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Abstract
NOAA is accelerating its efforts to improve the numerical guidance and prediction capability for extended range (weeks 3 
and 4) prediction in its seamless forecast system. Madden Julian Oscillation (MJO) is the dominant mode of sub-seasonal 
variability in tropics and prediction skill of MJO is investigated in this paper. We used different configurations of the NCEP 
Global Ensemble Forecast System (GEFS) to perform the experiments. The configurations include (1) the operational version 
of the stochastic perturbation forced with operational Sea Surface Temperatures (SSTs); (2) an updated stochastic phys-
ics forced with operational SSTs; (3) an updated stochastic physics forced with bias-corrected SSTs that are from Climate 
Forecast System (Version 2); and (4) as in (3) but with the addition of a scale aware-convection scheme. We evaluated MJO 
prediction skill from the experiments using Wheeler–Hendon indices and also examined the performance of the forecast 
system on prediction of key MJO components. We found that using the updated stochastic scheme improved the MJO predic-
tion lead-time by about 4 days. Further updating the underlying SSTs with the bias corrected CFSv2 forecast increased the 
MJO prediction lead time by another 1.7 days. The best configuration of the four experiments is the last configuration which 
extends forecast lead time by ~ 9 days. Further investigation shows that upper and lower level zonal wind over the tropics has 
larger improvement than the outgoing longwave radiation (OLR). The improvement of the MJO prediction skill appears to 
be related primarily to the improvement in the representation associated circulations and OLR over the tropical West Pacific.

1 Introduction

A skillful forecast for the sub-seasonal time scale (3–4 weeks) 
is valuable in socio-economic context but poses substantial 
challenges. The limited prediction skill for this time window 
is mainly related to its relatively weak dependence on the 
initial conditions (an important source of predictability for 
the short term weather forecasts) and the insufficient time for 
the forecast system to ‘feel’ the effects of the lower boundary 
forcing that provide predictability on seasonal and longer 

timescales (Vitart 2009; Johnson et al. 2014; Liu et al. 2016; 
Troccoli 2010; Tian et al. 2017). Thus improving sub-sea-
sonal forecasts is likely to come from substantial efforts on 
the model development, with a focus on improving repre-
sentation of the sources of the sub-seasonal predictability.

As a dominant mode in tropical variability on the sub-
seasonal timescale, the Madden–Julian Oscillation (MJO), 
which features as a 30–60 day oscillation of convection 
and circulation in the tropics has been a focal point of the 
research community and operational centers that are look-
ing to improve sub-seasonal prediction. Numerical studies 
have found that improvement in tropical and extratropical 
prediction on sub-seasonal time scales can be linked to 
improved prediction of the MJO (Ferranti et al. 1990; Wal-
iser et al. 2003; Lin and Brunet 2009; Pegion and Sardesh-
mukh 2011; Vitart 2014; Liu et al. 2017). With increasing 
interest and demand for skillful sub-seasonal forecasts, 
better representation of the MJO is of particular impor-
tance in operational numerical weather prediction (NWP) 
centers. In recent years, progress in MJO forecasting as a 
result of NWP developments has been quite promising. For 
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example, the European Centre for Medium-Range Weather 
Forecasts (ECMWF) has mitigated the temporal decline in 
MJO prediction skill by about 1 day per year since 2002 
(Vitart 2014). It was found that the large improvement 
before 2009 was mostly attributed to the change in convec-
tive parameterization (Vitart 2009). The progress of MJO 
prediction skill offers promise for corresponding potential 
improvements in the sub-seasonal forecast for most other 
phenomena.

Concerning the MJO simulation in weather and climate 
models, researchers and model developers mainly focus on 
these key areas for improvement of MJO representation (1) 
model physics parameterization: particularly, the MJO prop-
agation was found to be sensitive to the convection scheme 
or diabatic heating profile (Wang and Schlesinger 1999; 
Maloney and Hartmann 2001; Liu et al. 2005; Lin et al. 
2008; Li et al. 2009; Zhang and Song 2009; Vitart 2009; 
Zhou et al. 2012; Xiang et al. 2015). (2) Ocean impact. The 
MJO is mainly an atmospheric phenomenon but is largely 
impacted by the ocean, particularly accurate sea surface 
temperatures and atmospheric ocean coupling are believed 
to be critically important for prediction (Wang et al. 2015; 
Liu et al. 2017). (3) Ensemble forecast using either single 
model (Vitart and Molteni 2010; Hudson et al. 2013) or 
multi-model approaches to effectively sample model uncer-
tainty (Gottschalck et al. 2010; Fu et al. 2013). The National 
Center for Environmental Prediction (NCEP) Global ensem-
ble Forecast System (GEFS) provides numerical guidance 
for probabilistic forecast with the lead time up to 16 days. 
To align with the NOAA effort to accelerate sub-seasonal 
prediction in a seamless ensemble forecast system, several 
experiments that extend the GEFS integration time to cover 
weeks 3 and 4 lead time were performed. An early investi-
gation indicated that MJO prediction skill was improved by 
using an optimal SST scheme in 35-day run of GEFS (Zhu 
et al. 2017). Following that investigation, more comprehen-
sive experiments were performed to test the impact of GEFS 
configurations on the MJO prediction skill.

Section 2 describes the details of the experimental design 
and data used in this study. The evaluation of the predic-
tion skill of the MJO and its associated key components 
is demonstrated in Sect. 3. Conclusions and discussion are 
provided in Sect. 4.

2  Experimental design and data

In this study, four experiments were conducted to investigate 
the key factors in the GEFS configurations that impact the 
MJO forecast prediction. The scientific areas include dif-
ferent stochastic perturbation schemes, the underlying SST 
forcing and the convection scheme.

2.1  35‑day run using operational version of GEFS

The NCEP Global Ensemble Forecast System (GEFS 
version 11, Zhou et al. 2017), based on the Global Fore-
cast System version 12 (GFS, i.e. Global spectral model 
GSM + land surface model LSM) is used to perform the 
experiments. For each experiment, a 21-member (1 control 
run and 20 perturbed members) ensemble was used to inte-
grate the forecast system that is integrated up to 35 days. 
Considering the computational cost and the relatively small 
impact of the resolution on longer lead times (Tracton and 
Kalnay 1993; Ma et al. 2012),  TL 574 (semi-Lagrangian 
dynamics) horizontal resolution (roughly equivalent to 
33 km grid spacing) for the first 8 lead days and  TL 382 
(~ 55 km) for lead days 8–35 was used. 64 vertical levels 
were used for all lead times.

The initial analyses and perturbations of the 21-mem-
ber GEFS are taken from the NCEP GFSv13 data assimi-
lation system (using 4D Hybrid Ensemble-Var), which 
was implemented in May 2016. Because GFS is an uncou-
pled atmosphere ocean forecast system, a prescribed SST 
initialized from Real Time Global (i.e. RTG) analysis 
that damped towards the observed climatology (with a 
90-day e-folding rate) was used to force the model (Gem-
mill et al. 2007). The sea ice concentration is initialized 
from daily 0000UTC sea ice analysis from the Interac-
tive multisensor snow and ice mapping system (Ramsay 
1998). The SST and sea ice forcing are identical for all 
GEFS members.

The current operational GEFS uses the Stochastic Total 
Tendency Perturbation method (STTP; Hou et al. 2006, 
2008) that adds a random combination of the total ten-
dency from other ensemble members every 6 h to repre-
sent the random model error. Based on the investigation 
of the past GEFS experiment, the effect of the STTP is to 
increase the spread and represent the model error more 
effectively over the extratropical region in boreal winter 
but minor effect over the tropical region (Zhu et al. 2018). 
Since STTP is the scheme used in the operational GEFS, 
the 35-day run of this GEFS configuration is taken as a 
reference for the other three experiments and is named 
‘STTP’ hereafter.

2.2  New stochastic physics scheme

The first experiment that was performed is to replace the 
STTP with a new stochastic physics which includes three 
schemes (1) stochastic perturbed parameterization tendency 
(SPPT, Buizza et al. 1999; Palmer et al. 2009), (2) stochastic 
kinetic energy backscatter (SKEB; Shutts and Palmer 2004; 
Shutts 2005; Berner et al. 2009), and (3) stochastic per-
turbed humidity (SHUM; Tompkins and Berner 2008). The 
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suite of the three stochastic physics perturbation schemes 
has already been implemented in GFS hybrid-EnKF data 
assimilation system and will be used in the next configura-
tion of the operational GEFS. As such, it is naturally con-
sidered as the first experiment to be tested. Specifically, 
SPPT perturbs the tendencies of temperature, wind and 
moisture, thus it represents the structural uncertainty related 
to sub-grid physics parameterizations (excluding clear-sky 
radiation). In practice, five random patterns with spatial 
correlation scale/time scales of 500 km/6 h, 100 km/3 day, 
200 km/30 day, 2000 km/90 day, 2000 km/1 year are used 
to determine the perturbations. The patterns are applied to 
all model levels except it is reduced in magnitude near the 
surface to avoid instability caused by the perturbation in 
boundary layer and is tapered to zero near and above the 
tropopause to avoid perturbations on to the well-constrained 
clear-sky radiation (Ollinaho et al. 2017). SKEB simulates 
the transferring of the unresolved subgrid-scale energy to 
resolved scale. This is done via a stream function forcing 
based on the dissipation rate. Unlike other implementations 
of SKEB that considered the numerical dissipation, dissi-
pation related to the mountain gravity wave drag, and esti-
mated kinetic energy generated by updrafts and detrainment 
within sub-grid deep convection (Shutts 2005; Leutbecher 
et al. 2017), GFS implementation of SKEB only considers 
numerical dissipation (diffusion). In practice, perturbations 
are generated independently on each vertical level, and then 
vertically smoothed to provide some vertical coherence. The 
inclusion of SKEB improves the power spectrum of the 
global model, which otherwise exhibits damped power near 
the truncation frequency (Zhu et al. 2018). SHUM simulates 
the uncertainty related to the sub-grid scale humidity varia-
bility on the triggering of convection (Tompkins and Berner 
2008). In practice, SHUM uses the same random pattern 
generator as SPPT but only one single spatial–temporal 
scale. The perturbation is maximum in the lowest model 
level and decreases exponentially with height within the 
boundary layer (Zhu et al. 2018).

Compared to STTP, the effect of SPPT and SHUM is to 
produce additional spread over the tropics especially upon 
the mid-upper level of the troposphere while the effect of 
the SKEB is similar to STTP (figure not shown, Zhu et al. 
2018). The combined effect of SPPT, SHUM and SKEB 
(SPs hereafter) thus lead to an increase in the spread over 
the tropics. The impact of the SPs on the prediction skill of 
key MJO associated variables will be discussed in Sect. 3.

2.3  Updated SST forcing

In the operational version of GEFS, the prescribed SST uses 
analysis SST at the initial time and then damps to the climato-
logical SST with increasing lead time. This kind of boundary 
SST is valid for the short term forecast which is when the 

initial condition dominates. With the increase in lead time, 
the contribution of the boundary SST becomes more signifi-
cant. As such, in the third experiment, we replaced the SST 
forcing with a weighting average of the climatological SST 
and bias-corrected SST from a coupled model (NCEP CFSv2, 
Saha et al. 2014). i.e.

where SSTt0
a

 is the initial analysis SST, SST
t0

a
 is the initial cli-

matological SST from analysis data, SST
t

a
 is the climatologi-

cal SST from analysis data at lead time t, SSTt
m
 is the CFSv2 

forecast SST at lead time t, SST
t

m
 is the CFSv2 climatological 

SST at lead time t. w is the weighting with t = [0,35], t0 = 0, 
T = 35. The idea of new SST scheme is using model forecast 
SST to represent the day-to-day SST variability. Since even 
the bias-corrected SST has difference from the analysis SST 
at the initial time, we weighted the analysis SST and model 
SST to reduce the initial shock so that to obtain a smoothed 
SST curve for all lead days. We named this scheme as the 
“2-tiered” SST scheme. The first tier refers to the coupled 
model forecast and second tier refers to the input for the 
uncoupled model. We considered the “2-tiered” SST scheme 
as an interim configuration between the uncoupled GEFS 
and a future fully coupled version. The merit of 2-tiered 
SST scheme is it considered more realistic SST variation and 
more computationally economical than the coupled model.

2.4  Updated convection scheme

NCEP operational GFS uses the Simplified Arakawa-Schu-
bert convective parameterization scheme for deep convec-
tion (SAS, Arakawa and Schubert 1974; Grell 1993; Pan 
and Wu 1995; Han and Pan 2011) and the Mass-flux shal-
low convection scheme for shallow convection. Since July 
2017, GFS updated the cumulus convection scheme with 
a scale- and aerosol-aware convection scheme (Han et al. 
2017). The change in the convection scheme is associated 
with the increasing model resolution and the major updates 
included (1) the cloud base mass flux decreases with the 
increase of the fractional updraft area; (2) the convective 
adjustment time is proportional to the ratio of convective 
time to the convective turnover time; (3) cloud base mass 
flux in both deep and shallow convection now a function of 
mean updraft velocity for a grid size smaller than a thresh-
old; (4) the rain conversion rate decreases with decreasing 
air temperature above the freezing level but also increase 
with the decreasing aerosol number concentration. (5) Con-
vective inhibition in the sub-cloud layer is an additional 
trigger condition to suppress unrealistic noisy rainfall (Han 
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et al. 2017). The updated cumulus convection scheme dem-
onstrated significant improvement on reducing the precipita-
tion bias (too-much convective rain and light rain) especially 
during summer time.

It should be noted that although we proposed three sci-
entific areas that could be focused on, in the actual experi-
mental design, we didn’t separate the individual impact of 
SST forcing and convection scheme in our experiments due 
to the limit of computational resources that we can hardly 
afford. In fact, except the second experiment which replaces 
the STTP with the SPs, the third experiment is designed to 
include both updated SST and SPs, and the fourth experi-
ment includes an updated SST, SPs and the updated convec-
tion scheme. The combination of SST and new convection 
scheme is based on the early stage investigation (Zhu et al. 
2017) and short term examination.

The configuration of all experiments is summarized in 
Table 1. To make readers more easily identify the experi-
ments, we reinstate the experiments abbreviation here. 
Experiment 1: STTP; experiment 2: SPs; experiment 3: 
SPs + CFSBC, and experiment 4: SPs + CFSBC + CNV. All 
experiments were initialized every 5 days at 00Z, starting 
May 1st 2014 and ending May 26, 2016.

The analysis data used in this study is the NCEP GFS 
analysis. To avoid the impact of possible missing data in the 
forecast, a 7-point daily mean centered at 00Z of each lead 
day (e.g. using 06Z, 12Z, 18Z 24Z, 30Z, 36Z and 42Z aver-
age to represent the daily mean of the lead day 1) is used to 
represent the daily mean in both forecast and analysis data. 
Both forecast and analysis data are on 2.5° resolution.

3  Evaluation results

3.1  MJO prediction

We evaluated the MJO prediction skill following 
Gottschalck et  al. (2010) using Wheeler Hendon MJO 
indices (Wheeler and Hendon 2004), The MJO predic-
tion skill is defined as the bivariate anomaly correlation 
between the analysis and forecast Realtime Multivariate 
MJO (RMM1) and (RMM2) calculated using the outgoing 

longwave radiation (OLR), zonal wind at 200 hPa (U200) 
and 850 hPa (U850). i.e.

where f1(t,� ) and f2(t,� ) are the RMM1 and RMM2 of the 
forecast at lead day � initialized at day t. a1(t)and a2(t) are 
the RMM1 and RMM2 of the analysis data corresponding 
to the forecast at day t.

To obtain the RMM1 and RMM2 for each experiment, 
we first calculated the anomaly of the OLR, U200 and 
U850 of both forecast ensemble mean and analysis data. 
Since we only have 18 years reforecast for one of the four 
experiments and the GDAS data is only available since 
2011, the forecast and analysis anomaly were calculated by 
removing the 1979–2001 climatology using NCEP NCAR 
reanalysis and prior 120-day mean using GDAS for each 
forecast initial date and the corresponding analysis data. 
The anomaly data was then averaged over 15°S–15°N and 
normalized using 15.1 W/m for OLR, 1.81 m/s for U850 
and 4.81 m/s for U200 (Gottschalk et al. 2010), to represent 
the tropical mean anomaly. The RMM1 and RMM2 were 
calculated by projecting the forecast and analysis anomaly 
onto the Wheeler Hendon Empirical Orthogonal Func-
tions (EOFs) for each field and normalizing the RMMs by 
the given coefficient (Gottschalk et al. 2010). The RMM1 
and RMM2 calculated this way should be considered as 
removing the interannual and seasonal variability so that 
the impact of El Niño and Sothern Oscillation (ENSO) can 
be neglected.

The MJO prediction skill with the updated stochas-
tic physics schemes, SST scheme and convection scheme 
showed improvement from the operational GEFS with each 
successive enhancement (Fig. 1). A big improvement in 
MJO skill occurred by only changing the stochastic schemes 
from STTP to SPs, with the skill improved from ~ 12.5 days 
(defined as anomaly correlation reached 0.5) to ~ 16.8 days. 
Further updating the underlying SST improved the MJO 
prediction skill by another 1.7 days and updating all three 
areas of the GEFS configuration (configuration 4) improved 
the MJO skill to 22 days (Fig. 1a). In the GEFS forecast, 
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Table 1  Summary of the GEFS configurations

Abbreviation Stochastic physics scheme SST Convection scheme

STTP STTP Relax to Climatology SAS
SPs SPPT + SHUM + SKEB Relax to Climatology SAS
SPs + CFSBC SPPT + SHUM + SKEB Initial analysis + bias corrected CFS forecast SAS
SPS + CFSBC + CNV SPPT + SHUM + SKEB Initial analysis +  bas corrected CFS forecast Updated SAS
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the ranking of the experiments in RMM1 is consistent with 
RMM2 and they both are consistent with the skill of com-
bined RMM1 and RMM2. The skill of RMM2 is greater 
than RMM1 (Fig. 1b, c), leaving an open question whether 
the forecast over the Maritime continent and tropical Africa 
is more skillful than that over tropical West Pacific and 
Indian Ocean in GEFS.

The noteworthy part of this result is the significant effect 
of the stochastic physics scheme. Although improvement 
on SST forcing and model physics also have positive 
impact on the MJO prediction skill, the improvement of 

the MJO skill in experiments 3 and 4 should be considered 
as the combined effect with the stochastic physics pertur-
bation. Neena et al. (2014) by examining the relationship 
between ensemble spread and ensemble mean RMSE for 
MJO prediction from different ensemble prediction sys-
tems (EPS) found that the EPS with better spread is asso-
ciated with better ensemble mean prediction skill. Vitart 
(2017) mentioned the ensemble generation method is also 
an important factor in the MJO prediction skill in addition 
to the initialization, model physics and resolution. We put 
a short note on this factor here and leave detailed discus-
sion of impact of the stochastic physics perturbation on the 
prediction of ensemble mean temperature, zonal wind and 
humidity in Sect. 3.3.

The MJO forecast skill shows seasonality (Fig. 2). Over 
the 2-year experimental period in this work, the MJO predic-
tion skill in winter seasons (data collected during November, 
December and January of 2014–2015 and 2015–2016) are 
all higher than summer seasons (data collected during June, 
July and August of 2014 and 2015). The 0.5 anomaly cor-
relation score in winter season is about 1–2 days higher than 
summer season except for the SPs + CFSBC + CNV experi-
ment, which shows the winter score is more than 10 days 
higher than the summer score.

In addition to the MJO prediction skill that describes 
the model performance on MJO propagation, another two 
useful perspectives on MJO evaluation are the biases on 

Fig. 1  MJO prediction skill for a RMM1 and 2, b RMM1, c RMM2 
for different experiments during the period of May 1st 2014–May 26, 
2016 (5 day-inteval). The MJO prediction skill is defined as the bivar-
iate correlation of the RMM1 and RMM2 between ensemble mean 
forecast anomaly and anomaly of the analysis data. Climatology and 
120-day running mean are removed from the forecast and analysis 
data when calculating the RMMs. A dash line of anomaly correlation 
equals to 0.5 is added in the plot to indicate the MJO skill

Fig. 2  Lead days that the MJO skill score reaches 0.5 for the four experi-
ments in winter and summer seasons during the period of May 1st 2014-
May 26 2016. 36 cases in November, December 2014-January 2015 and 
November, December 2015-January 2016 was used to calculate the MJO 
skill score for winter season. 36 cases in June–August, 2014 and 2015 
was used to calculate the MJO skill score for summer season
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predicted MJO amplitude and phase. As in Vitart (2017), 
Fig. 3a, b show the evolution of the MJO amplitude and 
phase error as a function of lead time averaged over the 
experimental period. Over the 35 lead days, The MJO 
amplitude predicted by STTP is too strong and the MJO 
propagated too slowly compared to the analysis data. Oppo-
site to the STTP, the MJO amplitude in SPs, SPs + CFSBC 
and SPs + CFSBC + CNV are predicted weak and the 
MJO still propagated slowly, which is common in many 
models (Wang et al. 2014; Rashid et al. 2011) but better 
than the STTP. For both MJO amplitude and phase speed, 
SPs + CFSBC + CNV has the least bias among all experi-
ments. This is consistent with the MJO prediction skill in 
the same configuration showed in Fig. 1. Comparing the 
SPs + CFSBC to SPs, the SST forcing combined with the 
stochastic physics perturbation helped reduce the MJO 
amplitude and propagation bias for the lead time beyond 
3  weeks and updating the convection scheme further 
reduced the MJO amplitude and phase bias.

Regarding the MJO prediction skill, the anomaly cor-
relation coefficient (ACC) describes the forecast system’s 
performance on the deterministic forecast. For an ensemble 
forecast system, to evaluate performance of the ensemble 
members in multiple categories, we used ranked probability 

skill score (RPSS) to demonstrate the performance of GEFS 
on the probabilistic forecast of the MJO. RPSS describes 
the squared error of the forecast system with respect to the 
analysis data in each category. Thus it is very sensitive to the 
distance between the forecast and the truth. To calculate the 
RPSS, we first calculated the RMM1 and RMM2 for each 
member for each experiment. Then we applied below RPSS 
formula to RMM1 and RMM2 to obtain the probability skill 
score for each of them.

For a certain initial date and forecast lead time, let Yn 
denotes the cumulative probability in forecast RMM1 or 
RMM2 and An denotes the cumulative probability in the 
analysis. Based on Wilks (2011),

and

In our case, since 20-member forecast were counted in 
the calculation of the probability score, yj is thus the prob-
ability in each bin from the 20 member. We used N = 6 with 
bin range of [− 6, 6] for both RMM1 and RMM2. For exam-
ple, if  y1 = 0,  y2 = 0.1,  y3 = 0.4,  y4 = 0.2,  y5 = 0.2,  y6 = 0.1, 
then  Y1 = y1 = 0,  Y2 = y1 + y2 = 0.1,  Y3 = y1 + y2 + y3 = 0.5, 
 y4 = y1 + y2 + y3 + y4 = 0.7,  Y5 = y1 + y2 + y3 + y4 + y5 = 0.9 
and  Y6 = y1 +  ··· + y6 = 1. If the analysis drops in the 
3rd bin, then  a3 = 1 and for other bins a = 0. Thus, 
 A1 = a1 = 0,  A2 = a1 + a2 = 0,  A3 = a1 + a2 + a3 = 1, 
 A4 = a1 + a2 + a3 + a4 = 1,  A5 = a1 +  ···  +a5 = 1, and 
 A6 = a1 + … + a6 = 1.

The ranked probability score (i.e. the sum of the 
squared difference between the cumulative forecast and 
analysis vectors) is then defined as:

To get the ranked probability skill score, we used the 
RPS of the climatology as the reference. Let

The RPS of the climatology data is defined as:

(3)Yn =

n
∑

j

yj , n = 1, N,

(4)An =

n
∑

j

aj, n = 1, N.

(5)RPS =
1

N

N
∑

j

(

Yn − An

)2
.

(6)Cn =

n
∑

j

cj, n = 1, N.

(7)RPSc =
1

N

N
∑

j

(

Cn − An

)

.

Fig. 3  MJO amplitude error (a) and phase error (b) as a function of 
lead days for the four experiments. The MJO amplitude error is 
defined as the mean bias of the MJO index with respect to the analy-
sis data over the period of May 1st 2014-May 26 2016 (5  day-
inteval). The MJO phase error is defined as the mean bias of the MJO 
phase angle against same analysis data over the same period. MJO 
phase is defined as = tan

−1

(

RMM2

RMM1

)

 , � = [−180, 180]
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The ranked probability skill score is then can be 
obtained using:

Different from the calculation of RPS for forecast, 
which is based on 20-member ensemble, RPSc, is obtained 
from the 30-year (1988–2017) RMM indices from Bureau 
of Meteorology in Australia (http://www.bom.gov.au/
clima te/mjo/graph ics/rmm.74toR ealti me.txt).

RPSS of the RMM1 and RMM2 as a function of lead 
day for each experiment averaged over the experimental 
period is shown in Fig. 4. Overall, probability forecast 
on RMM2 is more skillful than RMM1, which is consist-
ent with the ensemble mean deterministic forecast. For 

(8)RPSS = 1 −
RPS

RPSc
.

Fig. 4  Mean ranked probability skill score (RPSS) of RMM1 (a) and 
RMM2 (b) as a function of lead days averaged over the period of 
May 1 st, 2014–May 26, 2016. 6 bins ranged from − 6 to 6 are used 
to calculate the score. For each lead day and initial date, 20 members 
were used to calculate the RPSS

Fig. 5  Probability density distribution (PDF) of MJO RMM1 (a) and 
RMM2 (b) for the four experiments and analysis data for lead day 
15. 25 bins are used to calculate the PDF. 150 samples are used to 
calculate the PDF of the analysis and 3000 samples (i.e. 150 initial 
days × 20 members) are used to calculate the PDF of the forecast data

Fig. 6  Correlation coefficient of a U200, b U850 and c OLR anoma-
lies over 15°S–15°N between the analysis and forecast data over the 
period of May 1st 2014–May 26 2016 for the four experiments

http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt
http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt
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RPSS of both RMM1 and RMM2, experiments with new 
stochastic physics parameters (SPs, SPs + CFSBC and 
SPs + CFSBC + CNV) are all more skillful than STTP, with 
the SPs + CFSBC + CNV showing the best skill. The large 
difference between the STTP and new stochastic experi-
ments is likely due to the RMMs bias in STTP. Figure 5 
shows the probability distribution of the RMM1 and RMM2 
in four experiments and analysis data. 20-ensemble in 150 
initial dates are counted in the PDF for forecast data and 150 
initial dates are counted in analysis data. For lead day 15, 
RMM1 and RMM2 of STTP from all ensemble members 
shift towards left in the PDF curve, indicating GEFS STTP 
predicted too much strong negative RMM1 and RMM2 
(phase1 and 8 and phase 2 and 3) than other experiments and 
the analysis data. The PDF curve of SPPT + CFSBC + CNV 
matches the analysis data better than the other experiments, 
indicating that the SPPT + CFSBC + CNV predicted less 
weak RMM1 and RMM2.

3.2  Evaluation of the large‑scale circulation 
and convection

Since the MJO skill using WH indices uses the upper and 
lower level zonal wind and the OLR anomaly to represent 
MJO associated circulation and convection, the prediction 
skill of the large-scale circulation and the convection are 
examined to help better understand the improvement in 
MJO skill. Figure 6 shows the correlation of the tropical 

15°S–15°N mean zonal wind and OLR anomaly during 
the 2-year period (150 initial days) for all lead days and 
four experiments. In all experiments, the correlation score 
for upper level zonal wind is higher than the lower level 
zonal wind which is higher than the OLR. This is reason-
able because lower level winds are more dependent on the 
model uncertainty in surface process than are the upper 
level winds. The OLR forecast shows the lowest score, 
likely because it is a function of more complicated physical 
and dynamical processes that involves considerable uncer-
tainty thus limiting the prediction skill. For all three compo-
nents, it is obvious that all the new stochastic experiments 
(including SPs, SPs + CFSBC and SPs + CFSBC + CNV) 
performed better than the production version of the GEFS 
(STTP), indicating the positive impact of the updated 
stochastic scheme on the performance of the forecast 
system over the tropical region. Among the SPs experi-
ments, SPs + CFSBC + CNV outperformed SPs + CFSBC 
which outperformed SPs in wind components, especially 
in 200 hPa zonal wind. Although there are some differ-
ences between the SPs and the other two experiments (i.e. 
SPs + CFSBC and SPs + CFSBC + CNV) in OLR for longer 
lead time, the difference between the SPs + CFSBC and 
SPs + CFSBC + CNV is not as evident as in the zonal wind 
fields.

To further explore where in the tropics does the sub-
stantial improvement occur, we examined correlation of 
the wind and OLR anomaly on each model grid over the 

Fig. 7  Spatial distribution of the correlation coefficient of U200, 
U850 and OLR anomaly between the analysis and the forecast data 
during the period of May 1st 2014–May 26 2016 at lead day 15. a–c 

Correlation coefficient for STTP, d–l the difference of the correlation 
between each experiment and the STTP. The sample size to calculate 
the correlation coefficient is 150 for each plot
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tropics for lead day 15 (Fig. 7). The operational version 
of GEFS shows better performance on 850  hPa zonal 
wind anomaly forecast than the other two variables over 
the region from tropical Indian Ocean to west Pacific 
(Fig. 7a–c). The updated stochastic schemes help improved 
the 200 hPa zonal wind anomaly over the tropical Indian 

Ocean to most of the Maritime Continent, as well as the 
850 hPa zonal wind anomaly over the tropical west Pacific 
and Indian Ocean (Fig. 7d–f). In the WH RMM calcu-
lation, the zonal wind is weighted more than the OLR 
anomaly. Although the updated stochastic schemes also 
resulted in an improvement of the OLR anomaly forecast 

Fig. 8  Correlation coefficient as a function of latitude and lead time for U200, U850 and OLR anomaly for STTP (a–c) and the difference of the 
correlation coefficient of each experiment from the STTP (d–l) for each variable
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over the tropical region, the improvement in the wind 
component appears to be the main reason that related 
to the improved MJO forecast in the updated stochas-
tic schemes. A further update on underlying SST, com-
bined with the updated stochastic schemes enhanced the 
improvement of the three variables. Updated the stochastic 

scheme, the underlying SST, and the convection scheme 
provided additional skill to the wind and OLR prediction 
(Fig. 7i–l). The improvement of the forecast anomaly of 
the three variables can also be demonstrated in a latitude 
and lead time cross-section of the three variables (Fig. 8). 
The SPs + CFSBC + CNV is the configuration that leads 

Fig. 9  Pattern correlation as a function of MJO phase and lead 
time for the composite U200, U850 and OLR over each MJO phase 
between the analysis and forecast data. a–c Pattern correlation for 

STTP experiment for the U200, U850 and OLR respectively. d–l the 
difference of the correlation coefficient of each experiment from the 
STTP (d–l) for each variable
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to the largest improvement. Among the three variables, 
the largest improvement occurs in 200 hPa zonal wind, 
especially beyond two weeks of the lead time. The conclu-
sion that of these tested here, the SPs + CFSBC + CNV is 
the best configuration for MJO forecasts can also be sub-
stantiated by a MJO phase and lead time cross-section of 
the pattern correlation of the composite 200 hPa, 850 hPa 
zonal wind and OLR fields (Fig. 9). For all three variables, 
the large improvement occurs mostly on phase 3 and phase 
6–7 after 2 weeks of the lead time. This is consistent with 
the improvement of the forecast over tropical west Pacific 
and Indian Ocean shown in Fig. 7 and with other works 
(Wang et al. 2014).

3.3  Impact of the stochastic physics scheme

Based on the evaluation of the prediction skill of the MJO 
and its associated variables (Figs. 1, 4), the prediction skill 
exhibits a jump after using an updated stochastic scheme. 
As such, we examined the spread of the perturbed vari-
ables in the SPs experiment to further check the contribu-
tion of the stochastic scheme on the performance of the 
GEFS. The SPs is a combined stochastic physics scheme 
of three components, which include SPPT, SHUM and 
SKEB. The individual impact of the SPs has been dis-
cussed in Zhu et al. 2017. The combined effect of the SPs, 

compared to the operational STTP version, increased the 
spread mainly over the tropical region (Fig. 10) and the 
increase of the spread lead to an improved temperature, 
zonal wind and relative humidity profile in the same 
region (Fig. 11). For the weeks 3 and 4 forecast of the 
tropical mean zonal wind at 250 hPa and 850 hPa, the 
prediction skill improved by 43% and 19% respectively 
(Fig. 12). The weeks 3 and 4 prediction skill of the tropical 
zonal wind is strongly dependent on the initial dates. The 
skill range can be as large as 1 for the zonal wind at both 
levels. The prediction skill of the weeks 3 and 4 tropical 
mean zonal wind at 250 hPa and 850 hPa during a strong 
MJO period is 63% and 18% larger than that of the weak 
MJO period in SPs experiment and 50% and 12% larger 
in STTP experiment.

4  Conclusion and discussion

Improving prediction skill for the source of the sub-
seasonal predictability (i.e, the MJO) is critical to the 
improvement of tropical and extratropical forecasts 
of other phenomena, especially for extreme events. In 
this work, experiments were performed using different 

Fig. 10  Averaged ensemble spread of the perturbed members in 
GEFS for temperature, zonal wind and relative humidity at 360 fore-
cast hour (a–c) and the difference between SPs and STTP for the cor-
responding variables (d–f). For each plot, 6 sample during March 

2016 (March 1, 6, 11, 16, 21 and 26) was used to calculate the aver-
aged ensemble spread. b and e are  from Fig.7a and b in Zhu et  al. 
2018
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configurations of the NCEP GEFS to evaluate the MJO 
prediction skill and its key components. Based on the four 
experiments, it was determined that the improved-MJO 
forecast benefited largely from the use of a stochastic 
physics scheme that resulted in the improvement of the 
forecast of key MJO component variables. The improve-
ment was mostly related to the increase of the spread 
of the temperature, wind and humidity profiles over the 
tropics. The addition of an updated underlying SST from 
the bias corrected CFSv2 forecast and a new convection 
scheme simulates tropical convective systems more real-
istically further enhanced the improvement. The improve-
ment of the MJO prediction skill is mainly related to bet-
ter representation of the circulation and convection over 
the tropical West Pacific and Indian Ocean, especially in 
the configuration of SPs + CFSBC + CNV. A combination 
of the updated stochastic physics perturbation, more real-
istic SST, and convection scheme in the forecast model 
led to about a 9-day extension of given skill threshold for 
MJO forecasts.

Following this work, our next step will be the evalu-
ation for the MJO-skill impacts after bias-correction. 
Application of this configuration is enabled by the recent 
completion and post processing of an 18-year reforecast. 
In addition to the evaluation of tropical forecasts, an 
analysis of the teleconnection relation between tropical 
and extratropical prediction skill is necessary and critical. 
The current investigation suggests that there is a statisti-
cally significant lag correlation between the North Atlantic 
Oscillation (NAO) and MJO indices, which encourages 
further analysis on this direction. The extreme events asso-
ciated with the MJO and other sources of predictability 
for sub-seasonal time scale are also included in plans for 
future studies.

Linking the prediction skill to the configuration of the 
forecast system, model developers and researchers may also 
be interested in isolating the impact of the stochastic scheme, 
the underlying SST, and the convection scheme. Related to 
the computational cost, the more granular sensitivity tests 
were not conducted as part of this work. Rather, the design 
of each configuration used herein was based on the positive 
impact of each factor (SPs, SST and convection) derived 
from small sample tests and early investigation (Zhu et al. 
2018). A more comprehensive investigation can be left to 
other researchers who have interest.

Fig. 11  The 360-h forecast of the tropical mean (15°S–15°N, 
0°–360°E) temperature, zonal wind and relative humidity in Analysis, 
STTP and SPs (right panel of each plot) and the bias of each experi-
ment (left panel of each plot). The samples used for this plot is same 
as in Fig. 10, i.e. March 2016 (March 1, 6, 11, 16, 21 and 26)
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