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Abstract
This study analyzes the predictability of the persistent maxima of 500-hPa geopotential height (Z500; PMZ) zonal eddies 
over the Northern Hemisphere in the long-term forecast datasets of the Global Ensemble Forecast System (GEFS) version 
10. PMZ patterns, which potentially extending the predictability of severe weather events, include not only closed blocking 
anticyclones that occur more frequently in the Euro-Atlantic-Asia sector (EAAS) but also persistent open ridges and omega-
shape blockings that prevail more often over the Pacific-North America sector (PNAS). The predicted PMZ occurrence fre-
quencies in both the EAAS and the PNAS generally decrease with the lead time, which is consistent with classical blockings 
in early studies but different from the nearly invariant frequencies of blockings in a recent relevant diagnosis by Hamill and 
Kiladis. The Brier skill score associated with PMZ frequencies is generally higher in the PNAS than in the EAAS, indicat-
ing better predictions in the former. The forecast reliability decreases with the lead time in both sectors, particularly at the 
tails of probability distributions, suggesting some limitations of the GEFS. PMZ events longer than 1 week with anomaly 
correlation coefficients (ACCs) exceeding 0.6 in the Northern Hemisphere have a mean useful skill of nearly 10 lead days, 
which is approximately 0.5–1 day more than the average skill of all cases. Among these events, 50% extend useful ACC 
skills up to 12 days, and 25% extend the useful skill even further. A discussion is provided regarding how the better PMZ 
prediction skill in the PNAS can help improve 2 to 3-week predictions over North America.

Keywords  Persistent atmospheric pattern · Prediction skills · 500-HPa geopotential height · Medium-range forecast · 
Blocking · Ensemble prediction · GEFS

1  Introduction

The Next Generation Global Prediction System (NGGPS), 
which is currently being developed by the National Weather 
Service (NWS) of the National Oceanic and Atmospheric 
Administration (NOAA) in collaboration with other 

agencies, laboratories and universities in the U.S., aims to 
address growing service demands and extend weather fore-
casts up to 4 weeks, which is beyond the prediction limit 
of the first type of forecast system (Lorenz 1963, 1982). 
The NGGPS will adopt most of the packages representing 
physical processes in the current operational system known 
as the Global Ensemble Forecast System (GEFS; Zhu 2005; 
Zhu and Toth 2008; Zhou et al. 2016), which was recently 
upgraded to extend its operational forecasts to 16 days, 
while the ultimate goal of the NGGPS is to achieve a fore-
cast length of 35 days (Zhu et al. 2017a, b). Calibrating and 
evaluating the ensemble forecasts of the GEFS at these new 
ranges is thus a valuable step toward optimizing the NGGPS.

The prediction skill of 500-hPa geopotential height 
(Z500) is one of the most important metrics to measure the 
capability of a system to provide short and medium-range 
forecasts. The anomaly correlation coefficient (ACC) for 
the 7th-day skill of the European Centre for Medium-Range 
Weather Forecasts (ECMWF) was improved from 0.4 in 
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1981 to 0.7 in 2017. The updated predictability of Z500 
reaches up to 10 days when an ACC of 0.6 is considered the 
lower limit of a useful skill (https​://www.ecmwf​.int/en/forec​
asts). The compatible predictability in the ensemble mean 
of GEFS v10 was 8.9 days in 2014, and it improved to 10.5 
days in version 11 in 2016; this predictability is better than 
the corresponding values of 7.9 days and 8.5 days in the 
deterministic forecasts by the Global Forecast System (GFS) 
in 2014 and 2016, respectively (Fig. 1 in Zhu et al. 2017b).

Persistent Z500 patterns are even more meaningful for 
prediction, because these patterns tend to induce mete-
orological hazards such as heat waves, wildfires, drought, 
flooding and snow storms (Quiroz 1984; Dole et al. 2011; 
Sillmann et al. 2011; Chen and Zhai 2014; Whan et al. 
2016). Predictions of Z500 patterns have been evaluated and 
calibrated in medium-range weather forecasts by many stud-
ies (Tibaldi and Monlteni 1990; Anderson 1996; Molteni 
et al. 1996; Krishnamurti et al. 2003; Hamill and Whitaker 
2007; Ardilouze et al. 2017) focusing on the predictabil-
ity of atmospheric blocking, which typically consists of a 
closed anticyclone and a cutoff low (Rex 1950; Dole and 
Gordon 1983; Lejenäs and Økland 1983; Metz 1986; Tibalti 
and Monlteni 1990; Kaas and Branstator 1993; Pelly and 
Hoskins 2003; Schwierz et al. 2004; Barriopedro et al. 2010; 
Barnes et al. 2012).

Blocking predictions have been improved with the 
development of models. In the early model versions of the 
ECMWF (e.g., Tibaldi and Molteni 1990; TM90 hereafter), 
the blocking frequency was severely underestimated, and 
the blocking onset was poorly predicted even a couple of 
days beforehand. Initializing those models with established 
blocking patterns, however, improved the associated weather 
predictions. In the early 2000s, the blocking prediction of 
the ECMWF model had been improved by as much as 50%, 
although the predicted frequency was still 30% smaller than 
that in the analysis (Mauritsen and Källén 2004). Similarly, 
a small frequency (Watson and Colucci 2002) was predicted 
in all lead ranges by the operational system of the National 
Centers for Environmental Prediction (NCEP) at that time. 
The blocking prediction in the more recent GEFS v10 was 
substantially improved over the Euro-Atlantic sector (Hamill 
and Kiladis 2014) with nearly constant occurrence frequen-
cies that were only slightly smaller than those in the analysis 
even at lead times extending to 16 days. This occurrence fre-
quency is nearly invariant in contrast to the frequencies that 
decreased with the lead time in early studies (e.g., TM90). 
The predicted blocking frequency remains very small in 
the Pacific sector, partly because blockings occur relatively 
rarely there (e.g., Pelly and Hoskins 2003).

Some persistent high pressure systems, in addition to 
closed blockings involving the reversal of meridional gra-
dients, also induce disastrous weather events (IPCC 2013; 
Grotjahn et al. 2016; Liu et al. 2017). These systems include 

omega-shape blockings, especially in their early stages, and 
persistent open ridges, which cannot be clearly identified 
as blockings by classical indices such as the TM90, which 
requires a reversal of meridional pressure gradients in refer-
ence to central blocking latitudes. These systems appear as 
closed anticyclones in the zonal eddy anomalies of Z500 
after removing the zonal mean (Cheng and Wallace 1993; 
L’Heureux et al. 2008; Liu et al. 2017), but their time anom-
alies may not satisfy the criteria for blocking (e.g., Dole and 
Gordon 1983). In addition, persistent high pressure systems, 
some of which were classified as blockings, were identified 
according to Z500 time anomalies in the Southern Hemi-
sphere, and they were mainly located over New Zealand, 
southeastern South America and the southern Indian Ocean 
(Trenberth and Mo 1985; Sinclair 1996). To date, however, 
the predictability of these persistent systems has not been 
investigated.

Predicting the persistent maxima of Z500 eddies (PMZs) 
in the Northern Hemisphere is particularly useful, as they 
effectively represent both the open ridges and the closed 
anticyclones of blocking patterns (Liu et al. 2017). For 
example, a PMZ event occurred over the northeastern Pacific 
during January 2013 (Appendix Table 2) and persisted for 
17 days (Fig. 1a–h), leading to a cold surge over the west-
ern United States (Fig. 1i–p). In this case, most persistent 
flow patterns could not be identified as a blocking by a typi-
cal algorithm (e.g., TM90), because they were apparently 
characterized as strong open ridges before developing into 
a mature phase (Fig. 1g, h). However, this PMZ influenced 
the surface weather similar to blockings, and thus, PMZs 
need to be considered in forecasts.

The statistics of PMZs in observational data (Liu et al. 
2017) also contrast with those of blocking events (Hamill 
and Kiladis 2014). Two substantial differences are evident 
in the climatology over the Pacific-North America sector 
(PNAS) during the wintertime. First, PMZs form near the 
U.S. West Coast (Fig. 9a in Liu et al. 2017), while typical 
blockings occur farther westward near the date line (Fig. 1 in 
Hamill and Kiladis 2014), suggesting a more direct impact 
of PMZ events on the weather over the U.S. Second, the 
U.S. West Coast exhibits a center of PMZ frequency of 
33% (Fig. 9a in Liu et al. 2017), which is twice as large 
as the center of the blocking frequency (Fig. 2a in Hamill 
and Kiladis 2014) in the mid-Pacific. Therefore, it is worth 
examining the predictability of PMZs in the medium-range 
forecasts of the GEFS. Such an estimate would be helpful to 
extend predictions to 2–4 weeks.

In this study, we estimate the prediction skills and pre-
dictability of PMZs according to their occurrence frequen-
cies and of individual PMZ events by employing GEFS v10 
forecasts and several objective verification metrics. Section 2 
summarizes the algorithm tracking PMZs in Liu et al. (2017) 
and introduces the datasets and methods. Section 3 estimates 

https://www.ecmwf.int/en/forecasts
https://www.ecmwf.int/en/forecasts
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the prediction skills and predictability of PMZs in the occur-
rence frequency, Brier skill score (BSS), reliability diagram, 
probability of detection (POD), mean square error (MSE), 
and ACC. Section 4 summarizes and discusses the results.

2 � Datasets and methods

2.1 � Datasets

The NCEP GEFS v10 forecasts are investigated in this study 
partly because these datasets were used to estimate the pre-
dictabilities of typical blockings by Hamill and Kiladis 
(2014). GEFS forecasts consisted of one control run and 
twenty perturbed members. Each member run was integrated 
four times daily starting at 0000, 0600, 1200, and 1800 UTC. 
After eight days of integration, the model changed its hori-
zontal resolution of triangular truncation from wavenumbers 
254 (~ 55 km) to 190 (~ 70 km), while the physical param-
eterizations (Zhu et al. 2007) and the vertical resolution 
of 42 hybrid levels remained unchanged. The Global Data 

Assimilation System (GDAS) prepared the analysis data for 
initializing the control run, and this initial condition was per-
turbed using the ensemble transform with the rescaling tech-
nique (Wei et al. 2008) to initialize other ensemble members. 
The uncertainty therein was estimated using the stochastic 
total tendency perturbation method (Hou et al. 2008).

The GEFS v10 forecasts between 1 January 1985 and 14 
February 2012 were regenerated offline at the Earth System 
Research Laboratory (Hamill et al. 2013), and the forecasts 
to the present day have been made in real time. The offline 
forecasts (or reforecasts) included a control run and only 
ten perturbed members due to limited computing resources. 
Each run started daily at 0000 UTC and extended to 16 days. 
The forecasts prior to 31 December 2015 are combined in 
the present study after being bilinearly interpolated onto 
2.5° × 2.5° grids from the native resolutions mentioned 
above. A detailed description of the model and reforecast 
datasets can be found in Hamill et al. (2013).

Fig. 1   a–h 500-hPa geopotential height (Z500, GPM, shaded) zonal 
eddies above 100 GPM (black contours) and impact areas of PMZs 
(hachured areas) in the ANL at 00Z UTC during 7–14 January 2013. 

i–p Corresponding anomalies of the daily air temperature at 2 m (°C) 
over the continental U.S. (CONUS) in the NCEP-National Center for 
Atmospheric Research (NCAR) reanalysis
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2.2 � Tracking PMZs

An objective algorithm was developed by Liu et al. (2017) 
to track the patterns of PMZs, including persistent open 
ridges, immature omega-shape blockings and mature block-
ing highs. The proposed algorithm identifies and connects 
the local maxima of zonal eddies of Z500, and it tracks 
PMZs in the GEFS analysis (ANL) at each 00Z UTC, which 
is slightly different from the daily mean data in Liu et al. 
(2017). It identifies a PMZ event as consecutive maxima 
lasting for 2 days or longer, which is notably shorter than the 
4-day limit in Liu et al. (2017). As a result, more PMZs are 
tracked in the GEFS forecasts for verification. The tracking 
steps in consecutive order are summarized below.

a.	 A core at each 00Z UTC is identified to include a local 
maximum of Z500 eddies and its neighboring grids, 
whose values are greater than 100 geopotential meters 
(GPMs) and decrease radially to 20 GPMs smaller than 
the maximum value.

b.	 Two cores on consecutive days belong to a PMZ event 
if they share at least one grid point and move at a pace 
of at most 10° longitude per day.

c.	 The PMZ ends at the core without a successor.
d.	 Each of the tracked cores is expanded to include an 

impact area consisting of more contiguous points 
whose zonal eddy values are above 100 GPMs. A non-
tracked core is finally absorbed if it is surrounded by the 
expanded area. The larger number of expanded points 
better represent the actual area impacted by the PMZ.

The PMZ events in the initial conditions (ANL) at 00Z 
UTC from 1985 to 2015 serve as the reference for veri-
fication, because their statistics are very similar to those 

based on the daily data in Liu et al. (2017; not shown). The 
PMZs in each forecast are tracked differently for probabil-
istic and deterministic verifications using a time-lagged 
forecasting approach, as shown schematically in Fig. 2, 
where each black arrow starts from the referenced initial 
condition and extends to the 17th day for one forecast. For 
the probabilistic forecast verification, the forecast data-
sets are regrouped into 16 time series ranging from the 
initial date on 1 January to 16 January 1985. Each time 
series contains 11,322 time slices for which PMZ events 
are tracked, and their impact areas are the objects to verify. 
For the deterministic forecast verification, however, the 
PMZs are tracked in each 17-day forecast time series cov-
ering at least 1 day of observations. The prefixed observa-
tions guarantee that a tracked PMZ has an onset on or after 
the initial conditions, i.e., as early as on day − 1 (open 
circle in Fig. 2), and that it extends to at least day + 1 
(blue dot in Fig. 2). As a result, the PMZs with an onset 
ranging from day + 1 to day + 15 will be used to estimate 
the deterministic prediction skills and predictability. It is 
noteworthy that the impact areas rather than the tracks of 
PMZs are verified in this study.

2.3 � Evaluation metrics

The prediction skills of PMZs are evaluated using five objec-
tive metrics (Brankovic et al. 1990; Wilks 2006; Hamill and 
Juras 2006): the BSS, reliability diagram, POD, MSE, and 
ACC. Each metric is summarized below.

2.3.1 � Brier skill score

The probability of a binary ensemble forecast pf (j) for the 
j th sample is calculated as

where Ii(j) is 1 if an event occurs and 0 otherwise, and n is 
the number of forecasts in the j th sample. The Brier score 
( BSf  ) of the forecasts is defined as

where the subscript o denotes the observations, and m is the 
number of samples. The BSS is finally computed as

(1)pf (j) =
1

n

n∑

i=1

Ii(j),

(2)BSf =
1

m

m∑

j=1

[
pf (j) − Io(j)

]2
,

(3)BSS = 1 −
BSf

BSc
,

0-1 +1-16 days-2-15

Fig. 2   Schematic diagram of time-lagged forecasting and PMZ track-
ing in the GEFS reforecasts. The bottom thick, black arrow denotes 
the time in days, where “0” represents the PMZ onset, and the thin, 
black arrows represent the forecast day (16 for each run) and PMZ 
tracking directions. The solid red lines denote the initial time for each 
ensemble member. For a single run, the onset day of a PMZ is repre-
sented by the red solid circle, the day before onset is represented by 
the red dot, and the day after onset is represented by the blue dot
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where BSc is the Brier score of the reference probability 
forecast. The reference is generally the averaged climatic 
probability of an observed event pc , and it is defined as

and

When an ensemble member is used as the reference 
(also known as a perfect model), the prediction skill above 
a threshold becomes the predictability of the PMZ. The 
ensemble mean is selected as the perfect model in this study.

2.3.2 � Reliability diagram

The Brier score in Eq. (2) can be decomposed into three 
components

where m =
∑K

i=1
Ni , K denotes the frequency bins evenly 

from 0.0 to 1.0 (0 to 100%) for the forecast probability pf (j) 
(Eq. 1), Ni is the total number of samples in each bin, oi is 
the observed frequency of events corresponding to pi for 
each bin, and o equals pc in Eq. (4). The three terms on the 
right-hand side of Eq. (6) are successively known as the reli-
ability, resolution, and uncertainty. The reliability diagram 
constructed with these three components comprehensively 
assesses the forecast quality by representing a joint distribu-
tion of forecasts and observations.

2.3.3 � Probability of detection

The POD, also expressed as the hit rate of forecasts, evalu-
ates the probabilistic forecast of rare events, i.e., PMZs. It is 
expressed as

where H (hits) denotes the number of samples predicted 
and observed, and M (misses) is for the number of samples 
observed but not predicted. The POD clearly ranges from 0 
to 1. Since the occurrence frequencies of PMZs are predicted 
reasonably well in the first several days and decrease with 
later lead times (to be shown below), the false alarm rate of 
PMZs is not discussed here.

(4)pc =
1

m

m∑

j=1

Io(j),

(5)BSc =
1

m

m∑

j=1

[
pc − Io(j)

]2
.

(6)

BS =
1

n

K∑

i=1

Ni

(
pi − oi

)2
−

1

n

K∑

i=1

Ni

(
oi − o

)2
+ o

(
1 − o

)
,

(7)POD =
H

H +M
,

2.3.4 � Mean square error

The MSE for an ensemble forecast of N members and the Fi 
for the ith member is expressed as

where F =
1

N

∑N

i=1
Fi represents the ensemble mean, and X

denotes the reference (or observational analysis) irrelevant 
to either N or i. The MSE can be decomposed into two terms, 
namely, the square errors from the ensemble mean (|||F − X

|||
2

) 

and the variance from the ensemble mean ( 1
N

∑N

i=1

���Fi − F
���
2

)

.

2.3.5 � Anomaly correlation coefficient

The ACC is a conventional measure of the skills for a single 
or ensemble mean forecast. It is defined as

where F represents the forecast, and X  represents the 
reference.

3 � Results

3.1 � Statistical frequency verification

The climatological statistics of PMZ impact areas in the 
GEFS ANL are first presented. The frequency distributions 
in different seasons are shown in Fig. 3. PMZs mainly 
occur at latitudes of 30–80° in the Northern and Southern 
Hemispheres (Fig. 3a–d) with centers close to mid-latitude 
jet exit areas (Pelly and Hoskins 2003). The frequency has 
a clear annual cycle that is larger in the winter (Fig. 3a) 
than in the summer (Fig.  3c) in both hemispheres. In 
December–January–February (DJF), two maximum-fre-
quency centers are located over the Northeast Pacific and 
Northeast Atlantic coasts. The Northeast Atlantic center 
expands from the Atlantic to the Euro-Asian continent 
with a size larger than that over the northeastern PNAS, 
similar to the blocking frequency distributions (TM90; 
Pelly and Hoskins 2003; Barriopedro et al. 2010; Hamill 
and Kiladis 2014). The locations of the frequency cent-
ers, however, are different: the maximum blocking fre-
quency is located over the central Pacific close to 180°E 
(Fig. 1 in TM90), whereas the maximum PMZ frequency 
is situated along the western coastline of North America 
(Fig. 3a) corresponding to persistent northerly winds and 

(8)MSE=
1

N

N∑

i=1

||Fi − X||
2
=
|||F − X

|||
2

+
1

N

N∑

i=1

|||Fi − F
|||
2

,

(9)ACC =
F ⋅ X

|F| ⋅ |X|
=

|F|2 + |X|2 − |F − X|2

2|F| ⋅ |X|
,
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potentially colder weather in the western U.S. (Fig. 1). 
In addition, the maximum PMZ frequency near the U.S. 
West Coast reaches 40%, which is more than double that 
of the blocking frequency over the central Pacific, sug-
gesting that the extreme events over the western U.S. are 
associated with PMZ patterns more than traditional block-
ing events. In June–July–August (JJA; Fig. 3c), the PMZ 
frequency center over North America shifts inland in con-
trast to the other three seasons. This eastward shift may 
lead to persistent high pressure systems over the western 
U.S., resulting in potential droughts and heat waves. In 
the Southern Hemisphere, the PMZ frequency is distrib-
uted quite similarly to the frequencies of blockings with 
large values primarily across the South Pacific (Trenberth 
and Mo 1985; Sinclair 1996; Renwick and Revell 1999). 
However, the PMZ frequency has a maximum of nearly 
20%, which is higher than the 12% maximum for blockings 
(Fig. 4 in Sinclair 1996).

We next assess the skills of the GEFS in predicting PMZ 
occurrence frequencies in the Northern Hemisphere. The 
seasonality of PMZ frequencies (40–60°N mean) in the 
forecasts is compared with that in the ANL according to the 
lead time (different colored curves in Fig. 4). The predicted 
PMZ frequencies in all seasons have distributions that are 
overall similar to those in the ANL, and they decrease with 
the lead time. The decreasing rates, however, are different 
in each season. In DJF (Fig. 4a), two maxima in the ANL 
and forecasts are located near 120°E and 10°W, respectively. 
The predicted frequencies decrease from 40% on day + 3 to 
30% on day + 15 in both the Pacific and the Euro-Atlantic 
sectors with a gap between days + 9 and + 12 decreasing 

sharply from 35 to 30%. This decrease is consistent with 
blocking predictions in some studies (TM90; Mauritsen and 
Källén 2004; Jia et al. 2014) but is notably different from 
the predicted blockings whose frequencies do not change 
substantially with the lead time except for a slight decrease 
in the Euro-Atlantic sector (Hamill and Kiladis 2014). The 
detail is discussed in the last section. In March–April–May 
(MAM; Fig. 4b) and September–October–November (SON; 
Fig. 4d), the frequencies decrease from 25% on day + 3 to 
less than 10% on day + 15. In JJA (Fig. 4c), the frequencies 
are the smallest with a maximum of approximately 18% over 
the Pacific, and they decrease to less than 4% on day + 15 
when the rest of the frequencies become nearly zero at other 
longitudes (blue cure in Fig. 4c).

The BSS is then computed to assess the probabilistic fore-
casts of the PMZ frequencies in the Pacific and Euro-Atlan-
tic sectors (TM90; Hamill and Kiladis 2014). Since the PMZ 
occurrence frequency is overall larger than the frequencies 
of blockings, the ranges of the two sectors are extended 
somewhat. The Pacific sector stretches to include the PNAS 
covering 180°E–60°W, and the Euro-Atlantic becomes the 
Euro-Atlantic-Asia sector (EAAS) at 60°W–120°E. The cor-
responding BSSs in DJF for both sectors are shown in Fig. 5, 
in which the dashed lines are the BSS of the perfect model. 
The BSS for the PNAS (red line) is overall higher than that 
for the EAAS (blue line) at all lead times, suggesting that 
PMZs are more predictable in the PNAS than in the EAAS. 
In both sectors, the BSS decreases rapidly from 0.9 to 0.5 in 
the first three days. This rapid decrease contrasts with that of 
the perfect model, where the BSS decreases more slowly and 
remains above 0.2 after day + 9 (the dashed lines). Compared 

Fig. 3   Frequency distributions (%) of the PMZ impact areas in the GEFS ANL in a DJF, b MAM, c JJA, and d SON during 1979–2015. Red 
contours denote the climatological zonal wind speed of 20 m s− 1 at 300 hPa
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with the BSS of the blocking frequency (Fig. 3 in Hamill and 
Kiladis 2014), the BSSs of the PMZs for both sectors are 
generally similar except for a faster decrease around day + 5.

The reliability diagram is constructed for additional eval-
uations of the probabilistic skills. The forecast frequencies 
are divided into 10 bins from 0.0 to 1, and the observed 
occurrence in each bin on each lead day is derived accord-
ing to Eq. (6). The frequency distributions on the reliability 
diagram are shown in Fig. 6. On day + 1 (Fig. 6a), the sam-
ples are concentrated in bin 0.0 with 14 × 105 and 24 × 105 
grids for the PNAS and EAAS, respectively. These PMZ 
histograms are similar to those of blockings (Fig. 5 in Hamill 
and Kiladis 2014).

Reliability diagrams for the PMZ probabilistic forecasts 
according to the lead time are shown in Fig. 7. The diago-
nal line denotes a perfect reliability, in which the frequen-
cies predicted are identical to those observed. The green 
line indicates no skill, as it is located halfway between the 
observation and climatology. The thick, black dashed line 
represents no resolution, along which the forecast equals 
the climatology. Clearly, the forecasts for both the PNAS 
and the EAAS are quite reliable on day + 1 (Fig. 7a) with 
a slight underestimation in bins 0.1–0.6 and a slight over-
estimation in bins 0.9–1.0; they become less reliable and 
more overestimated in the EAAS than in the PNAS in bins 
0.6–1.0 at longer lead times (Fig. 7b–f). The underestimation 
is even more evident in bins 0.0–0.4 and on days + 9 to + 15 
in both sectors (Fig. 7d–f). The reliability decreases with an 
increase in the lead time in larger frequency bins as well, but 
it remains situated between the no-skill and perfect-reliabil-
ity lines, indicating that there is some skill. These results are 
very similar to those obtained for blockings (Fig. 5 of Hamill 
and Kiladis 2014).

3.2 � Verification of the ensemble mean forecast

This section presents the skills of the GEFS ensemble mean 
in predicting individual PMZ events at different stages and 
estimates how these events extend the predictability of Z500 
eddies. Individual PMZ events in the ANL are first counted 
in the PNAS and EAAS according to their durations of 4–7, 

Fig. 4   Frequency distributions (%) of the PMZ impact areas averaged over 40–60°N for the ensemble mean of the GEFS reforecasts during a 
DJF, b MAM, c JJA, and d SON

Fig. 5   Brier skill scores of PMZ probabilistic forecasts for the PNAS 
(dotted red) and EAAS (dotted blue) during DJF. Dashed lines are for 
the perfect model
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8–14 days, and greater than 14 days (Table 1). In the PNAS, 
there are 1255 events in total, 1002 of which have durations 
of 4–7 days, 226 have durations of 8–14 days and 27 have 
durations of longer than 14 days; in the EAAS, there are 
1657 events in total, 1244 of which have durations of 4–7 
days, 375 have durations of 8–14 days and 27 have durations 
of longer than 14 days. Events longer than 14 days will be of 
particular interest, and their dates, locations and intensities 
are listed in Appendix Table 2 for the PNAS and Appendix 
Table 3 for the EAAS.

The skills in predicting the three types of PMZ events 
are evaluated separately using the POD, MSE, and ACC; 

greater focus is given to the events persisting for 8–14 days 
and longer than 14 days. The POD is derived by counting 
the PMZ impact areas in the forecasts and observations, 
and the MSE and ACC choose common regions enclosing 
all PMZ events that persist for 15 days (each color curve 
represents one event in Fig. 8). The common regions cover 
(25–85°N, 140–300°E) in the PNAS (Fig. 8a) and (25–85°N, 
90°W–140°E) in the EAAS such that they include most of 
the PMZ events that persist for 8–14 days (not shown).

The verification results with the POD are summarized in 
Fig. 9. For the 15-day PMZs in the PNAS (Fig. 9a), the mean 
POD on the onset day (red line) decreases dramatically with 

Fig. 6   Histograms for the numbers of grids (× 105) inside PMZ impact areas in the PNAS (red) and EAAS (blue)
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increasing lead time from days + 1 to + 15. The POD after 
the onset (green lines) shows overall higher skills than those 
on the onset day, indicating that established PMZs in the 
initial conditions improve the prediction skill. In contrast, 

the POD for day + 15 shows a higher skill than the onset 
day until lead day + 11, indicating better skills with regard 
to predicting the durations than the onsets of PMZs. In the 
EAAS (Fig. 9b), the mean POD on the onset day (red line) 
is 0.65 on lead day + 1, which is slightly smaller than that in 
the PNAS (Fig. 9b). Meanwhile, the POD of day + 15 (blue 
line in Fig. 9b) is 0.85 on lead day + 1, which is higher than 
that in the PNAS (blue line in Fig. 9a). These results indicate 
that the GEFS exhibits a better skill in predicting the onsets 
of PMZs with a lifetime of longer than 15 days in the EAAS 
than in the PNAS. For the 8–14-day cases (Fig. 9c, d), the 
mean POD evolves more smoothly than those for the 15-day 
cases in both the PNAS and the EAAS; this is partly because 
more PMZ events are sampled (cf. Table 1). The prediction 
skill of the PMZ onset (red line) is notably lower than that 
of the PMZ duration (green and blue lines).

The POD analysis in Fig. 9 indicates that the errors in the 
prediction of individual PMZ events grow with an increase 
in the lead time. These errors can be random in nature, as 
they can originate either from the variability within the 
ensemble or from the model’s systematic bias; they are 
further measured by the MSE (Brankovic et al. 1990) of 
Z500 eddy anomalies (Fig. 10). Figure 10a shows the mean 
MSE for the 15-day cases in the PNAS, in which the red, 
black, green, and blue curves represent the onset, 1 day 
before onset, days + 1 through + 13, and day + 14 after onset, 
respectively. Clearly, the MSE increases gradually with the 
lead time during the developing stages of PMZs, and it 
grows to 0.9 × 104 GPM2 per grid on day + 16. The MSEs 
grow more rapidly after lead day + 4 and become notably 
larger during the developing stages of PMZs than those dur-
ing days − 1 and 0 (black and red curves) and after day + 5. 
This result indicates that the forecast error increases when 
long-lived PMZ events develop into mature stages in the 
PNAS. For the 15-day cases in the EAAS (Fig. 10c), the 

Fig. 7   Reliability diagrams of PMZ probabilistic forecasts for a 
day + 1, b day + 3, c day + 6, d day + 9, e day + 12, and e day + 15 
in the Pacific (30–70°N, 180–280°E; dotted red) and Euro-Atlantic 
(30–70°N, 60°W–120°E; dotted blue) sectors. The black solid, green 
solid, and black dashed lines denote perfect skill, no skill, and clima-
tology probabilities, respectively

Table 1   Statistics of PMZ 
events in the ANL for the 
Pacific (180°E–60°W; PNAS) 
and Euro-Atlantic-Asia 
(60°W–120°E; EAAS) sectors

The PMZs are grouped by dura-
tions of 4–7 days, 8–14 days, 
and longer than 15 days with 
maximum durations shown in 
the last row

PMZ events PNAS EAAS

Total 1255 1657
4–7 1002 1244
8–14 226 375
15 27 38
Max (days) 24 32

Fig. 8   Snapshots of the PMZ impact areas during the onset day in the 
PNAS (a) and EAAS (b) for the cases PNAS_15 and EAAS_15 in 
Table 1. The black rectangles define the two sectors
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MSEs differ slightly at the PMZ developing stages: they are 
close to each other for days − 1 through + 14 (black, red, 
green, and blue curves). The mean MSE in the EAAS on 
day + 16 reaches 0.8 × 104 GPM2 per grid, which is roughly 
equivalent to that in the PNAS (Fig. 10a).

The MSEs on the onset day are shown as gray curves in 
Fig. 10a, c. Compared with the mean MSE (red), the MSEs 
among the cases exhibit large differences after day + 4 with 
a range from 0.4 to 1.5 × 104 GPM2 per grid on day + 16. 
To identify the sources of the errors, the MSEs on the 
onset day (red) are decomposed into two components: one 
for the mean-squared error [first term on the right-hand 
side of Eq. (8); MSE_ens in black in Fig. 10b, and the 
other for the ensemble variance error [second term on the 
right-hand side of Eq. (8), MSE_spread in blue in Fig. 10b. 
The MSE_spread is overall smaller than the MSE_ens 
from day + 3 to day + 16 in both sectors (Fig. 10b, d). For 
the 8 to 14-day cases in the PNAS (Fig. 11a), the mean 
MSEs are close to each other at different PMZ develop-
ment stages (black, red, green, and blue curves). For the 
random error and model bias in the 8 to 14-day cases, the 
MSE_ens is also larger than the MSE_spread in both the 
PNAS (Fig. 11b) and the EAAS (Fig. 11d). This suggests 
that the model bias is a dominant source of the forecasting 
errors in the GEFS. Meanwhile, the errors grow similarly 

with an increase in the lead time when forecasting both the 
PMZ onset and the PMZ duration.

The ACC is a classic metric for quantifying the determin-
istic Z500 forecast skill. An ACC greater than 0.6 generally 
indicates a useful forecast with properly placed troughs and 
ridges at Z500 (Krishnamurti et al. 2003). The ACCs of the 
Z500 eddy fields for the 15-day PMZ cases in the PNAS 
with the forecast lead time are shown in Fig. 12a. The mean 
ACC of the ensemble mean for the PMZ onset day (repre-
sented by the red curve) is close to 1.0 from days 0 to + 2 
and decreases notably from days + 3 to + 16. This decrease 
is inherently associated with an increase in the MSE (cf. 
Fig. 10). The predictability of the PMZ onset is 8.5 days 
when an ACC of 0.6 is used as the threshold for a useful 
skill. The ACCs for the predictions starting on day − 1 (black 
curve) show an evolution similar to that on the onset day, 
and the predictability is close to 9 days. However, the pre-
dictabilities during the development stages of PMZs (green 
and blue curves) are notably extended. The skill is extended 
to 10 days for the forecasts initialized on day + 14 after PMZ 
onset (blue curve). It is worth noting that the capture of indi-
vidual PMZ events is case dependent, especially after lead 
day + 5. Similar to the MSEs, the uncertainties in the ACCs 
on the onset day (gray curves) increase with the lead time, 
and the ACCs for individual cases vary substantially from 
0.8 to less than 0.2 on day + 16.

Fig. 9   a Probability of detection for the impact areas of the 15-day 
PMZ cases in the GEFS ensemble mean. The abscissa denotes the 
lead time (days). The red, blue, and green lines represent the PODs 
for the onset day (day + 0), day + 15 after the onset, and days + 1 

through + 14, respectively. b The same as in (a) but for the PODs of 
the 15-day cases in the EAAS. (c) and (d) are the same as (a) and (b) 
but for the 8 to 14-day cases in the PNAS and EAAS, respectively
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Fig. 10   a Averaged MSEs for the Z500 eddy anomalies (× 104 GPM2 
per grid) during the 15-day PMZs in the PNAS in the GEFS ensem-
ble mean. The red, black, blue and green curves denote the MSEs for 
the onset day (day 0), one day before onset (day − 1), day + 14 after 
onset, and days + 1 through + 13, respectively. b Each term of the 

MSE for the onset day: the red curve is the same as in (a), and the 
black and blue curves denote the ensemble mean and spread, respec-
tively. (c) and (d) are the same as (a) and (b) but for the 15-days cases 
in the EAAS

Fig. 11   Same as Fig. 10 but for the 8 to 14-day cases in the PNAS (a, b) and EAAS (c, d). The blue line represents the MSEs for day + 7 after 
onset
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Next, the ACC skill conditioned with PMZs is compared 
with the averaged skill of Z500 eddy fields in the Northern 
Hemisphere to investigate the possible improvement attrib-
utable to the persistence of PMZs. The results are shown in 
Fig. 12b, in which the solid curves are the same as those in 
Fig. 12a, representing the ACCs in the PNAS for the day 
before PMZ onset (day − 1, black), the onset day (day 0, 
red), and day + 14 after onset (day + 14, blue); moreover, 
the dashed curves use the same samples, but the calculated 
region extends to the Northern Hemisphere. In addition, 
the averaged ACC is computed from 1 January 1985 to 31 
December 2015 (green dashed curve). The ACCs in the 
Northern Hemisphere are overall better than those in the 
PNAS by a half day. Meanwhile, the ACC skill for the PMZ 
onset is lower than the average (ACC > 0.6) with lead days 
of + 8.5 for the PMZ onset (red) and approximately one-
half of a day shorter than the total (green). In contrast, the 
ACC skill for day + 14 after PMZ onset (blue) is nearly 1.5 
days better than that for the average, indicating that the PMZ 
persistence effectively extends the predictability of subsea-
sonal signals. For the 15-day cases in the EAAS (Fig. 12c), 
the ACCs at different PMZ development stages are overall 
similar to those in the PNAS. The ACC on the onset day 
in the EAAS has a useful skill on lead day + 9 (ACC > 0.6) 
that is approximately one-half of a day better than that in 

the PNAS. Moreover, the ACC of day + 14 after PMZ onset 
(blue) is close to that on the onset day (red) with an ACC 
of greater than 0.6, and it extends to day + 15 in the EAAS 
with an ACC of greater than 0.5, which is approximately 
3 days better than that in the PNAS at the same threshold. 
For the 15-day cases in the EAAS (Fig. 12d), the skills of 
days − 1, 0, and + 14 (black, red, and blue dashed curves, 
respectively) are all higher than the averaged skills for the 
Northern Hemisphere (green dashed lines), and they are over 
one-half of a day better than those in either sector.

The ACC skills for the 8 to 14-day PMZ cases are shown 
in Fig. 13. The mean ACCs at different PMZ development 
stages are close to each other in both sectors. The ACCs 
of days − 1, 0, and + 7 are overlaid with lead day + 9.5 in 
the PNAS (Fig. 13a). In the EAAS (Fig. 13c), the ACCs of 
days − 1 and 0 are overlaid with lead day + 9, and the ACC 
of day + 7 reaches that of lead day + 9.5. We also compare 
the ACCs for the 8 to 14-day cases with the averaged ACC 
for all days from 1985 to 2015. In the PNAS (Fig. 13b), 
the ACCs in the Northern Hemisphere (dashed lines) are 
very close to the regional values (solid curves) for all PMZ 
development stages (days − 1, 0, and + 7). The skill reaches 
9.5 days, which is slightly better than that of the total days 
(green dashed). In the EAAS (Fig. 13d), the skills of days 
− 1 and 0 (black and red dashed lines, respectively) in the 

Fig. 12   a Averaged ACCs for the GEFS ensemble mean Z500 eddy 
anomalies of the 15-day cases in Appendix Table  2. The abscissa 
denotes the lead time (days). The black dashed lines represent ACCs 
of 0.6 and 0.5. The red, black, blue, green and gray curves denote the 
ACCs for the onset day (day + 0), one day before the onset (day − 1), 
day + 14 after the onset, days + 1 through + 13, and the onset days for 

the 26 individual cases, respectively. b The solid lines are the same as 
in (a), and the dashed lines denote the ACCs for the Northern Hemi-
sphere. The green dashed line represents the averaged ACC from 1 
January 1985 to 31 December 2015. (c) and (d) are the same as (a) 
and (b) but for the 15-day cases in the EAAS
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Northern Hemisphere are overall similar to the regional val-
ues (black and red solid lines), and the ACC skill of day + 7 
for the Northern Hemisphere extends to lead day + 10. These 
results indicate that the GEFS has a better ACC score in the 
PNAS than in the EAAS for PMZ events that persist for 
longer than 1 week. The ACC skill in predicting the PMZ 
onset date is still lower than that in predicting the PMZ 
development, which is similar to that in predicting block-
ings (TM90).

The above verifications of the POD, MSE, and ACC 
indicate that the skills vary more dramatically in predicting 
PMZ events than in predicting different development stages 
of individual PMZs. We next quantify the uncertainty in 
the GEFS in predicting PMZ onsets by sorting the ACC 
scores. The ACC scores of the onset days for all four PMZ 
groups are shown in the corresponding boxplots (Fig. 14), 
in which the black dots denote the mean values for all cases, 
the upper and lower boundaries denote the upper and lower 
quartiles, and the horizontal line represents the median 
value. The horizontal line on the top of a box represents the 
maximum value, and the horizontal line on the bottom of 
a box stands for the minimum value. For PMZ events that 
persist for longer than 15 days in the PNAS (Fig. 14a), the 
prediction on lead day + 1 is the best. All predicted cases 
show consistently high ACC values, and the boxes become a 
horizontal line. The uncertainty increases with the lead time, 
and the boxes expand in the vertical direction. The ACCs are 
lower than 0.5 in less than 25% of the cases on lead day + 6 

and above 0.6 until lead day + 9 in more than half of the 
cases, indicating that the prediction skill is approximately 
9 days in the PNAS for PMZs that persist for longer than 
2 weeks. From lead days + 12 to + 16, the ACCs exceed 0.6 
for approximately 25% of the cases, and they are lower than 
− 0.3 for another 25% of the cases. For the 15-day cases in 
the EAAS (Fig. 14b), the ACC skill extends to 11 days for 
more than half of the cases with a skill above 0.6. Similarly, 
the useful skill reaches 10 days for the 8 to 14-day cases in 
both the PNAS (Fig. 14c) and the EAAS (Fig. 14d).

It is worth noting that useful cases (ACCs above 0.6) still 
constitute approximately 25% of the total on lead days longer 
than 10 in all four groups. Analysis of the common features 
in these cases can potentially improve the model’s prediction 
during weeks 2 through 4. Among the 15-day cases in both 
sectors, we select the PMZ events with an ACC greater than 
0.6 for the forecasts of the onset day and day + 15 on lead 
days + 10 through + 16 (Appendix Tables 4, 5). The ACCs 
for these cases represent the prediction skills of the PMZ 
onset and duration. For the onset day (Appendix Table 4), 
four cases are selected with three in the PNAS (26 February 
2011, 10 January 2013, and 15 May 2015) and one in the 
EAAS (24 November 2012). The first two cases are strong 
with an intensity above 300 GPMs. For the PMZ duration 
(Appendix Table 5), four cases are also selected with three in 
the PNAS (18 December 1993, 13 December 1999, and 19 
February 2005) and one in the EAAS (24 February 1986). 
The eight cases are temporally different, suggesting that 

Fig. 13   Same as Fig. 12 but for the 8 to 14-day cases in Appendix Table 2 for the PNAS (a, b) and EAAS (c, d). The blue line denotes the ACCs 
for day + 7 after onset
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the ACC skills of the PMZ onset and duration are differ-
ent. The prediction of the duration of long-lived PMZs is 
generally poor even when the onset is predicted well; cases 
that are predicted with relatively higher skill all occur in the 
wintertime. Although a total number of eight cases appears 
to be rather small, the long duration notably improves the 
predictions.

4 � Summary and discussion

The daily forecast datasets of GEFS v10 from 1 January 
1985 to 31 December 2015 are used in this study to evalu-
ate the skills in predicting persistent Z500 patterns. The 

persistent maxima of Z500 eddies (PMZ; Liu et al. 2017) 
in the PNAS and EAAS are tracked, and their impact areas 
serve as the targets for verification, because PMZs generally 
include persistent open ridges, omega-shape blockings, and 
closed blocking anticyclones. The skills in both probabilistic 
and deterministic predictions are evaluated, and the main 
results are summarized and discussed below.

(1)	 The PMZ frequency is underestimated at longer lead 
times in both the PNAS and the EAAS. The predicted 
frequency on lead day + 16 is underestimated by 30% 
in the winter and 90% in the summer. The BSS and 
reliability skill are both higher in the PNAS than in 
the EAAS, which is contrary to the skills of blockings 
(Figs. 3, 5 in Hamill and Kiladis 2014), partly because 
much more and shorter-lived PMZ events than tradi-
tional blockings are identified and evaluated here. In 
addition, the skills are overall better in predicting the 
PMZ duration than predicting the PMZ onset, which is 
similar to the prediction of blockings (TM90; Hamill 
and Kiladis 2014).

(2)	 The predictabilities of the PMZ onset and PMZ dura-
tion differ with regard to the ACC skills, especially 
for PMZs with a duration of longer than 14 days. The 
onset has a useful skill reaching up to 8.5 days in the 
PNAS and 9 days in the EAAS, while the duration has 
a useful skill reaching up to 10 days in the PNAS and 
9.5 days in the EAAS. The most uncertainty remains 
in predicting different PMZ cases. Half of the PMZ 
cases are predictable with an ACC skill exceeding 0.6 
on lead day + 9 through + 10 in both sectors; approxi-
mately 25% cases are still predictable on lead days + 10 
through + 16.

(3)	 Compared with classical blocking patterns (Hamill and 
Kiladis 2014), PMZ events occur more frequently in 
the Northeast Pacific close to North America, and their 
frequencies are predictable with considerable skill by 
the GEFS v10. Notably, the predicted frequencies of 
PMZs decrease with the lead time, which is in contrast 
to the nearly invariant frequencies of predicted block-
ings, especially in the PNAS, reported by Hamill and 
Kiladis (2014, their Fig. 2) using the same GEFS fore-
cast datasets. The decrease in the PMZ frequency with 
the lead time, however, agrees with the predicted block-
ings (identified by the same index as TM90) reported 
in the ECMWF models (TM90, their Fig. 2; Mauritsen 
and Källén 2004, their Fig. 6) and another NCEP model 
(Jia et al. 2014, their Fig. 1). Understanding these dif-
ferences merits further study.

The largest difference between our study and previous 
works is that we use Z500 eddies to identify persistent 
anticyclone anomalies, including both open and closed 

Fig. 14   a Box plots of the ACCs on the onset days of the 15-day 
PMZ cases in the PNAS (Appendix Table 3) with the lead time in the 
GEFS ensemble mean. The black dashed lines denote ACCs of 0.6 
and 0.5. The black dots represent the mean values of the individual 
cases. b The same as (a) but for the 15-day cases in the EAAS. c The 
same as (a) but for the 8 to 14-day cases in the PNAS. d The same as 
(a) but for the 8 to 14-day cases in the EAAS
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blockings. At 500-hPa, when the blocking is weak or 
appears as an open ridge, it is difficult to design an algo-
rithm to isolate the system from the absolute field. Thus, 
the departure field from the mean flow becomes conveni-
ent for identifying such persistent high pressure systems. 
Thus, daily departures from the zonal mean field could 
correctly place ridges and troughs in the absolute field, 
as we used Z500 eddies in this study. Therefore, the eddy 
field could constitute an objective indicator as an alterna-
tive to time anomalies for modeling evaluations and fore-
casting verifications.

Improving the forecast skills of the GEFS at 2–4 weeks 
is a challenging task, and PMZs are one of the sources for 
potential improvement. Evaluations of GEFS v10 in pre-
dicting PMZ events have revealed some intriguing topics 
for future investigation. For instance, the prediction skill is 
more sensitive to PMZ cases (with an uncertainty of over 
10 days) than to individual PMZ stages (with an uncer-
tainty of approximately 2 days). The new NGGPS will 
probably reduce this uncertainty by reducing model biases, 
which appear to contribute largely to the overall uncer-
tainty. In addition, errors grow similarly in the ensem-
ble mean and ensemble spread, indicating an equivalent 
importance in improving the initial conditions and model 
physics. Understanding such sources of uncertainties will 
help develop and evaluate the NGGPS in the near future.
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Appendix

See Tables 2, 3, 4 and 5.  

Table 2   Onset dates, durations, central locations, and intensities of 
the PMZs with durations greater than 15 days over the PNAS in the 
GEFS ANL

Date Duration Ave lat Ave lon Intensity

19850101 20 48.9 237.1 365.3
19850911 24 50.1 216.9 197.4
19880528 19 51.4 265.6 192.7
19890522 15 62.1 223.2 166.6
19890706 19 62.4 241.9 163.3
19900421 16 40.6 223.5 171.6
19910512 19 53.9 265.7 188.1
19930827 16 55.1 222.8 216.4
19931218 17 52.4 232.6 279.2
19940416 16 43.4 266.8 177.8
19960429 15 55.9 199.6 190.4
19990424 20 54.1 285.3 199.5
19990726 15 58.2 221.3 178.9
19991213 19 47.7 229.3 348.1
20010621 16 46.3 255.6 153.2
20010714 15 59.6 231.6 151.4
20021012 16 56.3 231.7 245.7
20021123 20 55.3 233.8 316.7
20030710 15 45.0 249.0 151.0
20030902 17 52.2 272.7 194.3
20050219 22 49.4 237.5 279.5
20090928 18 53.8 214.9 214.0
20101208 15 53.1 182.0 313.0
20110226 18 68.1 186.2 316.8
20130110 17 48.9 230.2 355.2
20130717 16 56.7 203.7 171.8
20150515 18 64.3 224.4 259.2
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