mathematically, this is

the inversion of Eq. (1) except applied to ST40* instead

of ST4; that is,

ST40*kH,6h5ST40*L2H,24h3
ST4kH,6h

�
4

n51

ST4nH,6h

for k51, 2, 3, 4:

(8)

In (7) and (8), the grid value for the left-hand side is

automatically set to zero when the denominator is zero.

4. Operational implementation and dataset status

A software package has been developed to implement

the algorithm described in section 3. The first compo-

nent of the package determines the regression co-

efficients a and b, following steps (a), (b), and (c)

described in section 3 and using the historical datasets of

CPC and stage IV for the period from 1 June 2002 to 31

July 2009. The chosen training period provides an

identical potential sample size of 427 (561 3 7) for all

366 days of the year, with a 61-day window and exactly 7

years of data. In the second component of the package,

the gap-filled and temporally smoothed version of the

regression coefficients are retrieved from an archive and

applied to adjust real-time and historical Stage IV 6-h

accumulated precipitation analyses, following steps (a),

(d), and (e) of the algorithm.

The later component of the software package, named

Climatology-Calibrated Precipitation Analysis (CCPA),

was implemented in NCEP’s production suite on 13 July

2010. Since then, CCPA has been running on a real-time

basis to process the Stage IV 6-h precipitation data.

Following the data flow and schedule of Stage IV

products, the first version of the CCPA dataset for the

24-h period ending 1200 UTC each day is available

shortly after 1600 UTC and it will be updated 8, 32, and

40 h later to reflect the updates in stage IV data. For

most days, the final version is available with the first

FIG. 6. As in Fig. 5, but for regression coefficient b.
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update shortly after 0000 UTC the next day. This

product is also called CCPA.

To take advantage of this new CCPA product, its

historical archive was generated at NCEP/EMC for the

period from 1 January 2002 to 13 July 2010. This historical

archive, combined with the real-time output, is available

to the meteorological/hydrological community and the

general public. As a calibrated version of the Stage IV 6-h

precipitation analysis, CCPA can be used in evaluation

and calibration of precipitation forecasts.Using the budget

interpolation algorithm described in section 3a, CCPA

is converted to the 5-km NDFD grid and latitude–

longitude grids at 0.1258, 0.58, and 1.08 resolution, all
covering the CONUS domain.

5. Evaluation

To evaluate the methodology and dataset described in

this paper, CCPA and Stage IV can be directly com-

pared at the original resolution of the latter, with 6-h

accumulations. Figure 8 displays the example for the 6-h

period starting at 1800 UTC 30 December 2009. The

quantitative difference between the two fields is visible,

especially in the shape and extent of the 10-mm contours

in the lower Mississippi states and Utah. This is the im-

pact of the CCPA adjustment. However, the general

precipitation patterns in CCPA (Fig. 8a) and ST4 (Fig.

8b) are almost identical. In fact, the spatial pattern cor-

relation coefficient between the two fields are always well

above 0.99. Therefore, there is no doubt that the finescale

structures are retained by the CCPA methodology.

As described in section 2, the central piece of the

CCPA methodology is the application of linear re-

gression between ST4 and CPC at 0.1258 resolution and

24-h accumulation. Therefore, evaluation of the CCPA

methodology and dataset is focused on this aspect. For

this purpose, CCPA and the original Stage IV data

(ST4) are aggregated to 0.1258 resolution and 24-h ac-

cumulation periods, and compared with CPC. As the

data sample for regression analysis is relatively small,

there is a need to test the robustness of themethodology.

Following an approach similar to Xie et al. (2007), cross

validation is performed with a data holding technique.

Regression slope and intercept are reestimated with the

same sample pool as described in sections 3b, 3c, and 4,

except that the data for a particular 1-yr period (1 July to

30 June next year) are excluded, and the analysis for the

same period is reproduced from these new regression

coefficients using (5). The same procedure is repeated

for each of the seven exclusive and nonoverlapping pe-

riods and the dataset reproduced is referred to as the

cross-validation analysis (CVA).

As a single point example, Fig. 9 shows the time series

of the three analyses (CPC, ST4, and CCPA) for a typi-

cal grid point located at 428N, 1028Wover the warm and

wet seasons of July–August 2008 and May–June 2009.

Overestimation in ST4 compared with CPC for most

precipitation events and phase difference between the

two are clearly shown. As expected, CCPA generally

follows the variation of ST4 and brings it toward CPC in

most cases. However, exceptions do exist and the most

striking one is the 15 August 2008 event. For that day,

ST4 missed the heavy rainfall (about 25 mm) documented

by CPC and CCPA did little to adjust it. This issue will be

addressed in section 6. CVA (not shown) generally follows

the variation of CCPA.

Objective evaluation of the CCPA methodology and

dataset requires comparing some statistic scores aver-

aged over some extended periods. For this purpose, an

annual average is used in this paper as a 1-yr period is

long enough to smooth out random variations and short

enough to include CVA in the comparison. Figure 10a

displays the 24-h accumulation from the CPC dataset,

averaged over the 1-yr period from 1 July 2008 through

FIG. 7. Regression coefficients (top) a and (bottom) b for 1 Aug

after gap filling and smoothing.
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30 June 2009. Since the emphasis here is to evaluate how

much CCPA is closer to CPC in contrast to Stage IV, the

differences of Stage IV, CVA, andCCPAwith respect to

CPC are shown in Figs. 10b, 10c, and 10d, respectively.

Without calibration, Stage IV has larger differences with

either negative or positive values, ranging from 25.3 to

5.6 mm (Fig. 10b). Although the spatial patterns are

patchy, the positive ‘‘bias’’ is apparently larger over the

Missouri Basin River Forecast Center (MBRFC) area

(Figs. 1 and 10b) than other areas, exceeding 5 mm at

many points. In fact, the time series in Fig. 9 are from

this area. As discussed in the introduction, different

RFCs use different quality control and algorithms and

this leads to different statistical properties of the ST4

analysis.

Since CCPA and CVA are statistical adjustments to

Stage IV in magnitude, their ‘‘biases’’ preserve the fi-

nescale features of high spatial variability in Stage IV

and have much smaller amplitudes, with the absolute

value being less than 1 mm for almost all grid points.

Particularly, the widespread large positive bias over

MBRFC is significantly reduced. In addition, the im-

provements in CVA and CCPA are very similar to each

other, suggesting that the methodology is reasonably ro-

bust and the sample size is (though marginally) sufficient

for the regression analysis. The positive impact of the

CCPA statistical adjustment is even more appealing in

terms of root-mean-square error (RSME). FromFig. 11a,

it can be seen that RMSE of ST4 is roughly following the

pattern of annual mean precipitation (Fig. 10a) while the

maxima along the West Coast and over the southern

plains can be as large as 20 mm. The percentage of RMSE

reduction by the CCPA procedure, displayed in Fig. 11b,

is positive everywhere except for a few scattered local

spots in the Southwest desert, Great Lakes, and other

remote regions. CCPA reduces the RMSE by 40% or

more over a large portion of CONUS.

In addition to the long-term mean, another aspect of

the precipitation climatology is the standard deviation.

From Eq. (5) and the least squares solution to linear

FIG. 8. The 6-h precipitation from (a) CCPA at 4-kmHRAP grid

accumulated for the period from 1800 UTC 30 Dec to 0000 UTC

31 Dec 2009 and (b) Stage IV analysis at the same grid and accu-

mulation time period.

FIG. 9. Time series of 24-h precipitation at (428N, 1028W) from

0.1258 CPC (short dashed line), Stage IV (dotted and dashed line),

and CCPA (solid line) for two periods: (a) 1 Jul–31 Aug 2008 and

(b) 1 May–30 Jun 2009.
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regression (4), it is straightforward that when evaluated

with the 7-yr dependent sample, CCPA would have a

mean equal to that of CPC and its standard deviation

multiplied by the regression slope a. This adjustment of

the mean toward CPC can be seen for a partial sample,

as demonstrated in Fig. 10. The change in standard de-

viation can be displayed by comparing the cumulative

distribution function (CDF) of the daily precipitation of

the three datasets. Figure 12 shows such a comparison

for the same grid point as shown in Fig. 9 for the 1-yr

period from July 2008 to June 2009. The difference in the

CDF between the ST4 and CPC is clear: ST4 has higher

probability of precipitation (POP) compared with CPC

(0.42 versus 0.36); the extra precipitation events in ST4

are concentrated in very light rain [0–1 mm (0.16 versus

0.11)] and heavy rainfall [.30 mm (0.04 versus 0.01)].

Since the regression slope is around unity and mainly in

the (0.5, 1.0) range and the intercept is mainly positive

and small (less than 5 mm), the adjustment in CDF is

basically moving the extreme cases toward the middle

range. As expected, the CDF of CCPA is very close to

that of CPC except near the dry end, where the negative

values in CCPA are artificially set to 0 (section 3d). To

quantify this improvement, the 7-yr historical dataset is

used to construct the CDF at each grid point. CPC is

assumed as the observation and continuous ranked prob-

ability scores (CRPS) are calculated by integrating over the

range between 1 and 29 mm. The difference in this partial

form of CRPS between CCPA and ST4 is shown in Fig. 13

and the error reduction in CPPA is clearly shown for

most grid boxes. Significant increases in CRPS are found

only over limited areas, with concentrations in the South,

especially along the coast of the Atlantic and Gulf of

Mexico.

To further examine the impact of the statistical ad-

justment and the quality of the CCPA dataset, CCPA,

ST4, and CVA are verified against a different dataset,

estimated from NOAA RFC rain gauge network (Zhu

2007). These daily rain gauge reports are box averaged

to 0.1258 and defined as RFC rain gauge analysis (RFC).

As CPC final analysis uses about 4000 extra daily gauge

reports, RFC is considerably different from CPC, de-

spite the overlap in information content. For this reason,

verification against RFC provides an alternative, but

FIG. 10. (a) The 24-h precipitation from 0.1258CPC averaged between 1 Jul 2008 and 30 Jun 2009 and the differences of (b) Stage IV, (c) CVA,

and (d) CCPA with respect to CPC. Stage IV, CVA, and CCPA are aggregated to the same grid and accumulation time period as CPC.
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nonindependent, test to the CCPAmethodology. RMSE

and absolute mean error (ABSE) of 24-h precipitation

are calculated against the RFC rain gauge analysis as a

function of precipitation threshold. For each threshold

value, all of the grid points where the RFC rain gauge

analysis is less than the value are excluded in the calcu-

lation. These statistical scores are averaged over each of

the seven exclusive and nonoverlapping 1-yr periods. The

results for the last period are shown in Fig. 14. When

calculated with all grid points with observed precipitation

(threshold 0.0 or 0.2 mm), there are clear improvements

in terms of RMSE in both CCPA and CVA over the raw

stage IV data, with a RMSE reduction of 0.27 mm for

CCPAand 0.11 mm for CVA.The improvements are still

evident for higher thresholds up to 15 mm. For large

precipitation amounts (thresholds of 35 and 50 mm), the

improvement by CCPA is less impressive. For thresholds

greater than 20 mm, CVA is not as good as ST4. The

statistics in terms of ABSE, though showing less

difference among the three lines, still supports similar

conclusions. The deterioration of CVA at higher

thresholds suggests that the 61-day window in the sample

pool of the regression analysis is necessary with the rel-

atively short ST4 archive and cautionmust be practiced in

the application of CCPAwith heavy precipitation events.

6. Summary and further discussions

A simple linear regression method is employed to

statistically calibrate the multisensor Stage IV precip-

itation analysis over the CONUS domain and makes its

climatology closer to that of the rain gauge–based esti-

mate of the CPC unified global daily gauge analysis.

Available archived historical datasets of the two analy-

ses within a 7-yr period are used to estimate the regression

coefficients for each Julian day of the year and each grid

point in the CPC grid mesh (0.1258 latitude–longitude)
over the CONUS. After gap filling and temporal smooth-

ing, these coefficients are then applied to the spatially and

temporally aggregated Stage IV data to generate an

adjusted analysis, which is then downscaled in space

and time to the original grid and accumulation period

of Stage IV. The procedure, referred as Climatology-

Calibrated Precipitation Analysis (CCPA), was imple-

mented in the NCEP production suite on 13 July 2010 to

routinely process incoming stage IV 6-h precipitation

analyses and generate corresponding CCPA files. It was

also used to process the historical Stage IV dataset

covering the period from 1 January 2002 to 13 July 2010

to form a complete archive of CCPA.

Subjective and objective methods are used to evaluate

the CCPA methodology and the corresponding dataset.

CCPA retains the fine spatial and temporal structures of

ST4 analysis; it has a climatological distribution (mean

FIG. 11. (a) RMSE of Stage IV daily precipitation at 0.1258 CPC
grid, calculated for the period between 1 Jul 2008 and 30 Jun 2009.

(b) Percentage of RMSE reduction due to the CCPA procedure;

that is, the difference in RMSE between Stage IV and CCPA,

normalized by the RMSE of Stage IV shown in (a).

FIG. 12. An example of CDF of CPC (cross), ST4 (closed circle),

and CCPA (open circle), constructed using daily accumulation

data from 1 Jul 2008 to 30 Jun 2009, for the 0.1258 grid.
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and cumulative distribution function) closer to that of

the CPC analysis for daily analysis at 0.1258 resolution;
when comparedwithCPCor a similar dataset from gauge

observations, CCPA shows significant improvement in

termsof root-mean-square error (RMSE).Cross-validation

analysis generated by the same method but with partially

held training data has similar properties but slightly less

improvement, suggesting that theCCPAmethodology is

robust and further improvement can be expected as the

training datasets become larger.

In addition to the choice of the linear regression ap-

proach discussed in section 3b, the methodology used in

this study is also subject to other limitations. The esti-

mation of regression coefficients only used data points

with ST4 positive and those samples with positive CPC

value but zero ST4 record are neglected. Various arti-

ficial rules are set in the application of CCPA: the ad-

justment is applied only when daily precipitation is

greater than zero and all negative values resulting from

the regression will be set to zero in the adjusted version.

As a result, the probability of precipitation (POP) is not

adjusted to the CPC value (see Fig. 12 and its discussions).

When compared with CPC or a similar dataset based

on gauge observations, CCPA shows a less impressive

impact for higher threshold values. The reason for this

nonuniform behavior can be revealed by scatterplots of

Stage IV analysis against CPC values in the sample of

regression development for each grid point and each

Julian day. Four selected examples for 1 July are shown

in Fig. 15 and the corresponding CCPA/CPC points are

also plotted. In an ideal case (Fig. 15a), all data points

are concentrated in a narrow band along the regression

line close to the diagonal and the adjustment is trivial. A

less ideal case, shown in Fig. 15b, has a less concentrated

band along a regression line away from the diagonal and

hence larger adjustment by CCPA. For the cases shown

in Figs. 15c and 15d, the data points are widely scattered

and the slope of the apparent ‘‘regression’’ curve is dif-

ferent for the lower and higher precipitation ranges. As

heavy precipitation events are scarce, a linear regression

is always dominated by the lower precipitation points.

While the mean is brought closer to CPC by the CCPA

procedure, some points with large precipitation in CPC

but much smaller ST4 value could be taken further away

from the diagonal (and contributes to largerRMSE). This

scenario is seen in Fig. 15dwhere ST4missed the only few

heavy precipitation records in CPC despite its overall

overestimation for light and medium rain.

In summary, the merit of the methodology used in

this paper is limited by the weakness of the simple

linear regression model, an inadequate sample of high-

precipitation events, and the noncontinuous nature of

precipitation. For some grid points, Stage IV data tend

to underestimate the frequency of heavy precipitation

and the CCPA procedure may not be able to correct it.

Cross validation suggests that the current estimation of

regression coefficients is fairly robust with the current

7 years of archived data over all precipitation events, but

may be inadequate for heavy rainfall amounts. Therefore,

the users of the CCPA dataset should take extra caution

with heavy precipitation, especially the extreme events.

The quality of CCPA should be improved in the fu-

ture by increasing the length of the archived CPC and

Stage IV datasets and using a more realistic statistical

adjustment method. There is a plan at NCEP/EMC to

perform periodic updating of the regression coefficients

with increased sample size.

FIG. 13. Difference in CRPS between CCPA and ST4. CRPS is

calculated from the corresponding CDFs from 7-yr historical da-

tasets with the corresponding CDF of CPC as the reference. Neg-

ative values indicate CRPS reduction owing to the adjustment of

ST4 using CCPA methodology.

FIG. 14. RMSE (solid line) and ABSE (dotted line) of 24-h

precipitation from Stage IV (cross), CVA (open circle), and CCPA

(closed circle) verified against RFC rain gauge analysis at the 0.1258
grid, as a function of precipitation threshold.
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