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1. Introduction 

  

With the improvement of accuracy of weather forecasting and the increasing computational 

capacity, a seamless forecast that range from weather to seasonal time scale is in growing interest 

and demanding in general public and service sectors in order to protect life and properties. 

Extending the weather forecast to cover sub-seasonal time scale clearly has great socio-economic 

significance. However, in scientific aspect, improving the forecast skill on this time scale is quite 

challenging. This gap in the forecast skill between weather and climate is partially due to the 

limitation of forecast predictability (Lorenz 1969) and less sensitivity to the initial condition 

which benefits the weather scale yet insufficient sensitivity to the boundary and external forcing 

which benefits the seasonal and longer lead time (Vitart 2014, Johnson et al. 2014; Liu et al. 

2016; Troccoli 2010; Tian et al. 2017). Imperfectness of the representation of the model 

dynamics and physics, however, should be considered as the major source of uncertainties and 

errors for all lead time (Buizza and Palmer 1999). The approaches that aim to reasonably 

represent the model uncertainty thus become a practical method to reduce the model errors in 

recent years. The efforts in this regards include a multi-model ensemble method (Shin and 

Krishnamurti 2003; Palmer et al. 2004; Kirtman et al. 2014) that represents the overall 

uncertainty from different models; a stochastic total tendency perturbation method (STTP, Hou 

et al. 2008) that represents the uncertainty related to both dynamic and physics in single model; a 

stochastic physics perturbation tendency scheme (SPPT, Buizza et al 1999; Palmer et al. 2009) 

that represents the uncertainty related to toal model physical process; In addition to the stochastic 

perturbation on the tendency, Stochastic Kinetic Energy Backscatter (SKEB, Shutts and Palmer, 

2004; Shutts 2005; Berner et al. 2009; Shutts et al. 2015 ) is another way to present forecast 

uncertainty through considering the energy at non-resolved scales which can not cascade to 

larger scales due to the model’s finite resolution. All these methods have been in used in 

operational centers and research community (Palmer et al. 2009). 

  

Since was implemented into operation in 1992, the NCEP GEFS has been widely used as 

probabilistic forecast guidance for the forecast within 2 weeks (Zhou et al, 2017). Regardless of 

the initial perturbation, the operational version of GEFS uses STTP to represent the model 

uncertainty. With the contribution of both initial uncertainties and perturbation in total tendency, 
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the ensemble mean forecast of GEFS has been outperformed the GFS deterministic forecast on 

the anomaly correlation of forecast lead at Day-8 of Northern Hemisphere 500hPa geopotatial 

height to represent mid-level general circulation for past few years (Fig.1). 

 

2. Stochastic Physics Perturbation schemes tested in NCEP GEFS 35-day forecast 

 

To be aligned with NOAA’s mission of generating an unified coupled forecast system to cover 

the time scale from weather to seasonal, GEFS has carried out investigations on the strategy to 

potentially improve the forecast skill on week 3&4 time range (sub-seasonal time-scale), and 

further to cover monthly forecast. A recent investigation is testing the impact of different 

stochastic perturbation schemes that represent the model uncertainty on the performance of sub-

seasonal forecast (Zhu et al. 2017; Zhu et al. 2018; Li et al. 2018)). The motivation for this work 

came from the concerns of the under-dispersion (or overconfidence) of the current operational 

version of GEFS (GEFS v11 with EnKF initial perturbation + STTP) on medium range forecast 

especially over the tropics (Hou et al, 2008, Zhou et al. 2016, 2017). 

 

Although STTP scheme compensates the less error growth from initial perturbations to some 

degree, the impact of the STTP is mainly over extra-tropics during boreal winter season with less 

impact on the spread over tropical region. It is well known that MJO is a major source of the 

predictability on sub-seasonal time scale. Therefore, to improve the representation of the model 

uncertainty over tropics is a possible pathway to potentially improve this source of sub-seasonal 

predictability. A suite of three widely accepted stochastic perturbation methods (SPs hereafter) 

are thus applied to GEFS to represent the model uncertainty instead of STTP more efficiently 

(Table 1, second row). The scheme of SPs are SKEB with consideration of making up sub-scale 

energy lost due to imperfect computation algorithms; SPPT with five different spatial and 

temporal scales (Fig. 2); and 3) Stochastic Perturbed Humidity (SHUM; Tompkins and Berner, 

2008) with single spatial-temporal scale, and near model boundary layers. These schemes have 

already been implemented in the National Center Environmental Prediction (NCEP) Global 

Forecast System (GFS) model for use in the hybrid-EnKF data assimilation system, making them 

readily available for use in the GEFS. A detail descriptions of these schemes are as following.  
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The SKEB scheme has been used to represent dynamical uncertainty from subgrid-scale 

processes that propagate upscale. This is done via a stream function forcing based on the total 

dissipation rate. Unlike other implementations of SKEB, the GFS implementation of SKEB only 

considers numerical dissipation (i.e. the diffusions). Perturbations are generated independently 

on each vertical level, and then vertically smoothed to provide some vertical coherence. The 

inclusion of SKEB improves the power spectrum of the global model, which otherwise exhibits 

damped power near the truncation frequency. 

 

The SPPT scheme perturbs the combined tendencies of wind, temperature, and water vapor in 

each time step produced by the GFS all physics parameterizations (excluding clear-air radiation). 

Our implementation of SPPT combines five different random patterns with different correlation 

length scales and/or time scales to determine the perturbations.  The patterns are uniform in the 

vertical, except they are reduced in magnitude near the surface and taper to zero near and above 

the tropopause. The maximum amplitudes of five scales are 0.8, 0.4, 0.2, 0.08 and 0.04 

respectively. An example of the individual independent scale random patterns and combined 5-

scale random pattern is shown in Fig. 2. 

  

The SHUM scheme only perturbs the near-surface humidity state; based on the idea that 

uncertainty in humidity can have nonlinear impacts as thresholds in physical parameterizations 

are crossed (e.g., convective initiation). SHUM uses the same random pattern generator as SPPT, 

but only a single spatial-temporal scale is used with maximum amplitude of 0.006. The 

perturbation is a maximum in the lowest model level and decreases exponentially with height. 

However, it’s impact transports rapidly to upper level of troposphere. 

  

  

To understand the contributions of each stochastic scheme in SPs and STTP, figure 3 shows the 

impact of the individual stochastic schemes on ensemble spread at 120 hours (average of 6 

spring cases and 6 fall cases) when compared to ensemble spread without introducing stochastic 

perturbations (noSP, top row). The stochastic system used in the control (same as operational 

GEFS with STTP), produces additional spread in the extratropics but has little impact in the 

tropics (row 2). Of the components in the stochastic physics suite, SKEB produces additional 
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spread in similar areas as STTP (though slightly muted; row 3). The other two components, 

SPPT (row 4) and SHUM (row 5), both increase spread in the tropics where the control system is 

deficient. SPPT also has an impact in the spring/summer hemisphere. In combination, these 

stochastic schemes generally improve forecast uncertainty, particularly in the tropics, which may 

lead to improvements in tropical forecast skill. 

 

Apparently, the SPs (combined three stochastic schemes) presents forecast spread globally, 

especial for tropical area when compares to NCEP operational GEFS solo stochastic scheme 

(STTP). The statistical scores for tropical zonal winds of 850hPa and 250hPa show huge 

improvements from introduced SPs for 2 years experiment periods (figure 4). For both of upper 

and lower atmosphere levels, increased forecast spread does also result in the reduced forecast 

error (root mean square error - RMSE; left plots of figure 4); and higher continuous ranked 

probability skill scores (CRPSS; right plots of figure 4). Moreover, the spreads are more closed 

to forecast errors (left plots of figure 4) indicates representation of forecast uncertainty is more 

realistic than current operational GEFS (STTP). 

 

3. Other strategies on improving ensemble forecast on sub-seasonal time scale 

  

The sub-seasonal forecast has different dependence from the short-term forecast. While the 

short-term forecast largely relies on the initial condition, the sub-seasonal forecast more and 

more relies on the boundary and external forcing. As such, for an uncoupled forecast system on 

sub-seasonal time scale, an accurate representation of the prescribed Sea Surface Temperature 

(SST) is of great importance (Li et al., 2001; Ling et al., 2015). The operational version of GEFS 

uses a prescribed SST that is initiated from analysis data and damps to climatology. Taking into 

account the day-to-day variability of the SST and as an intermediate stage between uncoupled 

and coupled forecast system, the underlying SST is updated using the bias-corrected SST from 

coupled model forecast (i.e. two-tiered SST, Table 1, third row).  

  

As for the forecast system, an accurate representation of the physical process is critical to the 

forecast skill, the last strategy (or configuration) (Table 1, fourth row) that was tested is 

combining new SPs; two-tiered SST; and an upgraded Simplified Arakawa-Schubert (SAS) 
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cumulus parameterization scheme that is both scale- and aerosol-aware (Han et al, 2017). The 

highlights of this upgraded convective parameterization scheme include: 1) the change of the 

rain conversion rate; 2) the change of convective adjustment time in deep convection; 3) cloud 

base mass flux in the shallow convection scheme is now a function of mean updraft velocity; 4) 

convective inhibition (CIN) in the sub-cloud layer is an additional trigger condition to suppress 

unrealistic spotty rainfall; and 5) convective cloudiness is enhanced by suspended cloud 

condensate in an updraft. 

  

The performance of the different GEFS configurations is demonstrated in Fig. 5-6. Since the 

Madden Julian Oscillation (MJO) is the dominant mode on the sub-seasonal predictability, MJO 

and its associated components are one of the emphases to evaluate the capability of the forecast 

system on sub-seasonal time scale. Compared to STTP scheme, the performance of the 850hPa 

zonal wind over the tropics indicated a significant improvement associated with the increase of 

the spread in SPs (Fig.4). The skill of the upper level zonal wind showed similar improvement 

(Figure not shown. please confirm), indicating a positive impact of the SPs on the MJO 

associated circulation. The RMM MJO skill increased from ~12.5 days in STTP scheme to 16.8 

days in SPs. Combing SPs and updated SST further result in the increased the MJO skill to 18.5 

days. Combing SPs with updated SST and updated convection scheme lead to increase the MJO 

skill to 22 days (Fig.5, Table 2). The impact of the different configuration on the Northern 

Hemisphere large-scale circulation indicated the consistent result as the MJO (Fig.6), with the 

improvement from STTP to SPs. The statistics, in terms of NH 500hPa geopotential height 

anomaly correlations for average period of week-2 (days 8-14) and weeks 3&4 (days 15-28), 

include NCEP Climate Forecast System version 2 (CFSv2). The results indicate 1). All three new 

configurations shows similar or better score than GEFS operation (ctl) for week-2, but much 

better than CFSv2; 2) All there new configurations demonstrate the very valuable skills for 

weeks 3&4 than GEFS operation (ctl), and much better than CFSv2. 

  

 

4. Towards physically based stochastic parameterization  
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As we demonstrated in section 2 for various stochastic perturbation schemes, most of them are in 

current operational ensemble forecast system that is still preliminary approach to assimilate 

model-based uncertainties. There are many limitations in practical application, for example, the 

SKEB scheme highly depends on the accumulation of dissipation in the numerical integration 

from computational accuracy, the schemes of horizontal and vertical diffusions, parameters of 

gravity wave drag and mountain blocking and et al. A contribution of SKEB will be greatly 

reduced when model resolutions are increased and when numerical schemes are improved. 

Another example of the limitation is: in SPPT, the perturbation varied with model physical 

process, tendency of total physical processes, spatial and temporal de-correlation of the 

stochastic patterns thus does not really reflect uncertainty associated with individual physical 

process.  

 

Figure 7 is a schematic diagram which demonstrates the current status of the stochastic 

perturbations, and the approach that represent the model uncertainties through realistic stochastic 

parameterization most possibly be applied in the future. In the same time, two valuable studies 

have been done based on operational ECMWF ensemble forecast system to apply 1). 

Independent random pattern to perturb different physical processes (or iSPPT). It is a similar 

procedure to current stochastic schemes (SPPT) but accounting stochastic for each individual 

physical process (Christensen et. al. 2017); 2). Stochastic perturbed selected 20 physical 

parameters (SPP) (Leutbecher et. al. 2017). Both of them increase ensemble spreads in general. 

The later one could change vertical distributions of forecast uncertainties significantly thus may 

represent model uncertainties through the interaction of physical processes more realistically. 

 

With the rapid progress in ensemble forecast system development and better understanding on 

the model physical process, the representation of forecast uncertainties from model dynamics 

and physics should be more approach to realistic atmosphere. Following this progress, many 

other sources of uncertainties, such as soil moisture and soil temperature from land model, sea 

surface temperature from ocean model, reflectivity of snow and sea ice from sea-ice model will 

be considered to improve weather forecast and subseasonal-climate prediction. 

 

5. Summary 
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Stochastic perturbation is important processes that can help to improve subseasonal prediction 

after it succeed for weather forecast. It advanced MJO skills significantly and associated tropical 

atmospheric circulation (850hPa and 200hPa zonal winds). It also enhanced extratropical 

prediction skills for weeks 3&4 average. In contrast to NCEP CFS v2 that is a coupling system 

with lower model resolution and older model physics, latest GEFS configuration has taken great 

advantage with new SPs, two-tired SST and new convective parameterization in terms of tropical 

and extratropical, weather and subseasonal prediction. There are two areas we should focus on in 

near future: 1). Improve current physical tendency perturbation scheme to represent physical 

processes more realistically; 2). Consider other sources of uncertainties from land, sea and other 

surface boundary.  
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Figure 1: Northern Hemisphere 500 hPa geopotential height anomaly correlation for forecast 

lead at day-8 of GFS forecast (blue) and ensemble mean forecast (red) during years 2014 - 2016. 
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Experiments Stochastic 

Schemes 

Boundary 

(SST) 

Convection 

CTL STTP Default Default 

SPs SKEB+SPPT+SHUM Default Default 

SPs+SST_bc SKEB+SPPT+SHUM 2-Tiered SST Default 

SPs+SST_bc+SA_

CV 

SKEB+SPPT+SHUM 2-Tiered SST Scale Aware 

Convection 

 

Table 1: The Configuration differences for four experiments  
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Figure 2. 5-scale random patterns used in Stochastic Perturbed Physics Tendencies (SPPT). On 

the top of each plot, the numbers (except for upper left) represent the scales of spatial and 

temporal perturbations with contour intervals in the bracket. The upper left is for combined total 

5-scales 
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Figure 3. Global meridional cross section showing the impact of stochastic perturbations for the 

atmosphere (cross section) for 120 hour forecasts from six spring initializations (left) and six fall 

initializations (right). Paneled are the differences of zonal wind spread from CTL for (top) no 

stochastic physical perturbations, and the difference of STTP (upper middle); SKEB (middle); 

SPPT; (lower middle) and SHUM (bottom). 
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Figure 4.  RMS error of the ensemble mean (solid) and the ensemble spread (dash) (left), and 

CRPSS (right) are plotted every 24 hours out to 35 days for 850-hPa (top) tropical (20
o
N-20

o
S) 

zonal wind during the Jan. 2015 to Dec. 2015 period comparing CTL (black) and SPs (red). 
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Figure 5.  MJO skills of the four different configurations of GEFS and CFSv2. 
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Figure 6. The time series of ensemble-mean anomaly correlation for Northern Hemisphere 

(20
o
N-80

o
N) 500hPa geopotential height from May 2014 - May 2016 for different configurations 

(CTL-black; SPs-red; SPs+CFSBS-green and SPs+CFSBC+CNV-purple) and CFSv2 (orange) 

for lead week-2 (a) and weeks 3&4 (b). Average scores are shown in the bottom of each plot.  
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Figure 7. Schematic diagram to present current status and future direction for stochastic 

representation of model uncertainties. 

 


