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ABSTRACT 24 

 25 

 The GEFS is being extended from 16-d to 35-d to cover the subseasonal period, bridging 26 

weather and seasonal forecasts. In this study, the impact of SST forcing on the extended range 27 

land only global 2-m temperature, CONUS accumulated precipitation, and MJO skill are 28 

examined using the GEFSv11 with various SST forcing configurations. The configurations 29 

consist of (1) the operational GEFS 90-d e-folding of the observed RTG-SST anomaly relaxed to 30 

climatology; (2) an optimal AMIP configuration using the observed RTG-SST analysis updated 31 

every 24-h; (3) a 2-tier approach using the CFSv2 predicted SST, updated every 24-h; and 4) a 2-32 

tier approach using biased corrected CFSv2 predicted SST, updated every 24-h. The experiments 33 

are carried out over a six month period covering the fall and winter of 2013-14. This is the first 34 

study to examine an operational GEFS configuration in the extended-range. 35 

 The results indicate that there are minimal differences in RPSS between the various SST 36 

forcing experiments. The forecast skill of the Northern Hemisphere 2-m temperature and 37 

precipitation for weeks 3&4 are marginal, especially for North America during this period. The 38 

bias corrected CFSv2 predicted SST experiment generally had superior performance, but only 39 

had statistically significant improvement in spatially and temporally aggregated 2-m temperature 40 

RPSS over North America. Improved representation of the SST forcing (AMIP) increased the 41 

forecast skill for MJO indices up through week-2, but there is no significant improvement of the 42 

MJO skill for the weeks 3&4 time range. For all configurations, the forecast MJO indices 43 

become stronger and are subject to larger error with an increase in lead-time.  44 
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1. Introduction 45 

The National Oceanic and Atmospheric Administration (NOAA) is accelerating its 46 

efforts to improve its numerical guidance and prediction capability for the extended range - the 47 

weeks 3 & 4 period that bridges the gap between weather and climate. Covering the extended 48 

range period will enable NOAA to provide seamless numerical guidance to the public, protecting 49 

life and property. Recently, the need for numerical guidance covering the weeks 3 & 4 period has 50 

been increasing, driven primarily by economic requirements, to support decision makers (e.g., 51 

the management of water supplies), and for preparedness to changes in climate.  52 

Global efforts have been pursued to provide extended range forecast guidance to the 53 

public, helping to reduce the impact of high impact weather and extreme events. One such effort 54 

is the sub-season to season (S2S) project, a legacy project of The Observing System Research 55 

and Predictability Experiment (THORPEX). This project was endorsed in 2012 by the World 56 

Weather Research Program (WWRP) and World Meteorological Organization (WMO) World 57 

Climate Research Program (WCRP; Vitart et al. 2016). In the United States, NOAA is pursuing 58 

parallel efforts to “Develop an intraseasonal to interannual prediction system that builds on the 59 

currently experimental real-time National Multi-Model Ensemble system and incorporates 60 

advances in statistical methodologies and forecast initialization” to provide weeks 3 & 4 61 

forecast guidance (NOAA 5-year research and development plan: 2013-2017, 62 

http://nrc.noaa.gov/CouncilProducts/ResearchPlans/5YearRDPlan/NOAA5YRPHome.aspx). 63 

Since 2011, the NOAA National Weather Service (NWS) has been furthering the Weather Ready 64 

Nation (WRN) strategic plan to “Create a seamless suite of forecasts that look out beyond two 65 

weeks to support response and preparedness to changes in climate that incorporate research 66 

advances from within NOAA and other partners, including the commercial weather and climate 67 

http://nrc.noaa.gov/CouncilProducts/ResearchPlans/5YearRDPlan/NOAA5YRPHome.aspx
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industries” (Weather Ready Nation – NOAA’s NWS Strategic Plan 2011, 68 

http://www.nws.noaa.gov/com/weatherreadynation/files/strategic_plan.pdf ). 69 

Past studies using dynamical models, statistical models, empirical methods, and other 70 

tools have examined the weeks 3 & 4, subseasonal, and interaseasonal time periods. The seminal 71 

studies by Lorenz 1969a; 1969b; and 1982 set the foundation for understanding forecast 72 

predictability. Subsequent studies attempted to find and explain key phenomena that impact 73 

forecast predictability across temporal scales. In the tropics, the Madden-Julian Oscillation 74 

(MJO; Madden and Julian 1971, 1972) was found to be a key phenomena for extended-range 75 

forecast prediction due to its preferred 40- to 50-d oscillation time scale. In the Northern 76 

Hemisphere (NH), the Pacific–North American (PNA) and North Atlantic Oscillation (NAO) 77 

patterns in the mid- to high-latitudes have been found to be sources of extended-range 78 

predictability (Wallace and Gutzler, 1981 and Barnston and Livezey, 1987). In particular, 79 

specific blocking patterns can be identified in the extended-range that can result in drought and 80 

heat waves in the summer and produce conditions conducive for severe storm in the winter (Rex, 81 

1950). Several notable studies attempt to improve forecast skill and further understand 82 

phenomena to increase forecast skill on the subseasonal to seasonal timescales with emphasis 83 

placed on high-impact weather events (Kirtman et al., 2014). 84 

The studies using numerical models focused on the scientific issues and relationships of 85 

key phenomena, including the MJO (Fu et al., 2013; Xiang et al., 2016), teleconnections (e.g., 86 

PNA, NAO; Dool et al., 2000; Chen and Dool, 2003), monsoons (Adams and Comrie, 1997; 87 

Chang et al., 2000; Lou et. al, 2016), extreme rainfall events (Lou et. al, 2016), sea-ice (Hunke 88 

and et. al., 2010), and the interaction of tropospheric and stratospheric processes (Lindzen, 89 

1987). These studies raise important issues for extended-range numerical model prediction such 90 

http://www.nws.noaa.gov/com/weatherreadynation/files/strategic_plan.pdf
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as the relationship between model resolution and physical parameterizations for coupled ocean-91 

atmosphere models, initialization strategies for subseasonal prediction, ensemble generation, 92 

model systematic errors, and the representation of forecast uncertainties. Model systematic errors 93 

continue to plague medium and extended-range forecasts for which retrospective forecasts can be 94 

implemented to reduce their impact. The additional resources required for retrospective forecasts 95 

make it more expensive to implement a numerical modeling system for extended-range forecasts. 96 

Operational global numerical guidance for weeks 3 & 4 and monthly prediction are 97 

available from several operational forecasting centers. NOAA’s National Center for 98 

Environmental Prediction (NCEP) Climate Forecasting System (CFS) Version 2 is a coupled 99 

(ocean, sea-ice, land, atmosphere) model  (Saha et al., 2006; Saha et al., 2010; Saha et al., 2014) 100 

that combines 4 forecasts initialized 4 times daily into a daily 16 member time-lagged ensemble 101 

integrated out to 45 d with retrospective hindcasts for bias correction. The European Center for 102 

Medium-Range Weather Forecasting (ECMWF) runs a 51-member global coupled (ocean, sea-103 

ice, land, and atmosphere) Ensemble Prediction System (EPS; Vitart et al., 2014) out to 46 d. 104 

The ECMWF EPS is initialized twice per week with a real-time hindcast for forecast calibration. 105 

Recently, Environmental Canada extended their 21 ensemble member uncoupled Global 106 

Ensemble Prediction System (GEPS; Côté et al. 1998; Buizza et al. 2005) to 32 d once-per-week 107 

with real-time forecasts for forecast calibration.  108 

The NCEP Global Ensemble Forecast system (GEFS) has been designed to assimilate 109 

forecast uncertainty which results in improved forecast reliability (Buizza et al., 2005) in the 110 

medium-range. In recent years, GEFS has provided excellent day-to-day forecast skill. The 111 

GEFS ensemble mean has consistently demonstrated similar or improved forecast skill compared 112 

to the deterministic Global Forecast System (GFS), pronounced at longer lead times. The NH 113 
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500hPa geopotential height anomaly correlation out to 16 d for the experimental period in this 114 

manuscript (fall and winter 2013-14) is shown in Fig. 1. Unlike the GFS, the GEFS produces a 115 

probabilistic forecast, providing a measure of forecast uncertainty (Toth et al., 2001; Zhu et al., 116 

2002; Zhu, 2005) that can aid in forecasting extreme weather events (Guan and Zhu, 2016). 117 

Extending the GEFS (currently run to 16 d) to cover the weeks 3 & 4 period provides additional 118 

benefits over the CFSv2, including a more frequent model upgrade cycle, higher model 119 

resolution, state-of-art flow-dependent initial perturbations from a hybrid 4DEnsVar data 120 

assimilation system, stochastic physics, and larger ensemble membership (84 members for every 121 

24-hour cycle), all providing an improved sampling of forecast uncertainty.  122 

In this study, the operational GEFS v11 configuration is extended to 35 d and the forecast 123 

skill is evaluated (Melhauser et al, 2016). Various SST forcing experiments are performed to 124 

examine the impact of SST forcing on the extended-range forecast skill of global 2-m 125 

temperature, accumulated precipitation over the contiguous United States (CONUS), and MJO 126 

indices. Section 2 describes the GEFS configuration; SST forcing experiments, experiment 127 

forecast period, and aspects of the verification methodology. Section 3 provides results and 128 

discussion of the forecast skill for global 2-m temperature; CONUS accumulated precipitation, 129 

and MJO indices. Section 4 provides concluding remarks and future steps. 130 

 131 

2. Methodology 132 

2.1. Operational NCEP GEFS 133 

The current operational configuration of GEFS uses the GFS Global Spectral Model 134 

V12.0.0 (GSM) for integration four times per day (0000, 0600, 1200 and 1800 UTC) out to 16 135 

days (Sela 1988; Han and Pan 2011; Han et al. 2016). For days 0-8 the GEFS has a spectral 136 
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resolution of TL574 (semi-Lagrangian with linear grid, approximately 34 km) with 64 hybrid 137 

vertical levels and the horizontal resolution is reduced for days 8-16 to TL384 (approximately 52 138 

km). The 20-member ensemble initial condition perturbations are selected from the operational 139 

hybrid NCEP Global Data Assimilation System (GDAS) 80-member Ensemble Kalman Filter 140 

(EnKF; Wu et al. 2002; Whitaker et al., 2008; Kleist et al. 2009; Wang et al., 2013; Kleist and 141 

Ide 2015; Zhou et al. 2016). If tropical cyclones are present in the initial conditions, TC 142 

perturbations are calculated after tropical cyclones (TCs) are separated from the environment 143 

(Kurihara et al. 1993, 1995) and are relocated to the same location (Liu et al., 2006). GEFS 144 

accounts for model errors by perturbing the total tendencies using the Stochastic Total Tendency 145 

Perturbation scheme (STTP; Hou et al. 2006, 2008). The GEFS has the same GFS SST forcing 146 

which is initialized with the RTG analysis and damped to climatology (90-d e-folding) during 147 

model integration. The sea ice concentration is initialized from the daily 00 UTC sea ice and lace 148 

analysis from Interactive Multisensor Snow and Ice Mapping System (Ramsay 1998) and held 149 

constant throughout the model integration. Please see 150 

http://www.emc.ncep.noaa.gov/GFS/impl.php for additional information on GSM v12.0.0 151 

settings used in the operational GEFS. For this study, the operational GEFS configuration is 152 

modified: (1) to extend the forecast to 35 d with the horizontal resolution reduced to TL254 153 

(approximately 78 km) for 16-35 d, (2) the SST is updated with various SST forcing schemes, 154 

and (3) the forecast is only initialized run once-per-day at 0000 UTC due to resource constraints.  155 

 156 

2.2. SST Forcing Experiments 157 

The SST configurations consist of the operational GEFS 90 d e-folding of the observed 158 

RTG SST anomaly to climatology (CTL), an optimal Atmospheric Model Intercomparison 159 

http://www.emc.ncep.noaa.gov/GFS/impl.php
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Project (AMIP) configuration using the observed RTG SST analysis updated every 24-h during 160 

model integration (RTG), a 2-tier approach using the CFSv2 predicted SST updated every 24-h 161 

during model integration (BC), and a 2-tier approach using biased corrected CFSv2 predicted 162 

SST updated every 24-h during model integration (CFS_BC). Detailed formulations for CTL and 163 

CFS_BC can be found in Appendix B.   164 

2.3. Experiment Period 165 

 All experiments in this study span the fall and winter of 2013 and 2014 and initialized 166 

every 24 h starting 1 Sep 2013 and ending 28 Feb 2014. The 00 UTC initialization and 167 

corresponding 00 UTC forecast lead times (24 hour forecasts) for 2-m temperature and 168 

accumulated precipitation are verified to control for the diurnal variability found in the 2-m 169 

temperature (the 12 UTC verification lead times show similar, but slightly higher skill).  170 

 Over the experiment period, the MJO was weak or non-existent (Climate Prediction 171 

Center; http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/whindex.shtml) and ENSO 172 

neutral conditions persisted (Earth System Research Laboratory; 173 

http://www.esrl.noaa.gov/psd/enso/mei).  174 

For the fall of 2013, parts of the CONUS including the northern Rockies and Northern 175 

Plains experienced wetter-than-normal conditions with precipitation totals in the northern plain 176 

states and Colorado and New Mexico ranking within their ten wettest (since 1895). California 177 

remained extremely dry with autumn 2013 ranking its 10th driest (since 1895), with below-178 

normal precipitation also observed in the Southeast and Northeast. In Asia, Russia experienced 179 

above-normal temperatures having its record warmest November and December (since 1900). 180 

Over Europe, the beginning of fall was also anomalously warm with Finland, Spain, and Norway 181 

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/whindex.shtml
http://www.esrl.noaa.gov/psd/enso/mei
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experiencing above-normal temperatures for September (National Climatic Data Center Climate 182 

Global Analysis: https://www.ncdc.noaa.gov/sotc/global).  183 

For the winter of 2014, the Northern Hemisphere was plagued with persistent dips in the 184 

jet stream that brought cold air into North America and central Russia and warm air into northern 185 

Europe. Environment Canada reported its coldest meteorological winter since 1996 and coldest 186 

November to March (since 1948). Across the CONUS, below-average temperatures were 187 

experienced east of the Rockies, but California had its warmest winter on record and above 188 

normal-conditions were experienced by the surrounding southeastern states. Over the western US 189 

and Great Plains, drier-than-normal conditions persisted (National Climatic Data Center Climate 190 

Global Analysis: https://www.ncdc.noaa.gov/sotc/global). 191 

2.4. Verification Procedure 192 

2.4.1. Rank Probability Skill Score: 2-m Temperature and Accumulated Precipitation 193 

 The forecast skill for 2-m temperature and accumulated precipitation are evaluated using 194 

a tercile (below-normal, normal, or above-normal) Ranked Probability Skill Score (RPSS; e.g., 195 

Wilks, 2011); see Appendix A for additional details. The 2-m temperature is verified for land 196 

only against the 00 UTC GDAS analysis and the accumulated precipitation is verified for land 197 

only against the 00 UTC NCEP Climatologically Calibrated Precipitation Analysis (CCPA; Hou 198 

et. al., 2014). The GEFS 2-m temperature is averaged and the accumulated precipitation 199 

accumulated over the lead times of interest (week 2: days 8-14, weeks 3 & 4: days 15-28) and 200 

verified against the corresponding GDAS and CCPA data averaged or accumulated over the 201 

same lead times. Different methods and length of periods can be defined which can have a direct 202 

impact on forecast skill; generally longer averaging periods produces higher RPSS (not shown). 203 

https://www.ncdc.noaa.gov/sotc/global
https://www.ncdc.noaa.gov/sotc/global


 

10 

The week 2 and weeks 3 & 4 were chosen in this investigation to match the operational CPC 204 

week 2 and experimental weeks 3 & 4 forecasts. 205 

2.4.2. MJO skill score 206 

In this study, the MJO is evaluated using the traditional real-time multivariate MJO (i.e. 207 

RMM) index (WH index; Wheeler and Hendon 2004, Gottschalck et al. 2010). The MJO 208 

forecast skill is defined as the bivariate anomaly correlation between the analysis and forecast 209 

RMM1 and RMM2 over the fall and winter 2013-2014 period calculated at each lead time. The 210 

GEFS ensemble mean outgoing longwave radiation (OLR), 850-hPa u-wind component (U850), 211 

and 200-hPa u-wind component (U200) are verified against the same variables from NCEP 212 

GDAS. The long term climatology is calculated from the NCEP/NCAR Reanalysis 1 213 

(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) for the U200 and U850 214 

and from the NCAR Interpolated Outgoing Longwave Radiation 215 

(http://www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR.html) for the OLR, both for the 216 

period of 1981-2010. The long term mean and average of the previous 120 day are removed from 217 

the climatology to eliminate long-term trends and seasonal variability.  218 

 219 

3. Results and Discussion 220 

An ensemble prediction system is performing well if it can produce an accurate estimate 221 

of its lead time specific forecast errors (error) through its ensemble dispersion (spread). If this is 222 

the case, the benefit of an ensemble predicting its own forecast errors can be utilized. The 223 

ensemble RMS error and spread for GEFS 500-hPa geopotential heights over the fall and winter 224 

of 2013-2014 for the lead day 18 (Fig. 2a,b) and lead day 25 (Fig. 2c,d) generally supports the 225 

notion that GEFS is performing well in the weeks 3 & 4 period, although deviations occur for 226 

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
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other variables, lead times, and locations. For both lead day 18 and 25, the spread and error over 227 

the NH polar latitudes show similar spatial patterns and magnitudes, although slightly under 228 

dispersive over the NH storm tracks. In the SH, the GEFS appears to be slightly over dispersive 229 

over a large swath of the SH arctic circle.   230 

Locating the source of uncertainty of the large-scale circulation is another necessary step 231 

towards a more accurate forecast for week 3 & 4 time frame. During the fall-winter of the NH, 232 

subtropical jet is one of the major large-scale circulations that modulate the NA weather. As 233 

such, demonstrating the uncertainty associated with the upper level circulation is helpful for 234 

model developer on evaluating the jet stream forecast.  235 

The 6-month experiment period average of 200-hPa RMSE (Fig. 3) shows similar 236 

magnitude and spatial distribution between lead days 18 and 25. As expected, the largest errors 237 

reside in the NH storm tracks given the time frame of the experiment period. Most of the larger 238 

errors reside in the mid-latitudes south of 30
o
S and north of 30

o
N. This suggests that for weeks 3 239 

&4 forecasts, improving the skill of the large-scale circulation, especially over the subtropical jet 240 

region, shouldn’t be ignored. 241 

The operational GEFS is an uncoupled system with the sea surface temperature (SST) 242 

prescribed using the NCEP real time SST analysis (RTG) persisted and damped to climatology 243 

during the forecast. Model boundary conditions, including the underlying SST, are known to 244 

influence prediction skill in the extended-range. Therefore, it is important to assess the impact of 245 

SST forcing on extended-range forecast skill before fully coupling the GEFS to an ocean model. 246 

Figure 4 shows the area-average SST over the 15
o
S-15

o
N band for RTG (Fig. 4a) analysis and 247 

lead day 20 forecasts valid at the corresponding analysis verification date for the CTL RTG 248 

persisted SST damped to climatology (Fig. 4b), raw CFSv2 (Fig. 4c), and bias corrected CFSv2 249 
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(Fig. 4d). Comparing the coupled CFSv2 model output to CTL, the CFSv2 provides additional 250 

multi-scale information. Removing systematic biases in the CFSv2 model output (Fig. 4d) 251 

improves the correlation between the RTG analysis and the lead day 20 CFSv2 forecast data.  252 

 253 

3.1. 2-m Temperature Forecast Skill 254 

Over the experimental period, the global land only 2-m temperature RPSS is regionally 255 

and lead time dependent. The tropics have the highest RPSS for both week 2 (Fig. 5a and weeks 256 

3 & 4 (Fig. 5b) with NA having the lowest. Comparing between week 2 and weeks 3 & 4, the 257 

RPSS remains similar for the tropics and SH with the NH and NA dropping ~0.1-0.3. Within 258 

each region, the forecast skill for the SST forcing experiments are generally statistically 259 

indifferent from CTL for both week 2 and weeks 3 & 4. RTG, CFS and CFS_BC show a 260 

statistically significant improvement during weeks 3 & 4 over NA with RTG showing 261 

statistically significant improvements over TR. It is interesting that RTG does not have more 262 

robust improvement compared to the other experiments, given this experiment is being forced 263 

with the observed SST forcing. During weeks 3 & 4 over NA, CFS and CFS_BC actually 264 

outperform the RTG experiment in terms of RPSS. This suggests that there may be deficiencies 265 

in the forecast model which are limiting the spread of information from the ocean boundary to 266 

atmospheric land areas. It should be restated that the period of this experiment does occur over 267 

an inactive MJO period with ENSO neutral conditions, thus the tropical forcing and correlations 268 

with global weather may have a low signal-to-noise ratio. 269 

The global weeks 3 & 4 spatial 2-m temperature RPSS score for CTL (Fig. 6a) indicates 270 

the highest skill over land extending from the western Sahara into the middle east and northern 271 

China. Generally, the lowest relative skill is found over Europe, central South America, and the 272 
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northern portions of Asia. Comparing RTG to CTL (Fig. 6b), no grid-point statistical 273 

significance is found anywhere over land, but some general hints at coherent areas of 274 

improvement in RPSS can be found over central South America, North America, and Australia. 275 

Minimal differences over land can also be found comparing CTL to CFS (Fig. 6c) and CFS_BC 276 

(Fig. 6d) experiments. In general, the experiments forced with the CFS (CFS and CFS_BC) 277 

hinted at larger improvements in the same areas except for a generally coherent degradation over 278 

north central Asia. Over the ocean (not shown), the CFS experiment shows a degradation in 279 

RPSS over the northern high latitudes due to differences in modeling or representing sea ice. 280 

Also, along the western portion of South America and extending to the eastern equatorial region, 281 

the CFSv2 is known to overproduce low-level clouds and bias the SST. Applying a bias 282 

correction in CFS_BC significantly improves the degradations found in CFS.  283 

A warm bias exists in CTL across central NA (Fig. 7a), extending north into Greenland. 284 

This suggests the GEFS had a hard time capturing the unusually cold conditions across the 285 

central and eastern US and Canada that were observed during the experiment period. This cold 286 

bias is reduced in RTG (Fig. 7b), CFS (Fig. 7c), and CFS_BC (Fig. 7d), and corresponds to 287 

improve RPSS in central NA. The dynamic sea ice in both CFS and CFS_BC indicate large 288 

regions of the northern high latitudes that were cooler than CTL with the sea ice/ocean boundary 289 

clearly evident.  290 

Specifically comparing CFS (Fig. 7c) and CFS_BC (Fig. 8d), the bias correction in 291 

CFS_BC does little to reduce the 2-m temperature forecast bias over the northern latitudes, 292 

indicating a clear systematic difference between dynamically evolving the sea-ice and 293 

prescribing the SST and potential discrepancies between the model sea ice. However, the 294 

CFS_BC clearly reduces the bias over the western US extending into northern Mexico, 295 
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improving the RPSS (Fig. 6d). Additionally, CFS_BC significantly reduces the warm bias in 296 

CFS over the western portion of South America. Focusing on Asia, a cold bias in CFS is present 297 

over Siberia. This is not present in CFS_BC with it being slightly warmer this area. 298 

The weeks 3 & 4 time frame falls within the gray zone between the weather and climate, 299 

thus one way to highlight the “sub-seasonal” time scale and increase the predictability is to 300 

remove the short-term noise associated with the synoptic weather using a 5-day running mean. 301 

The 5-day running mean RMSE for 2-m temperature shows the largest error over central and 302 

western NA and central Siberia, extending across Asia (Fig. 8a). RTG (Fig. 8b) reduces the error 303 

across NA, while increasing the error over Siberia and across the Asia continent. CFS (Fig. 8c) 304 

has areas of error reduction around the great lakes in NA, but areas of increased error are found 305 

along the west coast and extending into Alaska and across the central US. Similar large increases 306 

in error were found across Siberia. Interestingly, CFS_BC (Fig. 8d) has an almost opposite 307 

impact across NA and NH, with increased error across central NA and a reduction in error across 308 

Siberia.  309 

While RMSE provide the forecast error, signal-to-noise ratio (SNR) directly indicates the 310 

predictability for a certain forecast variable (Wang et al. 2013; Zhang et al. 2016). For 2-m 311 

temperature, the predictability mainly occurs over the tropical regions (Fig. 9). Over the western 312 

CONUS, there is more predictability compared with the central US, but overall the predictability 313 

is low. It should be noted the GEFS is under dispersive in 2-m temperature, especially in the 314 

tropics. 315 

 The minimal improvement in 2-m temperature RPSS in RTG over land using a “perfect” 316 

SST setup indicates there are deficiencies that need to be addressed in the forecast model. The 317 

GEFS in its current configuration cannot effectively propagate the information contained in the 318 
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tropical SSTs to land regions around the globe. This is not simply an issue of low forecast skill 319 

over weeks 3 & 4 (Fig. 5c) as this was also evident during week 1 (not shown) and week 2 (Fig. 320 

5a). It should be noted again that the experiment period is only 6-months and occurred during a 321 

period of weak MJOs and ENSO neutral conditions. It is interesting that CFS_BC performs as 322 

well or better than RTG (statistically significant over NA) for the 2-m temperature RPSS and 323 

further investigation needs to be performed to determine if this trend holds over other forecast 324 

variables and verification metrics. 325 

3.2. Accumulated Precipitation Forecast Skill - CONUS  326 

Over the fall and winter of 2013-2014, the CONUS accumulated precipitation RPSS 327 

shows no statistically significant difference between CTL and RTG, CFS, or CFS_BC for week 1 328 

(not shown), week 2 (Fig. 5b), or weeks 3 & 4 (Fig. 5d). The magnitude of the RPSS falls off 329 

drastically after week 1 - approx. 0.55 at lead day 1 and 0 at lead day 7 (die off curves not 330 

shown) - leveling off around approx.. 0 (no skill) for all experiments for the extended period. 331 

The aggregate accumulated week 2 RPSS is slightly higher than weeks 3 & 4, but overall, the 332 

results suggest minimal skill with the current model configurations, regardless of SST forcing.  333 

The distribution of weeks 3 & 4 accumulated precipitation RPSS for CTL (Fig. 10) 334 

indicates the highest skill is over the northern plains with minimal or negative skill across the 335 

southwest, south central plains, and southeast. Comparing the RPSS differences from CTL, all 336 

CFS SST forcing experiments (Fig. 10c,d) generally show higher relative skill over the central 337 

plains into the Great Lakes, but less skill over northwest Texas. All SST forcing experiments 338 

have reduced RPSS in the southeast. The bias partially explains the RPSS distribution, with CTL 339 

too dry over the south central plains extending into the Mississippi river valley and slightly too 340 

wet over the northern plains and far southeast (Fig. 11a). There are coherent spatial bias 341 



 

16 

differences between RTG (Fig. 11b), CFS (Fig. 11c), and CFS_BC (Fig.11d) and the CTL, but 342 

none are large enough in magnitude be statistically significant. The RTG and CFS_BC 343 

experiments have large coherent regions reduction of the dry bias in the central and portions of 344 

the eastern U.S. The minimal differences in bias between SST forcing experiments suggests the 345 

systematic model errors from model parameterizations dominate the biases at the extended 346 

period. 347 

 348 

3.3. MJO Forecast Skill and Evolution 349 

The MJO is one of the dominant sources of predictability at the subseasonal time scale. 350 

As such, the forecast skill of MJO is a key metric when evaluating the capability of operational 351 

models for subseasonal forecasts (Kim et al. 2014; Shelly et al. 2014; Ling et al. 2014; Xiang et 352 

al. 2015). The MJO forecast skill in the operational version of GEFS during the experimental 353 

period (Fig. 12) is ~14.6 days - defined as the lead time when the bivariate anomaly correlation 354 

coefficient drops to 0.5. After week 2, MJO forecast skill quickly drops. Changing the prescribed 355 

SST to be closer to observations (RTG), the MJO forecast skill was improved up to ~2 days. For 356 

the weeks 3 & 4 range, the most skillful SST forcing is RTG with the CFS_BC being the most 357 

skillful scheme that could be practically used in operations.  358 

The MJO skill averaged for weeks 3 & 4 was improved by ~10% (figure not shown) for 359 

CFS_BC. This implies that the MJO prediction skill is related to the accuracy of the 360 

representation of the SST, which is consistent with other works (Wang et al. 2015). Therefore, 361 

without changing the model, it is found that improving the SST results in an increase of the MJO 362 

skill.      363 

 The strength and variability of the MJO index are subject to forecast errors, increasing 364 
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with lead time. Over the experiment period, the MJO is predicted to be weaker in September, late 365 

November-mid December of 2013, late January and February, 2014 but stronger over all other 366 

periods (Fig. 13). The bias in MJO strength was consistent across lead times. For longer lead 367 

time (e.g lead day=22), the forecast MJO indices tend to become stronger in most verification 368 

months except for December. Although the weeks 3 & 4 forecast MJO magnitude is generally 369 

too strong and slightly out of phase, there are some periods that GEFS performed well, for 370 

example, the late November - early December period for lead day 14. The investigation of this is 371 

left to future study since the purpose of the paper is to present the general skill of the GEFS for 372 

the weeks 3 & 4 time range.  373 

 374 

4. Conclusions and Future Work 375 

The NCEP GEFS is being extended from 16 d to 35 d to cover the subseasonal forecast 376 

period. The impact of SST forcing on the extended range land only global 2-m temperature, 377 

CONUS accumulated precipitation, and MJO indices forecast skill were examined using various 378 

SST forcing configurations. The SST configurations consisted of (1) the operational GFS and 379 

GEFS 90 day e-folding of the observed RTG SST anomaly to climatology; (2) an optimal AMIP 380 

configuration using the observed RTG SST analysis updated every 24-h; (3) a 2-tier approach 381 

using the CFSv2 predicted SST, updated every 24-h; and 4) a 2-tier approach using biased 382 

corrected CFSv2 predicted SST, updated every 24-h. The experiments are carried out over a six 383 

month period covering the fall and winter months of 2013-2014. This period was characterized 384 

by weak MJO events and a neutral ENSO conditions. 385 

There was minimal to no improvement in land only 2-m temperature and accumulated 386 

precipitation found over the extended weeks 3 & 4 period.  Forcing the GEFS with an optimal 387 
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SST setup did not show statistically significant improvements. This indicates there are 388 

deficiencies that need to be addressed. The GEFS in its current configuration cannot effectively 389 

propagate the information contained in the tropical SSTs to land regions around the globe. For 390 

accumulated precipitation over the CONUS, the minimal differences in RPSS between 391 

experiments and overall during the weeks 3 & 4 period along with the minimal differences in 392 

bias between SST forcing experiments also suggests that systematic model errors dominate the 393 

biases at the extended period with model boundary condition forcing having a secondary impact. 394 

It was found that the MJO skill during the experimental period for the operational GEFS 395 

is ~ 14.6 days. Using more realistic SST increased the MJO skill by 10%. The strength and 396 

variability of the MJO index are subject to forecast errors, increasing with lead time. The bias in 397 

MJO strength was consistent across lead times. For longer lead time (e.g lead day=22), the 398 

forecast MJO indices tend to become stronger in most verification months except for December. 399 

Overall, the one-way forcing of GEFS with more realistic SSTs does enhance MJO skill, 400 

but it does not significantly improve NA weather (2-m temperature and precipitation). This 401 

implies an (1) inherent predictability issue for NA weather over the weeks 3 & 4 period and that 402 

future work needs to be performed (2) to improve the GEFS model as well as (3) to improve 403 

boundary forcing such as sea ice, snowpack and soil moisture for potential gain in weeks 3 & 4 404 

skill. Also, observations indicate that the fall and winter of 2013-2014 has a generally weak 405 

MJO. Future work will focus on a two year span that covers a stronger MJO period spanning 1 406 

May 2014 to 31 May 2016 providing insight into the predictability from strong MJO and their 407 

relationship with 2-m temperature and CONUS accumulated precipitation from global 408 

teleconnections. Therefore, further experiments with higher resolution GEFS with improved 409 
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model stochastic physics have been designed to improve MJO prediction for the period of 2014-410 

2016.  411 
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 420 

APPENDIX A 421 

Rank Probability Skill Score  422 

The Rank Probability Skill Score (RPSS) measures the improvement of a multi-category 423 

ensemble forecast relative to a reference forecast. It ranges from -inf to 1 with a score of 0 424 

indicating it is no better than chance. Since it is a squared error score, RPSS will penalize 425 

incorrect forecasts made with higher forecast probability more severely than an incorrect forecast 426 

made with a lower forecast probability (the converse is true for correct forecasts).  427 

For this study, three equal climatological bins (terciles) are defined for each variable. The 428 

The RPSS is calculated as 429 

𝑅𝑃𝑆𝑆 = 1 − 𝑅𝑃𝑆𝑓 /𝑅𝑃𝑆𝑐 

where the forecast Ranked Probability Score (𝑅𝑃𝑆𝑓) is calculated as  430 

𝑅𝑃𝑆𝑓 =
1

𝑁
⋅ ∑

𝑁

𝑘=0

[(𝑝𝑟𝑜𝑏𝐵𝑛 − 𝑜𝑏𝑠𝐵𝑛)2 + (𝑝𝑟𝑜𝑏𝑁𝑛 − 𝑜𝑏𝑠𝑁𝑛)2 + (𝑝𝑟𝑜𝑏𝐴𝑛 − 𝑜𝑏𝑠𝐴𝑛)2]  

with n corresponding to each forecast-observation pair, N are the total number of forecast-431 

observation pairs, 𝑝𝑟𝑜𝑏𝑋𝑛is the ranked cumulative forecast probability for each bin X, and 432 

𝑜𝑏𝑠𝑋𝑛is the ranked cumulative observation probability for each bin X. The 𝑅𝑃𝑆𝑓 forecast 433 

probability is the proportion of ensemble members in each bin. The reference 𝑅𝑃𝑆𝑐is calculated 434 

similarly, but the forecast probability set to ⅓ since each forecast bin is defined as 435 

climatologically equal. See Wilks 2011 or the Climate Prediction Center 436 

(http://www.cpc.ncep.noaa.gov/products/verification/summary/index.php?page=tutorial) for 437 

more information.  438 

  439 

http://www.cpc.ncep.noaa.gov/products/verification/summary/index.php?page=tutorial
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 440 

APPENDIX B 441 

SST Forcing Calculations 442 

Operational GEFS SST Forcing (CTL): 443 

The GEFS v11 operational SST forcing uses a 90-day e-folding of the RTG analysis at 444 

initialization, relaxed to climatology, calculated as 445 

𝑆𝑆𝑇𝑓
𝑡 = [𝑆𝑆𝑇𝑎

𝑡0 − 𝑆𝑆𝑇𝑐
𝑡0]𝑒(𝑡−𝑡0)/90 + 𝑆𝑆𝑇𝑐

𝑡0 

where f  is the forecast, a the analysis, c is climatology, t is forecast lead time, and t0 is the initial 446 

time. 447 

 448 

Bias Corrected CFSv2 Predicted SST Forcing (CFS_BC) 449 

The CFS_BC SST forcing is a hybrid of a persisted RTG anomaly at short lead times and 450 

bias corrected CFSv2 predicted SST at longer lead times. The CFSv2 predicted SST is bias 451 

corrected using both the CFSR climatology and CFSv2 model climatology. The persisted RTG 452 

anomaly is linearly combined with the bias corrected CFSv2 predicted SST over the 35-d period, 453 

calculated as  454 

𝑆𝑆𝑇𝑓
𝑡 = (1 − 𝑤)[𝑆𝑆𝑇𝑎

𝑡0 − 𝑆𝑆𝑇𝑐𝑓𝑠𝑟𝑐
𝑡0 + 𝑆𝑆𝑇𝑐𝑓𝑠𝑟𝑐

𝑡 ] + 𝑤[𝑆𝑆𝑇𝑐𝑓𝑠
𝑡 − (𝑆𝑆𝑇𝑐𝑓𝑠_𝑐

𝑡 − 𝑆𝑆𝑇𝑐𝑓𝑠𝑟𝑐
𝑡 )] 

where f is the forecast, a the analysis, cfsrc is the CFSR reanalysis climatology, cfs is the CFS 455 

(24-h mean) forecast SST,  cfs_c is the CFSv2 model climatology, t is forecast lead time, t0 is the 456 

initial time, and w is defined as 457 

𝑤 = (𝑡 − 𝑡0)/35. 458 

 459 

 460 
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FIGURE CAPTION LIST 712 

Figure 1. Average Anomaly Correlation by lead day for 500-hPa geopotential heights over the 713 

Northern Hemisphere covering the period of 1 September 2013 to 28 February 2014 for the 714 

deterministic GFS (blue) and the GEFS ensemble mean (red). 715 

 716 

Figure 2. Spatial distribution of 5-day running mean RMS error (left column) and ensemble 717 

spread (right column) of 500-hPa geopotential heights for CTL over the 6-month experiment 718 

period for lead day 18 (top row) and  25 (bottom row).  719 

 720 

Figure 3. Spatial distribution of RMS error of 200-hPa u-component of wind for CTL over the 6-721 

month experiment for lead day 18 (top row) and lead day 25 (bottom row). 722 

 723 

Figure 4. Hovmoller diagrams of SST area-average over the 15S-15N band for the (a) RTG 724 

analysis, (b) CTL initial conditions, and (c) CFSv2  and (d) bias corrected CFSv2 SST forecast at 725 

lead day 20. The three panels on the right verify with the dates of the RTG on the left. Time-726 

longitude correlation is given for each SST forecast panels. 727 

 728 

Figure 5. Rank Probability Skill Score for CTL (black), RTG (red), CFS (green), and CFS_BC 729 

(blue) calculated for week 2 (top row) and weeks 3 & 4 (bottom row) for 2-m temperature (a,c) 730 

and accumulated precipitation (b,d) averaged over the 6-month experiment period. Asterisks 731 

beneath the respective experiment column score indicates the difference of that experiment from 732 

CTL is statistically significant at the 95% confidence level. 733 

 734 
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Figure 6. Land only 2.5
o
 global 2-m temperature Rank Probability Skill Score averaged over the 735 

6-month experimental period for weeks 3 & 4 for (a) CTL and the difference from CTL of  RTG 736 

(b), CFS (c), and CFS_BC (d). Hatching on (b,c,d) indicates the difference is statistically 737 

significant at the 95% confidence level. 738 

 739 

Figure 7. Land only 2.5
o
 global 2-m temperature bias averaged over the 6-month experiment 740 

period for weeks 3 & 4 for CTL (a) and the difference from CTL of  RTG (b), CFS (c), and 741 

CFS_BC (d).  742 

 743 

Figure 8. Land only 2.5
o
 2-m temperature RMS error for (a) CTL and the difference between 744 

CTL and RTG (b), CFS (c), and CFS_BC  (d) averaged over the 6-month experiment period. 745 

 746 

Figure 9: The 2-m temperature signal-to-noise ratio for CTL averaged over weeks 3 & 4.  747 

 748 

Figure 10. Spatial weeks 3 & 4 accumulated precipitation Rank Probability Skill Score over the 749 

CONUS averaged over the 6-month experimental period for CTL (a) and the difference from 750 

CTL of RTG (b), CFS (c), and CFS_BC (d). 751 

 752 

Figure 11. Spatial weeks 3 & 4 accumulated precipitation bias over the CONUS averaged over 753 

the 6-month experimental period for CTL (a) and the difference from CTL of  RTG (b), CFS (c), 754 

and CFS_BC (d). 755 

 756 

Figure 12. MJO forecast skill (i.e. bivariate correlation between ensemble mean forecast and 757 



 

36 

analysis data) as a function of lead time for the period of September 1, 2013 - February 28, 2014. 758 

Climatology and previous 120-day mean are removed from the forecast and analysis data while 759 

calculating the RMMs. 760 

 761 

Figure 13. a) MJO forecast skill (i.e. bivariate correlation between ensemble mean forecast and 762 

analysis data) as a function of lead time for the period of September 1, 2013 - February 28, 2014. 763 

Climatology and previous 120-day mean are removed from the forecast and analysis data while 764 

calculating the RMMs. b) Average of the MJO skill for weeks 3 & 4 (averaged over lead day 15-765 

28)  766 

 767 

 768 
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 780 

Figure 1. Average Anomaly Correlation by lead day for 500-hPa geopotential heights over the Northern 781 

Hemisphere covering the period of 1 September 2013 to 28 February 2014 for the deterministic GFS 782 

(blue) and the GEFS ensemble mean (red). 783 
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 784 

Figure 2. Hovmoller diagrams of  area-average SST [K] over the 15oS-15oN band for the (a) RTG analysis, 785 

(b) CTL initial conditions, and (c) CFSv2  and (d) bias corrected CFSv2 SST forecast at lead day 20. The 786 

three panels on the right verify with the dates of the RTG on the left. Time-longitude correlation is given 787 

for each SST forecast panels. 788 

 789 
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 790 

Figure 3. Spatial distribution of 5-day running mean RMS error (left column) and ensemble spread (right 791 

column) of 500-hPa geopotential heights [gpm] for CTL over the 6-month experiment period for lead day 792 

18 (top row) and  25 (bottom row).  793 
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 794 

Figure 4. Spatial distribution of RMS error of 200-hPa u-component of wind [m s-1] for CTL over the 6-795 

month experiment for lead day 18 (top row) and lead day 25 (bottom row). 796 
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 797 

Figure 5. Rank Probability Skill Score for CTL (black), RTG (red), CFS (green), and CFS_BC (blue) calculated 798 

for week 2 (top row) and weeks 3 & 4 (bottom row) for 2-m temperature (a,c) and accumulated 799 

precipitation (b,d) averaged over the 6-month experiment period. Asterisks beneath the respective 800 

experiment column score indicates the difference of that experiment from CTL is statistically significant 801 

at the 95% confidence level. 802 
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 803 

Figure 6. Land only 2.5o global 2-m temperature Rank Probability Skill Score averaged over the 6-month 804 

experimental period for weeks 3 & 4 for (a) CTL and the difference from CTL of  RTG (b), CFS (c), and 805 

CFS_BC (d). Hatching on (b,c,d) indicates the difference is statistically significant at the 95% confidence 806 

level. 807 

 808 
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Figure 7. Land only 2.5o global 2-m temperature bias [K] averaged over the 6-month experiment period 809 

for weeks 3 & 4 for CTL (a) and the difference from CTL of  RTG (b), CFS (c), and CFS_BC (d).  810 

 811 

 812 

 813 

Figure 8. Land only 2.5o 2-m temperature RMS error [K] for (a) CTL and the difference between CTL and 814 

RTG (b), CFS (c), and CFS_BC  (d) averaged over the 6-month experiment period. 815 

  816 
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 817 

 818 

Figure 9: The 2-m temperature signal-to-noise ratio for CTL averaged over weeks 3 & 4.  819 

  820 
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 821 

 822 

Figure 10. Spatial weeks 3 & 4 accumulated precipitation Rank Probability Skill Score over the CONUS 823 

averaged over the 6-month experimental period for CTL (a) and the difference from CTL of RTG (b), CFS 824 

(c), and CFS_BC (d). 825 

  826 
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 827 

 828 

Figure 11. Spatial weeks 3 & 4 accumulated precipitation bias [mm] over the CONUS averaged over the 829 

6-month experimental period for CTL (a) and the difference from CTL of  RTG (b), CFS (c), and CFS_BC 830 

(d). 831 
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 833 

 834 

Figure 12. MJO forecast skill (i.e. bivariate correlation between ensemble mean forecast and analysis 835 

data) as a function of lead time for the period of September 1, 2013 - February 28, 2014. Climatology 836 

and previous 120-day mean are removed from the forecast and analysis data while calculating the 837 

RMMs. 838 

 839 

 840 

 841 

 842 

 843 
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 844 

 845 

Figure 13. MJO index for different lead time. a). for lead day 14; b) for lead day 21. 7-point running mean 846 

is applied on the time series to smooth the data. Numbers in the text box are the variance of each 847 

experiment from the analysis for all initial times.  848 

 849 


