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Abstract In order to provide ensemble-based subseasonal (weeks 3 and 4) forecasts to support the
operational mission of the Climate Prediction Center, National Centers for Environmental Prediction,
experiments have been designed through the Subseasonal Experiment (SubX) project to investigate the
predictability in both tropical and extratropical regions. The control experiment simply extends the current
operational Global Ensemble Forecast System (GEFS; version 11) from 16 to 35 days. In addition to the control,
the parallel experiments will be mainly designed to focus on three areas: (1) improving model uncertainty
representation for the tropics through stochastic physical perturbations; (2) considering the impact of the
ocean by using a two-tiered sea surface temperature approach; and (3) testing a new scale-aware convection
scheme to improve the model physics for tropical convection and Madden-Julian Oscillation (MJO) forecasts.
All experiments are initialized every 5 days at 0000 UTC during the period of May 2014–May 2016
(25 months). In the tropics, MJO forecast skill has been improved from an average of 12.5 days (control) to
nearly 22 days by combining all three modifications to GEFS. In the extratropics, the ensemble mean anomaly
correlation of 500-hPa geopotential height improved over weeks 3 and 4. In addition, the Continuous Ranked
Probability Score (of the Northern Hemisphere raw surface temperature (land only) is improved as well. A
similar result is found in the Contiguous United States precipitation, although forecast skill is extremely low.
Our results imply that calibration may be important and necessary for surface temperature and precipitation
forecast for the subseasonal timescale due to the large systematic model errors.

1. Introduction

The National Oceanic and Atmospheric Administration (NOAA) is working on a unified modeling system
through the National Weather Service Next Generation Global Prediction System project (NOAA National
Weather Service, 2014) to provide the best possible guidance to a wide customer base, including emergency
managers, forecasters, and the aviation community, to protect life and property and enhance the national
economy. In 2016, the National Academies of Sciences, Engineering, and Medicine published the strategies
for subseasonal to seasonal forecasts through the next generation Earth system prediction (National
Academies of Sciences, Engineering, and Medicine, 2016). The dominant factors that impact model predic-
tion for medium-term (7 to 10 days) forecasts are slightly different than for extended range (multiweeks) fore-
casts. A numerical weather prediction system (including an ensemble forecast system) heavily relies on
atmospheric initial conditions (including initial uncertainties) and model parameterizations for a short-range
forecast. As forecast lead time increases, the impact of the ocean and other external forcing in the Earth sys-
tem become important; thus, they cannot be neglected (Li et al., 2009; Liu et al., 2016). Various studies have
shown that the oceanic variation at the subseasonal timescale is primarily related to thermodynamic forcing
(Li et al., 2001; Ling et al., 2015). The impacts of large-scale ocean currents are of secondary importance
(Takaya et al., 2010).

Subseasonal forecasts span the time period between weather and seasonal (and/or climate) forecasts.
Two of the leading systems (the European Centre for Medium-Range Weather Forecasts global ensemble
system and the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2
(CFS v2)) are extending weather forecast to cover subseasonal timescale but having limited value, such as
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surface temperature and precipitation for Northern Hemisphere (NH)
extropical area (Saha et al., 2014; Vitart, 2014). Currently, there are no
optimal configurations of numerical weather or climate models that
can provide skillful forecast covering the subseasonal timescale. With
the ultimate goal to improve forecast skill and deliver useful numerical
guidance at subseasonal timescales, we explore the forecast skill of an
extended-range version of the NCEP Global Ensemble Forecast System
(GEFS). An early effort has already shown positive results when extend-
ing the forecast lead of the GEFS and updating the underlying sea sur-
face temperature (SST) boundary conditions (Zhu et al., 2017).

The NCEP GEFS has been widely used as probabilistic forecast guidance for
weather (0–7 days) and week-2 anomaly forecast since it was implemen-
ted into operation in 1992 (Zhou et al., 2016, 2017). The products include
upper-air atmospheric variables, surface weather elements, precipitation,
and hurricane tracks. The operational GEFS has provided more skillful
numerical guidance compared to the operational high-resolution determi-
nistic Global Forecast System (GFS; Figure 1) based on length of forecast
exceeding 0.6 mean pattern anomaly correlation (AC, and thereafter;
Wilks, 2011) in the NH (20°N–80°N) 500-hPa geopotential height for the
past 3 years. The GEFS ensemble mean improves from 8.92 days of skillful
forecast (AC > 0.6) in 2014 (GEFS v10) to 10.52 days in 2016 (GEFS v11) in
contrast to the GFS that improve from 7.9 days in 2014 to 8.45 days in

2016. Improvement of the numerical guidance is achieved through model upgrades that include enhanced
data assimilation, model physics, initial perturbations, stochastic physics perturbations, andmodel resolution.

In contrast to current operational CFS v2 (Saha et al., 2014), there are several advantages in extending GEFS to
cover the subseasonal timescale, including (1) improved initial perturbations using an ensemble Kalman filter
(EnKF) data assimilation system (Zhou et al., 2017), to better represent observation and analysis uncertainties;
(2) increased horizontal resolution for weather, allowing small-scale process to be resolved and more realistic
interactions around multiple scales; (3) advanced model physics with various stochastic physics perturbation
schemes to represent model uncertainties (Han et al., 2017); (4) increased ensemble size (i.e., GEFS currently
runs 80 + 4 members each day) to provide more reliable probabilistic guidance; (5) suitable configuration
(ensemble size and frequency) for real-time reforecasts/hindcasts for calibration; and (6) seamless forecasts
across weather and seasonal timescales.

Based on the performance of GEFS for the extended range forecast in our early investigation on SST forcing
(Zhu et al., 2017), this study builds on those results and provides an additional comprehensive understanding
from upgraded GEFS model with higher resolution, taking into account the key factors that may contribute to
improve forecast skill in the extended range for GEFS. In this investigation, the NCEP operational GEFS v11
(Zhou et al., 2017) is used as the base configuration. The goal is to focus and improve our common under-
standing in three different physical processes (or scientific areas). The first area is to improve tropical forecast
uncertainty. Unlike extratropical baroclinic systems, the tropics exhibit less potential error growth modes
from optimal initial perturbations (Toth & Kalnay, 1993, 1997). The lack of error growth in the tropics is espe-
cially pronounced in the current GEFS due to its underdispersion (Zhou et al., 2017). To improve this defi-
ciency, we use a combination of stochastic physical perturbation schemes to represent tropical forecast
uncertainty. The second area is to more realistically consider the day-to-day variability of the underlying
SST using a two-tiered SST approach. This allows for a one-way interaction between the ocean and atmo-
sphere that may be an improvement in representing the impact of ocean forcing (Melhauser et al., 2016;
Zhu et al., 2017). The third area is to test a new convection scheme with a scale-aware parameterization that
can more realistically represent the vertical motion, radiative impact, and cloud and precipitation processes
associated with tropical convection (Han et al., 2017).

The experiment design and configurations will be described in section 2. The forecast skill will be evaluated in
section 3, and an evaluation of ensemble size will be discussed in section 4. Summary and conclusions along
with future work will be presented in section 5.

Figure 1. Lead time, in days, at which forecast loses useful skill (anomaly cor-
relation [AC] = 0.6) for Northern Hemisphere (20°N–80°N) 500-hPa geopo-
tential height of Global Forecast System (GFS) forecast (blue) and Global
Ensemble Forecast System (GEFS) ensemble mean forecast (red) averaged
over each year in 2014–2016.
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2. Experiment Design and Configurations

In this paper, we test three configurations to explore the forecast skill of GEFS on subseasonal prediction. In
the design of each experiment, we combined the changes based on earlier investigations on the effect of
some of the configurations (Han et al., 2017; Melhauser et al., 2016; Zhu et al., 2017). Although it is useful
to independently examine the impact of each configuration change for a full experiment period, running
these permutations for the full experiment period would be too computationally expensive with a high-
resolution GEFS and 21 ensemble members.

2.1. Operational GEFS v11 and Extended Forecast—“CTL”

As a control, we apply a simple extension of forecast lead based on the current operational GEFS (v11). The
operational GEFS v11 was implemented on 2 December 2015. It uses a reduced horizontal resolution version
of the NCEP GFS Global Spectral Model (with semi-Lagrangian dynamics) v12.0 (GSM). GEFS is initialized four
times per day (0000, 0600, 1200, and 1800 UTC) and integrated to 16 days (Han et al., 2017; Sela, 1980). The
horizontal resolution is approximately 34 km for days 0–8 and 52 km for days 8–16 with 64 hybrid vertical
levels. More details of GEFS v11 can be found in Zhou et al. (2017), Melhauser et al. (2016), and Zhu et al.
(2017). For the extended GEFS forecast in this study, the horizontal resolution of forecast lead days 16–35
is the same as days 8–16 (about 52 km). In addition, the GEFS uses the same SST forcing as the GFS, which
is initialized with the Real Time Global (RTG) SST analysis (Gemmill et al., 2007) and damped to analysis
climatology (90-day e-folding; Melhauser et al., 2016; Zhu et al., 2017) during model integration. The sea
ice concentration is initialized from the daily 0000 UTC sea ice analysis from the Interactive Multisensor
Snow and Ice Mapping System (Ramsay, 1998).

2.2. New Stochastic Perturbed Physics Schemes—“SPs”

The first experiment replaces the stochastic total tendency perturbation (STTP; Hou et al., 2008) used in the
control (and the operational GEFS) with a suite of three “stochastic physics” (SP) methods. This SP suite intro-
duces a better representation of model uncertainty into the model integration. This is a natural first

Figure 2. Five-scale random patterns used in stochastic perturbed physics tendencies (SPPT). On the top of each plot, the
numbers (except for upper left; nondimension) represent the scales of spatial and temporal perturbations with the maxi-
mum amplitude and contour intervals in the bracket.
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experiment, as this SP suite is planned for inclusion in the next configuration of the operational GEFS, and the
stochastic physics schemes are already a part of the operational GFS data assimilation system.

The current method of modeling model uncertainty, STTP, introduces additional ensemble spread by adding
a random combination of the 6-hr tendency from other ensemble members and has been used in operations
since GEFS v9 (2010). The impact of STTP is largely constrained to the extratropical region and the boreal win-
ter; there are only minor impacts in the tropical region. To replace STTP, a suite of three widely accepted SP
methods are used: (1) stochastic kinetic energy backscatter (SKEB; Shutts & Palmer, 2004; Shutts, 2005; Berner
et al., 2009); (2) stochastically perturbed parameterization tendencies (SPPT; Buizza et al., 1999; Palmer et al.,
2009); and (3) stochastic perturbed humidity (SHUM; Tompkins & Berner, 2008). These schemes have already
been implemented in the hybrid-EnKF data assimilation system of GFS, making them readily available for use
in the GEFS. SPPT perturbs the combined tendencies of wind, temperature, and water vapor produced by the

Figure 3. Global meridional cross section showing the impact of stochastic perturbations for 144-hr forecasts from the
average of six spring initializations (left) and six fall initializations (right). Paneled are zonal wind spread (m/s) from no
stochastic perturbations (noSP; top), and the difference of Stochastic Total Tendency Perturbation (STTP; upper middle),
stochastic kinetic energy backscatter (SKEB; middle), stochastically perturbed parameterization tendencies (SPPT; lower
middle), and stochastic perturbed humidity (SHUM; bottom) from noSP. GEFS = Global Ensemble Forecast System.
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GFS physical parameterizations (excluding clear-air radiation). Our imple-
mentation of SPPT combines five different random patterns with different
correlation length scales and/or timescales to determine the perturba-
tions. The patterns are uniform in the vertical, except they are reduced in
magnitude near the surface and tapered to zero near and above the tropo-
pause. An example of the individual independent scale random patterns
and combined five-scale random pattern is shown in Figure 2 (values of
sigma represent maximum amplitude).

SHUM introduces stochastic perturbation to represent model uncertainty
of humidity. It perturbs the near-surface humidity state to present subgrid
distribution and variability through convection. SHUM uses the same ran-
dom pattern generator as SPPT, but only a single spatial-temporal scale is
used. The perturbation is maximized in the lowest model level and
decreases exponentially with height.

SKEB is used to represent uncertainty in representing the upscale impacts from subgrid-scale processes. This
is done via a stream function forcing based on the dissipation rate. Unlike other implementations of SKEB, the
GFS implementation of SKEB only considers numerical dissipation (diffusion). Perturbations are generated
independently on each vertical level and then vertically smoothed to provide some vertical coherence.
The inclusion of SKEB improves the power spectrum of kinetic energy of the global model, which otherwise
exhibits damped power near the truncation frequency.

Figure 3 shows the impact of the individual stochastic schemes on ensemble spread at 144 hr (average of six
spring cases and six fall cases) when compared to ensemble spread without introducing stochastic perturba-
tions (noSP, top row). The stochastic system used in the control (and operational GEFS), STTP, produces addi-
tional spread in the extratropics but has little impact in the tropics (row 2). Of the components in the
stochastic physics suite, SKEB produces additional spread in similar areas as STTP (though slightly muted;
row 3). The other two components, SPPT (row 4) and SHUM (row 5), both increase spread in the tropics where
the control system is deficient. SPPT also has an impact in the spring/summer hemisphere. In combination,
these stochastic schemes generally improve forecast uncertainty, particularly in the tropics, which may lead
to improvements in tropical forecast skill.

2.3. Two Tiered SST Approach—“SPs + SST_bc”

In addition to the new stochastic perturbed physics schemes discussed in section 2.2, this experiment uses a
“two-tiered” SST approach for lower boundary conditions over ocean by considering an evolving ocean SST
state gradually increasing with lead time. The two-tiered SST approach relaxes the RTG SST analysis to a bias-
corrected SST prediction from the operational CFS v2 (Saha et al., 2014) rather than the climatological SST

that is used in the control configuration. The relaxation SST is updated to
the forecast CFS SST every 24 hr of model integration (Melhauser et al.,
2016; appendix I of Zhu et al., 2017). While we consider this an interim con-
figuration in place of true coupling, this method should still be an improve-
ment over relaxation to climatology. Compared to the operational version
of the SST scheme that relaxes the initial SST analysis to climatological SST,
the lower boundary of atmospheric model receives evolving bias-
corrected SSTs from a coupled model; thus, the boundary SST is repre-
sented more realistically. Also, compared to a fully coupled forecast sys-
tem, the computational resources are significantly reduced since an
ocean and sea ice model are not required. While this is not a true coupled
approach, the impact of using predicted ocean variation from the fully
coupled system (CFS v2) might be determined through various evalua-
tions, such as the Madden-Julian Oscillation (MJO) skill and other tropical
low-level forecast elements of the extended GEFS forecast. Meanwhile,
work is ongoing at NCEP to produce a fully coupled GEFS (atmosphere,
ocean, sea ice, wave, and aerosol).

Figure 4. Amplitude of Madden-Julian Oscillation during May 2014 to May
2016 from Global Data Assimilation System analysis data. The resolution of
the time series is 5 days.

Figure 5. Madden-Julian Oscillation RMM1 + RMM2 forecast skill for CTL
(black), SPs (red), SPs + SST_bc (blue), SPs + SST_bc + SA_CV (green), and
CFSv2 (yellow) during the period of May 2014 to May 2016. AC = anomaly
correlation.
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2.4. New Scale Aware Convective Scheme—“SPs + SST_bc + SA_CV”

The final component tested for this extended forecast system is an
upgraded Simplified Arakawa-Schubert cumulus parameterization
scheme that is both scale- and aerosol-aware (Han et al., 2017). This
upgraded scheme was recently implemented into the operational GFS
v14 on 19 July 2017. Since this change would presumably be included in
the future GEFS upgrade as well, it is logical to consider this change here.

The main changes in the upgraded scheme include the following: (1) the
rain conversion rate decreases with decreasing air temperature above
the freezing level; (2) convective adjustment time in deep convection is
proportional to the convective turnover time, with convective available
potential energy approaching zero after the adjustment time; (3) cloud
base mass flux in the shallow convection scheme is modified to use con-
vective turnover time as the convective adjustment timescale; (4) convec-
tive inhibition in the subcloud layer is an additional trigger condition to
suppress unrealistic spotty rainfall, especially over high terrain during the
summer; and (5) convective cloudiness is enhanced by suspended cloud
condensate in an updraft (Han et al., 2017).

Retrospective runs of the NCEP GFS v14 implementation (an approxi-
mately 13-km horizontal resolution deterministic forecast; Han et al.,
2017) using this updated Simplified Arakawa-Schubert scheme have
improved precipitation forecasts for Contiguous United States (CONUS)
at short lead times (equitable threat score is higher, and frequency bias
is reduced; not shown).

2.5. Experiment Configurations

Each of the four experiments is initialized every 5 days at 0000 UTC for a
25-month period from May 2014 to May 2016. This cadence allows us to
sample each season over multiple years while limiting computational load
and also satisfies the requirements of one of the primary customers for
subseasonal forecasts, Climate Prediction Center (~1/week). Each experi-
ment runs 20 perturbed forecasts and a control (unperturbed) forecast
out to 35 days. The ensemble resolution for all experiments is identical
to the operational GEFS out to 16 days, with the low-resolution portion
extended to 35 days. The initial analyses (or initial condition) and perturba-

tions are also identical for all experiments and taken from the NCEP GFS v13 data assimilation system (with
the hybrid analysis—4DEnVar hybrid analysis), which was implemented in May 2016.

3. Evaluation

The verification in this study will evaluate the performance (forecast skill) difference for the three designed
experiments compared to CTL. The evaluation covers tropical and extratropical areas, including upper atmo-

sphere and surface variables applying deterministic (ensemble mean) and
probabilistic (ensemble distribution) verifications. The evaluation varies
from single variables to phenomena that combine the effect of multiple
variables such as MJO. For extended range forecasts, such as week 2 and
weeks 3 and 4, an average over the period (or an accumulation within
the period for precipitation) has been used to evaluate forecast skill. All
verifications are on 1° × 1° or 2.5° × 2.5° lat-lon grid points weighted by lati-
tude. The proxy truths for verification use the NCEP Global Data
Assimilation System analysis and the Climatological Calibrated
Precipitation Analysis (Hou et al., 2014). The skills are defined with respect
to NCEP/NCAR 40-year reanalysis (Kalnay et al., 1996) climatology.

Figure 6. Root mean square error (RMSE) of the ensemble mean (solid) and
the ensemble spread (dash) plotted every 12 hr out to 35 days for 850- (top)
and 250-hPa (bottom) tropical (20°N–20°S) zonal wind (m/s) during the May
2014 to May 2016 period comparing CTL (black) and SPs (red).

Table 1
Days of Useful Madden-Julian Oscillation Forecast Skill (0.5 of Amplitude
Correlation Coefficient) for the Four Experiments Over the Full Period (1 May
2014 to 26 May 2016) and for a Weak (May 2014 to March 2015) and
Strong Period (April 2015 to March 2016)

Configurations Weak Strong 25 months

CTL (STTP) 12.2 12.8 12.5
SPs 15.8 18 16.8
SPs + SST_bc 17 19.5 18.5
SPs + SST_bc + SA_CV 18+ 23+ 22.0
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3.1. Tropical Evaluation—Forecast Skill of MJO

As one of the sources of predictability for the subseasonal timescale (or
extended range forecast), MJO prediction skill is always considered a key
metric when evaluating the forecast capability of the operational models
(Kim et al., 2014; Ling et al., 2015; Neena et al., 2014; Wang et al., 2015).
In this study, we evaluated the Wheeler Hendon MJO skill (Lin et al.,
2008; Wheeler & Hendon, 2004), which is defined as the bivariate anomaly
correlation between the analysis and forecast of two principal component
time series (Real-time Multivariate MJO—RMM1 and RMM2) from com-
bined empirical orthogonal functions of the MJO components using
outgoing long wave radiation (OLR) and zonal wind at 200- and 850-hPa,
respectively, that is,

AC τð Þ ¼ ∑Ni¼1 a1 tð Þf 1 t; τð Þ þ a2 tð Þf 2 t; τð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Ni¼1 a

2
1 tð Þ þ a22 tð Þ½ �

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Ni¼1 f 21 t; τð Þ þ f 22 t; τð Þ� �q ; (1)

where f1(t, τ) and f2(t, τ) are the RMM1 and RMM2 of the forecast at lead
day τ initialized at day t and a1(t) and a2(t) are the RMM1 and RMM2 of
the analysis data corresponding to the forecast at day t.

To calculate the AC score, we first calculated the daily mean of the zonal
wind and OLR using 7-point average (�3,�2,�1, 0, 1, 2, and 3 day(s)) cen-
tered at 00Z of the validation time. Since at the time of the evaluation we
did not have the long term GEFS hindcast available, we used the climate
data averaged between 1999 and 2011 from NCEP/NCAR reanalysis as a
reference to obtain the zonal wind and OLR anomaly. To obtain the
RMMs, we projected the Wheeler Hendon MJO structure (i.e., the first
two principal components) of 850-hPa, 250-hPa zonal wind, and OLR
anomaly to both forecast and analysis data (Gottschalck et al., 2010). The
AC score is then calculated by correlating the RMM1 and RMM2 between
forecast data at each lead day and the analysis at the corresponding
validation time.

The MJO strength during the experimental period is shown in Figure 4.
Over the 2-year period, there are several significant MJO events with the
strongest occurring in April and July of 2015. The MJO skill of the four
experiments and CFS v2 (Saha et al., 2014) during the period of 1 May
2014 to 26 May 2016 (Figure 5) indicates that using SPPT combined with
SHUM and SKEB (SPs hereafter) outperformed the STTP (CTL) on MJO fore-
cast skill by about 4 days (AC ≥ 50%), improving the MJO skill from 12.5 to
16.8 days. Since a difference occurs without changing themodel physics or
its external forcing, an improvement is mainly contributed by SPs. The
decrease in forecast error and increase in spread of the upper level
(250 hPa) and lower level (850 hPa) tropical zonal winds are providing a
better representation of tropical forecast uncertainties. This improved
representation of uncertainty enhances the overall performance of tropi-
cal circulation as illustrated in the day-to-day verification out to 35 days
(Figure 6). Figure 6 also indicates that the errors are saturated around
25 days, which means that there is no value to use daily forecasts for
longer lead times.

In addition to the uncertainty associated with the model dynamics and physics, as an uncoupled forecast sys-
tem, error in the underlying SST forcing is a significant factor limiting the forecast skill (Wang et al., 2015). As
previously discussed, the SST forcing in the operational GEFS uses the RTG analysis damped to the climatol-
ogy; therefore, the day-to-day variability of the SST cannot be well represented. To more realistically

Figure 7. Global meridional cross section of the zonal wind spread (m/s) at
360 forecast hours (15 days) for (a) CTL, (b) SPs minus CTL, (c) SPs + SST_bc
minus CTL; and (d) SPs + SST_bc + SA_CV minus CTL. The result is calculated
using six cases starting 1 March 2016 and initialized every 5 days.
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represent the underlying SST forcing, an updated SST from the bias-corrected CFSv2 forecast is used to
replace the climatological SST. When combined with SPs, the updated SST forcing (i.e., SPs + SST_bc)
further improves the MJO skill of the extended GEFS by 1.7 days (Figure 5; Table 1).

The model physics have been found to impact the MJO skill (DeMott et al.,
2014; Jiang et al., 2015, 2016; Kim & Maloney, 2017). To examine the effect
of the model physics, especially the convective parameterization, we
updated the convection package to the updated scale-aware Simplified
Arakawa-Schubert convection scheme before applying the SPs in the
GEFS 35-day experiment. This further improves the MJO skill for additional
3 days compared to the SPs + SST_bc (Figure 5; Table 1).

To further explore the reason for the improvement in each experiment, in
addition to examining the root mean square error and spread in tropical
zonal wind at higher and lower levels for SPs scheme, we also investigate
the variation of the profile of zonal wind spread as a function of latitude for
all experiments (Figure 7). Compared to the CTL (Figure 7a), the SP experi-
ment shows an enhanced zonal wind spread over the tropics and most of
NH midlatitudes. This enhancement is even stronger in SPs + SST_bc and
strongest in SPs + SST_bc + SA_CV. Given the fact that the ensemble
spread is comparable to the forecast error in SPs scheme (Figure 6) and
other SP schemes (figure not shown), we hypothesize that the increase
of the zonal wind spread over the tropics contributes to the improvement
of the MJO forecast skill through an improvement of the zonal wind fore-
cast skill. The two-tiered SST and new convection scheme provide addi-
tional improvement in MJO forecast skill. The addition of these two
physical processes could be providing improvement of the large-scale cir-
culation, which would lead to these improved scores. Since it is hard to
separate the effect solely due to the two-tiered SST or the new convection
scheme from the effect of the stochastic schemes due to our experimental
design, we compare the combined effect as each component is added to
help explain the reason of the improvement for the MJO forecast skill.

In contrast to operational CFS v2 that is fully coupled to ocean and sea ice,
the MJO forecast skill has been calculated from the same period for 16
time-lagged ensemble members (Figure 5). GEFS has an overall better per-
formance for short lead-time (out to 10 days) due to high resolution, latest
model version, and others. CFS v2 shows a most useful MJO skill (≥0.5) out

Figure 8. Madden-Julian Oscillation (MJO) RMM1 + RMM2 forecast skill calculated for a weak MJO period (May 2014 to
March 2015) and a strong MJO period (April 2015–March 2016) for experiment SPs + SST_bc + SA_CV. AC = anomaly
correlation.

Figure 9. Daily relative operating characteristics (ROC; top) scores and
anomaly correlation (AC; bottom) scores out to 35 days for Northern
Hemisphere (20°N–80°N) 500-hPa geopotential heights for CTL (black), SPs
(red), SPs + SST_bc (green), and SPs + SST_bc + SA_CV (blue).
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to 19 days, which is much better than GEFS CTL but not as good as GEFS
with all science improvements (SPs + SST_bc + SA_CV).

In order to show the difference of the MJO forecast skill between strong
and weak periods, we separated the 25-month experiment period into
an averaged stronger MJO period that covers April 2015 to March 2016
and an averaged weaker period that covers May 2014 to March 2015
(Figure 8). As expected, the MJO forecast is more skillful during a stronger
MJO amplitude period than a weaker period, with a difference of ~5 days.
This is consistent for all experiments (not shown; aggregate numbers pro-
vided in Table 1). But the different skill should be attributed to the differ-
ence in the MJO propagation (i.e., phase speed prediction).

Table 1 summarizes the MJO forecast skill for the 2-year average and the
comparison between the strong and weak MJO period. Overall, the
SPs + SST_bc + SA_CV is the best configuration, with 22 days of MJO skill.
The second best is the SPs + SST_bc. The largest contribution to the
improvement is from the new stochastic scheme, which largely reduced
the error over tropical circulation. The convection scheme and external
boundary forcing contribute to additional improvement, but since we also
use stochastic physics in those experiments for the evaluation, the effect of
the convection scheme and external forcing can only be considered in
combination with stochastic physics.

3.2. Extratropical Evaluation—Forecast Skill of 500-hPa Geopotential Height

Although the MJO forecast skill is considered to be one of the key metrics to evaluate the performance of a
forecast system on the subseasonal timescale, the ultimate goal of these experiments is to examine the
impact on extratropical forecast skill. As such, it is important to determine if the improvements contributed
by SPs over the tropics extend into the extratropics. SPs shows substantial improvement according to
the relative operating characteristics area every 12-hr lead time for 500-hPa geopotential height over
the Northern Hemisphere (Figure 9a). The forecast skill is enhanced further for SPs + SST_bc and the
SPs + SST_bc-SA_CV, with SPs + SST_bc-SA_CV having the highest skill, especially at longer lead times.

The AC of 500-hPa geopotential height is a commonly used measure to estimate pattern similarities of the
large-scale circulation and is used in this study to quantify potential skill over the extratropics (Wilks, 2011).
The AC of 500-hPa geopotential height for SPs, SPs + SST_bc, and SPs + SST_bc + SA_CV shows improvement
compared to the CTL, with SPs + SST_bc + SA_CV having the highest AC (Figure 9b). In addition to examining
the Northern Hemisphere 500-hPa geopotential height as a function of lead time, it is also helpful to examine
AC as a function of verification date so that the variations can be detected with respect to the date for a given
lead time (Figure 10). The 8–14-day lead time mean is used to evaluate week 2, and the 15–28-day lead time
mean is used to evaluate weeks 3 and 4.

Over the Northern Hemisphere statistics (Figure 10), for the 500-hPa height forecast, there is 15% improve-
ment compared to the CTL when using the combined SPs, CFS v2 SST, and scale-aware convection schemes
(SPs + SST_bc + SA_CV) for the weeks 3 and 4 time period. The improvement over the Southern Hemisphere
(SH) is about 40% from this configuration. Although the improvement for week 2 forecasts over the two
hemispheres is not as large as weeks 3 and 4, we do see a positive improvement using the three different
configurations (SPs; SPs + SST_bc; SPs + SST + SA_CV) compared to the CTL version.

There isasmall (0.3%) improvement in skill in theSPs+SST_bc+SA_CVexperimentcomparedto theCTLexperi-
ment during week 2 over the 2-year period (Figure 10). However, during weeks 3 and 4, when SPs replace the
operational STTP, there is a 3.1% improvement. There is an additional 0.2% improvement when CFS v2 SSTs
are added and an additional 0.9% improvement when the scale-aware convection scheme is added
(Figure 10). SPs + SST_bc and SPs + SST_bc + SA_CV show statistically significant improvement relative to
CTL during weeks 3 and 4. In the SH, the overall skill is slightly less than the NH, especially for weeks 3 and 4.
However, the improvement in skill over the SH is much larger than for the NH (Figure 10). There is a 3–4%
improvement for week 2 and a 40% (or 0.1 in AC score) for weeks 3 and 4 over the SH.

Figure 10. Ensemble-mean anomaly correlation for Northern Hemisphere
(NH; 20°N–80°N) and Southern Hemisphere (SH; 20°S–80°S) 500-hPa geopo-
tential height from May 2014 to May 2016 for CTL (black), SPs (red),
SPs + SST_bc (green) and SPs + SST_bc + SA_CV (blue) for (a) days 8–14
(upper panel) and (b) days 15–28 (weeks 3 and 4, lower panel). Panels (c) and
(d) are the same as (a) and (b) except for the Southern Hemisphere (20°S–
80°S). Average scores of period are shown by straight lines in the vertical
boxes matching the color of the experiment. The high/low box boundaries
are representing the 95% confidence interval of the score differences
between a given experiment and CTL, and “*” indicates a result is signifi-
cantly better than CTL at 95% confidence level.
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There is a similar pattern of improvement over the SH, but for both week 2
andweeks 3 and 4. The addition of SPs contributes themost to the forecast
improvement (4.2%)duringweek2aswell as themost (5.3%)duringweeks3
and 4 compared to the additional contributions of CFS v2 SSTs and scale-
aware convection scheme (Figure 10). These results imply that the use of
SPs improves the forecast skill themost over the extratropical region, espe-
ciallyduringweeks3and4,but since theSST_bcandSA_CVwereonly tested
in combinationwith SPs and the improvementsmaynot combine linearly, it
is possible eitherwouldhaveas large an improvement as SPs if addedalone.

3.3. Evaluation of 2-M Temperature and Precipitation

The global land-only 2-m temperature Ranked Probabilistic Skill Scores
(RPSS; Toth et al., 2003; Melhauser et al., 2016) were calculated for the NH,
SH, tropics, and Northern America (NA) over the experiment period for two
lead-timeaverages (week 2 average [Figure 11a] andweeks 3 and4 average
[Figure 11b]). The tropics and SH have the highest RPSS for bothweek 2 and
weeks 3 and 4 average lead times with NA having the lowest. Comparing
week 2 with weeks 3 and 4, the RPSS remains similar for the tropics and SH
for both shorter and longer lead times, but the NH and NA show a ~0.05–
0.1 reduction in skill. Except for the SH, stochastic physics improves the
results compared with CTL, although the only statistically significant (95%
confidence level) improvement in week 2 is found in the tropics for
SPs + SST_bc and SPs + SST_bc + SA_CV. In weeks 3 and 4, all experiments
showstatistically significant improvement in the tropics. That improvement
is strongest in the tropics is not a surprise since all three configuration
changes, in some way, improve tropical forecasts either by increasing
ensemble spread, introducing additional SST information, or improving
convection parameterization, a dominant process in the tropics. Although
NA shows improvement for all experiments, none of these are statistically
significant at the 95% confidence level for either lead-time averages, but
SPs skill is improved for weeks 3 and 4 at the 90% confidence level.

The CONUS precipitation forecasts for week 2 and weeks 3 and 4 averages
have been verified against the Climatological Calibrated Precipitation
Analysis (Hou et al., 2014). There are positive RPSS for the week 2 average
(Figure 11c; left) and negative RPSS for the weeks 3 and 4 average
(Figure 11c; right). The lower (or negative) skill for accumulated precipita-
tion compared with 2-m temperatures is no surprise, due to lower predict-
ability for extended range precipitation forecasts and imperfections in the
model physical parameterizations causing the model forecast to be
biased. Adding SPs has little impact on week 2 RPSS, but SST_bc adds a
small improvement, and adding SA_CV generates further improvement.
No experiment provides skill for CONUS precipitation in weeks 3 and 4.

4. Impact of Ensemble Size on Extended Range Forecasts

Evaluations have been made for the 21-member GEFS based on the three
different configurations (experiments) and a control experiment. It has
been found that the experiment SPs + SST_bc + SA_CV generally shows

the highest skill for many forecast variables and measures. Therefore, this experiment has been selected as
the configuration for the National Multimodel Ensemble and Subseasonal Experiment (SubX) projects in real
time (once per week on Wednesday 0000 UTC). The configuration of this final experiment is also used for an
18-year GEFS reforecast (1999–2016), which will be used for forecast calibration.

Due to limited computing resources, an optimum GEFS configuration (including the reforecasts) in terms of
resolution and ensemble size (Ma et al., 2012), years of reforecast, and reforecast frequency need to be

Figure 11. Ranked probability skill scores for CTL (black), SPs (red),
SPs + SST_bc (green), and SPs + SST_bc + SA_CV (blue) during the period
of May 2014 to May 2016 for (a) land-only 2-m temperature week 2 (days
8–14) average; (b) land-only 2-m temperature weeks 3 and 4 (days 15–28)
average; and (c) Contiguous United States (CONUS)-only accumulated
precipitation week 2 (days 8–14; left) and weeks 3 and 4 (days 15–28; right)
average.
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determined. In this section, an impact of ensemble size will be discussed for week 2 and weeks 3 and 4
average forecast skills in order to provide valuable information for reforecast configuration.

One-member (ensemble control; unperturbed member), 5-member (1 ensemble control and 4 perturbation
members), 11-member (1 ensemble control and 10 perturbation members), and 21-member experiments are
compared to test the impact of ensemble size. For the perturbation members of the 5-member and 11-
member experiments, 4 perturbed members and 10 perturbed members are randomly selected from a pool
of 20 perturbed members, respectively. Unlike deterministic forecasts, an ensemble mean (5 members, 11
members, and 21 members) will eliminate many “drop-out” cases (e.g., highlighted features in Figure 12).
During both week 2 and weeks 3 and 4, the 21-member experiment has the greatest AC scores compared
to experiments with reduced ensemble sizes (and deterministic as well) for the NH and SH 500-hPa geopo-
tential height and the tropical zonal winds of 850- and 250-hPa (Figure 13). From Figure 13, we find that
the 11-member and 21-member ensembles agree relatively well, thus indicating that an 11-member ensem-
ble is satisfactory in reproducing expected features of a 21-member ensemble. Overall, an ensemble system
remains more skillful than a deterministic model for the SPs + SST_bc + SA_CV configuration. The significance
of the degradation due to decreased ensemble size was also determined (Figure 13). In the tropics during
week 2, there is significant degradation in AC scores for the five-member and control-only experiment rela-
tive to the 21-member experiment for both the upper- and lower-level zonal wind (Figure 13). During weeks 3
and 4, however, the degradation is not significant for the five-member experiment for the upper level zonal

Figure 12. Ensemble-mean anomaly correlation time series for Northern Hemisphere (NH; 20°N–80°N) 500-hPa geopo-
tential height from May 2014 to May 2016 for 1 member (black), 5 members (red), 11 members (green), and 21
members (blue) for (a) days 8–14 and (b) days 15–28 (weeks 3 and 4). Panels (c) and (d) are the same as (a) and
(b) except for the Southern Hemisphere (SH; 20°S–80°S). Average scores are shown by straight dashed lines matching
the color of different member sizes.
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wind. In the extratropics during week 2 and weeks 3 and 4, the AC score of the five-member experiment is
significantly degraded for NH. All AC scores for 11 members are lower than for 21 members, but the
difference is not significant.

5. Summary and Discussion

The three experiments, which emphasize three different physical processes (i.e., tropical forecast uncertain-
ties, the ocean forcing on the atmosphere, and tropical deep convection) to improve forecast skill on the sub-
seasonal timescale, have been evaluated and compared with the control version forecast. The purpose of this
experiment design was to determine the benefit to the weeks 3 and 4 forecast skill through the combination
of all three areas based on some preliminary investigation. Due to the limitation of computational resources
that are required for a comprehensive investigation, we did not perform a comprehensive experiment to
focus on each physical process independently.

Based on the analysis of MJO forecast skill, the experiment SPs + SST_bc + SA_CV shows ~22 days skillful fore-
cast (definedbyAC scores greater than 0.5), thus is considered to be thebest configuration. A large gain inMJO
forecast skill is found after introducing new stochastic physics perturbation schemes. Updating the underlying
SST and a new convection scheme added further positive impact to the MJO forecast skill. As such, we spec-
ulate that the improvement of the representation of the forecast uncertainties over the tropics through intro-
ducing new stochastic physics perturbation schemes leads to the biggest gain in MJO skill. The improvement
of the MJO skill in SPs + SST_bc (SPs + SST_bc + SA_CV) should be considered as a combined effect of the SST
and SPs (SST, new convection scheme, and SPs). We cannot make any conclusions in terms of the relative
importance of the SPs versus SST and convection scheme due to a lack of independent experiments.

In the extratropics, large-scale AC of 500-hPa geopotential heights for SPs + SST_bc + SA_CV indicates that AC
scores for NH weeks 3 and 4 forecast improved significantly (by an additional 5.4%) from CTL (35.5%) with no
significant difference for week 2 forecast.

In terms of 2-m temperature and accumulated precipitation, we have seen some improvement for NA and
CONUS for week 2 and weeks 3 and 4 in all experiments versus CTL, except SP precipitation in week 2, but
the improvement is marginal compared to the improvement for upper atmosphere variables. A future study
will consider analyzing each component independently to assess the relative impacts. Over the subseasonal
timescale, systematic model errors in both 2-m temperature and accumulated precipitation can dominate
the forecast error. The results may indicate that forecast skill could be improved if we have sufficient model
hindcast (or reforecast) to calibrate subseasonal forecasts.

Figure 13. Ensemble-mean anomaly correlation for Northern Hemisphere (NH; 20°N–80°N) and Southern Hemisphere (SH;
20°S–80°S) height; tropical (TR; 20°N–20°S) 850- and 250-hPa zonal winds from May 2014 to May 2016 for 21 members
(black), 11members (red), 5 members (green), and 1member (blue) for (a) days 8–14 (week 2; top panel) and (b) days 15–28
(weeks 3 and 4; bottom panel). The “*” represents the results that are significantly degraded from the 21-member ensemble
experiment at the 95% confidence level.
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In additional to the real-time run, another big task for the extended GEFS is the long-term reforecast for the
calibration of the real-time forecast. For the reforecast, the ensemble size is an important part of configura-
tions that should be carefully considered. We performed some tests of the dependence of the forecast skill
score on the ensemble size and found that the skills degraded significantly for both week 2 and weeks 3
and 4 forecast when decreasing the ensemble size from 21 members to 5 members; the difference from
21 members to 11 members is relatively small. This indicates that 11 members are sufficient for the GEFS
18-year reforecast. Our intention is to minimize the use of computational resources while still providing a
high-quality and reliable reforecast.

We investigated the capability of extended GEFS to potentially improve subseasonal prediction through
advancing three physical processes for the operational system. Because we focus on the subseasonal
time, the impact of the initial condition uncertainty and the associated initial perturbations are gradually
reduced (Zhu, 2005). Having a better representation of the forecast uncertainty, mainly over the tropics,
improves the forecast skill of tropical variables including the MJO. Updating the underlying SST and con-
vection scheme leads to further improvement of the tropical forecast skill. While we focus on the subsea-
sonal forecast skill using an uncoupled forecast system in this study, a fully coupled system may further
improve forecast skills. The purpose of this study is to help shed light on some key components providing
subseasonal forecast skill. As an intermediate solution before a fully coupled system is available, a suitable
forecast system that can provide a significant improvement in forecast skill compared to the current
operational configuration should be considered. As seen in this study, by updating the three physical pro-
cesses in the forecast system, we obtain larger improvement in the upper atmosphere of the tropics and
extratropics compared to extratropical surface temperature and precipitation. More investigation in the
future is required to explore the impact of sea ice on high-latitude forecast skill, the tele-connection of
tropical and extratropical pattern to improve NA’s hazard (and/or extreme) forecasts, and in tropics, exam-
ine the potential predictability of tropical cyclones at this timescale, including genesis.
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