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Abstract The National Centers for Environmental Prediction (NCEP) Global
Ensemble Forecast System (GEFS) has been in daily operation to provide proba-
bilistic guidance for public since December 1992. Since July 2017, the GEFS was
extended from 16 days to 35 days forecast to support NCEP Climate Prediction Cen-
ter (CPC)’s sub-seasonal forecast. The latest GEFS version was upgraded in three
areas to improve sub-seasonal forecast: (1) introducing a new set of stochastic phys-
ical perturbations to improve model uncertainty representation for the tropics; (2) a
2-tiered SST approach to consider ocean impact; and (3) a new scale-aware convec-
tion scheme to improve model physics for tropical convection and MJO forecasts.
The new set of stochastic physical perturbations include stochastic kinetic energy
backscatter to make up subscale energy lost during model integration; stochastic
physics perturbation tendency with five different spatial and temporal scales to per-
turb physical tendency; and stochastic perturbed humidity on the model lower level.
After upgraded to new set of stochastic physical perturbations, the MJO forecast
skill has been improved from 12.5 days of a 25-month period to nearly 22 days by
combining all three modifications include stochastic physics. In the extratropics, the
500-hPa geopotential height; surface temperature and precipitation are improved for
sub-seasonal timescale as well. However, the raw forecast skills of surface temper-
ature and precipitation are extremely low, and the results imply that calibration may
be important and necessary for surface temperature and precipitation forecast for the
sub-seasonal timescale due to the large systematic model errors.
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1 Introduction

With the improvement of accuracy of weather forecasting and the increasing compu-
tational capacity, a seamless forecast that ranges from weather to seasonal timescale
is in growing interest and demanding in general public and service sectors in order
to protect life and properties. Extending the weather forecast to cover sub-seasonal
timescale clearly has great socioeconomic significance. However, in scientific aspect,
improving the forecast skill on this timescale is quite challenging. This gap in the
forecast skill between weather and climate is partially due to the limitation of fore-
cast predictability (Lorenz 1969) and less sensitivity to the initial condition which
benefits the weather scale yet insufficient sensitivity to the boundary and external
forcing which benefits the seasonal and longer lead time (Vitart 2014; Johnson et al.
2014; Liu et al. 2016; Troccoli 2010; Tian et al. 2017). Imperfectness of the repre-
sentation of the model dynamics and physics, however, should be considered as the
major source of uncertainties and errors for all lead time (Buizza et al. 1999). The
approaches that aim to reasonably represent the model uncertainty thus become a
practical method to reduce themodel errors in recent years. The efforts in this regards
include a multi-model ensemble method (Shin and Krishnamurti 2003; Palmer et al.
2004; Kirtman et al. 2014) that represents the overall uncertainty from different
models; a stochastic total tendency perturbation method (STTP, Hou et al. 2008) that
represents the uncertainty related to both dynamic and physics in single model; a
stochastic physics perturbation tendency scheme (SPPT, Buizza et al. 1999; Palmer
et al. 2009) that represents the uncertainty related to total model physical process;
In addition to the stochastic perturbation on the tendency, Stochastic Kinetic Energy
Backscatter (SKEB, Shutts and Palmer 2004; Shutts 2005; Berner et al. 2009; Shutts
et al. 2015) is another way to present forecast uncertainty through considering the
energy at non-resolved scaleswhich cannot cascade to larger scales due to themodel’s
finite resolution.All thesemethods have been used in operational centers and research
community (Palmer et al. 2009).

Since it was implemented into operation in 1992, the NCEP GEFS has been
widely used as probabilistic forecast guidance for the forecast within 2 weeks (Zhou
et al. 2017). Regardless of the initial perturbation, the operational version of GEFS
uses STTP to represent the model uncertainty. With the contribution of both initial
uncertainties and perturbation in total tendency, the ensemblemean forecast of GEFS
has outperformed the GFS deterministic forecast on the anomaly correlation of fore-
cast lead at Day-8 of Northern Hemisphere 500 hPa geopotential height to represent
mid-level general circulation for the past few years (Fig. 1).
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Fig. 1 Northern hemisphere
500 hPa geopotential height
anomaly correlation for
forecast lead at day-8 of GFS
forecast (blue) and ensemble
mean forecast (red) during
years 2014–2016

2 Stochastic Physics Perturbation Schemes Tested in NCEP
GEFS 35-Day Forecast

Tobe alignedwithNOAA’smission of generating a unified coupled forecast system to
cover the timescale fromweather to seasonal, GEFS has carried out investigations on
the strategy to potentially improve the forecast skill on week 3 and 4 time range (sub-
seasonal timescale), and further to cover monthly forecast. A recent investigation
is testing the impact of different stochastic perturbation schemes that represent the
model uncertainty on the performance of sub-seasonal forecast (Zhu et al. 2017, 2018;
Li et al. 2018). The motivation for this work came from the concerns of the under-
dispersion (or overconfidence) of the current operational version of GEFS (GEFS
v11 with EnKF initial perturbation+STTP) on medium range forecast especially
over the tropics (Hou et al. 2008; Zhou et al. 2016, 2017).

Although STTP scheme compensates the less error growth from initial pertur-
bations to some degree, the impact of the STTP is mainly over extratropics during
boreal winter season with less impact on the spread over tropical region. It is well
known that MJO is a major source of the predictability on sub-seasonal timescale.
Therefore, improving the representation of the model uncertainty over tropics is a
possible pathway to potentially improve this source of sub-seasonal predictability.
A suite of three widely accepted stochastic perturbation methods (SPs hereafter) is
thus applied to GEFS to represent the model uncertainties instead of STTP more
efficiently (Table 1, second row). The scheme of SPs are: SKEB from expectation
of making up subscale energy lost due to imperfect computation algorithms; SPPT
with five different spatial and temporal scales (Figs. 2 and 3); Stochastic Perturbed
Humidity (SHUM; Tompkins and Berner 2008) with single spatial-temporal scale,
and near model surface layers. These schemes have already been implemented in the
National Center Environmental Prediction (NCEP) Global Forecast System (GFS)
model in the hybrid-EnKF data assimilation system, then basically available for use
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Table 1 The configuration differences for four experiments
Experiments Stochastic schemes Boundary (SST) Convection

CTL STTP Default Default
SPs SKEB+SPPT+

SHUM
Default Default

SPs+SST_bc SKEB+SPPT+
SHUM

2-Tiered SST Default

SPs+SST_bc+
SA_CV

SKEB+SPPT+
SHUM

2-Tiered SST Scale-aware
convection

Fig. 2 5-scale random patterns used in stochastic perturbed physics tendencies (SPPT). On the
top of each plot, the numbers (except for upper left) represent the scales of spatial and temporal
perturbations with contour intervals in the bracket. The upper left is for combined total 5-scales

in the GEFS for testing and modification. Detailed descriptions of these schemes are
as follows.

The SKEB scheme has been used to represent dynamical uncertainty through
subgrid-scale processes that propagate upscale. A stream function forcing from the
total dissipation has been applied to SKEB. Depending on numerical model design,
the numerical dissipation (i.e., the diffusions) is only part to be considered in current
GFS version. The generations of such perturbations on each vertical level are inde-
pendently to provide some vertical coherence through vertical smoothing. Overall,
the SKEB scheme should improve the global power spectrum and increase forecast
spread.
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Fig. 3 Global meridional cross section showing the impact of stochastic perturbations for the
atmosphere (cross section) for 120 h forecasts from six spring initializations (left) and six fall
initializations (right). Paneled are the differences of zonal wind spread from CTL for (top) no
stochastic physical perturbations, and the difference of STTP (upper middle); SKEB (middle);
SPPT; (lower middle) and SHUM (bottom)

The SPPT scheme perturbs the total tendencies of temperature, wind, and water
vapor during numerical integration generated by the GFS physics parameterizations
(after all physics processes). The current version of SPPT implies five different
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random patterns with different timescales and correlation length scales to generate
the tendency perturbations. The patterns of the stochastic perturbations, in general,
are uniform in the vertical levels, except their magnitude are reduced and taped to
zero gradually for both of near surface and above the tropopause. The maximum
amplitudes of five scales are 0.8, 0.4, 0.2, 0.08, and 0.04 respectively. Figure 2
demonstrates the individual independent random scale patterns and combined 5-
scale random pattern.

The SHUM scheme perturbs the near-surface humidity only; based on the concept
that the uncertainty in humidity can have nonlinear impacts as thresholds in physical
parameterizations are crossed (e.g., convective initiation). SHUM uses the same
random pattern generator as SPPT scheme but only a single spatial-temporal scale
is used with maximum amplitude of 0.006. The perturbation is a maximum in the
lowest model level and decreases exponentially with height. However, its impact
transports rapidly to upper level of troposphere.

Since the new schemes (SPs), which is the combination of three schemes are
introduced to replace the current operational STTP scheme in GEFS, an averaged
spread at 120-hr forecast in two seasons are demonstrated in Fig. 3 to indicate the
relative contribution and effect of each individual stochastic scheme.Compared to the
ensemble spread without considering stochastic perturbations (i.e., noSP, top row),
the control experiment with STTP (operational GEFS, the second row) produced
extra spread in the extratropics area without major impact in the tropics. For the
package of new stochastic physics schemes (SPs), however, an additional spread is
produced through SKEB (3rd row), which has similar spatial contribution of STTP
(2nd row). Both of the SPPT (row 4) and SHUM (last row) generate additional spread
for tropics, but the evolution characteristics are slightly different (not shown here)
from SHUM which only perturbs humidity in the near boundary. An increasing
spread over tropics greatly improves forecast uncertainty representation and also
enhances the tropical forecast skill.

Apparently, the SPs (combined three stochastic schemes) present forecast spread
globally, especial for tropical area when compared to NCEP operational GEFS solo
stochastic scheme (STTP). The statistical scores for tropical zonal winds of 850
and 250 hPa show huge improvements from introduced SPs for 2 years experiment
periods (Fig. 4). For both of upper and lower atmosphere levels, increased forecast
spread does also result in the reduced forecast error (root mean square error—RMSE;
left plots of Fig. 4); and higher continuous ranked probability skill scores (CRPSS;
right plots of Fig. 4). Moreover, the spreads are more closed to forecast errors (left
plots of Fig. 4) indicates the representation of forecast uncertainty is more realistic
than current operational GEFS (STTP).
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Fig. 4 RMS error of the ensemble mean (solid) and the ensemble spread (dash) (left), and CRPSS
(right) are plotted every 24 h out to 35 days for 850-hPa (top) tropical (20°N–20°S) zonal wind
during the Jan. 2015 to Dec. 2015 period comparing CTL (black) and SPs (red)

3 Other Strategies on Improving Ensemble Forecast
on Sub-seasonal Timescale

The sub-seasonal forecast has different dependences from the short-term forecast.
While the short-term forecast largely relies on the initial condition, the sub-seasonal
forecast more and more relies on the boundary and external forcing. As such, for
an uncoupled forecast system on sub-seasonal timescale, an accurate representation
of the prescribed Sea Surface Temperature (SST) is of great importance (Li et al.
2001; Ling et al. 2015). The operational version of GEFS uses a prescribed SST that
is initiated from analysis data and damps to climatology. Taking into account the
day-to-day variability of the SST and as an intermediate stage between uncoupled
and coupled forecast system, the underlying SST is updated using the bias-corrected
SST from coupled model forecast (i.e., two-tiered SST, Table 1, third row).

As for the forecast system, an accurate representation of the physical process is
critical to the forecast skill, the last strategy (or configuration) (Table 1, fourth row)
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Fig. 5 MJO skills of the
four different configurations
of GEFS and CFSv2

that was tested is combining new SPs; two-tiered SST; and an upgraded Simpli-
fied Arakawa-Schubert (SAS) cumulus parameterization scheme that is both scale-
and aerosol-aware (Han et al. 2017). The highlights of this upgraded convective
parameterization scheme include: (1) the change of the rain conversion rate; (2) the
modification of convective adjustment time in deep convection; (3) the cloud base
mass flux in the shallow convection scheme becomes a function of mean updraft
velocity; (4) convective inhibition (CIN) in the sub-cloud layer is an additional trig-
ger condition to suppress unrealistic spotty rainfall; and (5) convective cloudiness is
enhanced by suspended cloud condensate in an updraft.

The performance of the different GEFS configurations is demonstrated in Figs. 5
and 6. Since the Madden Julian Oscillation (MJO) is the dominant mode on the sub-
seasonal predictability, MJO and its associated components are one of the emphases
to evaluate the capability of the forecast system on sub-seasonal timescale. Com-
pared to STTP scheme, the performance of the 850 hPa zonal wind over the tropics
indicated a significant improvement associated with the increase of the spread in SPs
(Fig. 4). The skill of the upper level zonal wind showed similar improvement (Figure
not shown. please confirm), indicating a positive impact of the SPs on the MJO asso-
ciated circulation. The RMMMJO skill increased from ~12.5 days in STTP scheme
to 16.8 days in SPs. Combing SPs and updated SST further result in the increased
MJO skill to 18.5 days. Combing SPs with updated SST and updated convection
scheme lead to increase the MJO skill to 22 days (Fig. 5). The impact of the differ-
ent configurations on the Northern Hemisphere large-scale circulation indicated the
consistent result as the MJO (Fig. 6), with the improvement from STTP to SPs. The
statistics, in terms of NH 500 hPa geopotential height anomaly correlations for aver-
age period of week-2 (days 8–14) and weeks 3 and 4 (days 15–28), include NCEP
Climate Forecast System version 2 (CFSv2). The results indicate (1) All three new
configurations show similar or better score than GEFS operation (ctl) for week-2,
but much better than CFSv2; (2) All there new configurations demonstrate the very
valuable skills for weeks 3 and 4 than GEFS operation (ctl), and much better than
CFSv2.
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Fig. 6 The time series of ensemble mean anomaly correlation for Northern Hemisphere
(20°N–80°N) 500-hPa geopotential height fromMay 2014 toMay 2016 for different configurations
(CTL-black; SPs-red; SPs+CFSBS-green andSPs+CFSBC+CNV-purple) andCFSv2 (orange) for
lead week-2 (a) and weeks 3 and 4 (b). Days 15–28 (weeks 3 and 4 average). Average scores are
shown in the bottom of each plot

4 Towards Physically Based Stochastic Parameterization

As we demonstrated in Sect. 2 for various stochastic perturbation schemes, most
of them are in current operational ensemble forecast system that is still prelimi-
nary approach to assimilate model based uncertainties. There are many limitations
in the application of the stochastic schemes. For example, the SKEB scheme highly
depends on the accumulation of dissipation in the numerical integration, the hor-
izontal and vertical diffusions scheme, gravity wave drag and mountain blocking
parameterization et al. A contribution of SKEB will be greatly reduced when model
resolutions are increased and when numerical schemes are improved. In addition,
perturbation in SPPT varies with model physics thus varies with total physics ten-
dency. The spatial and temporal de-correlation of the stochastic patterns thus does
not really reflect uncertainty associated with individual physical process.

Figure 7 is a schematic diagram which demonstrates the current status of the
stochastic perturbations, and the approach that represents the model uncertainties
through realistic stochastic parameterization which is most possibly to be applied
in the future. In the same time, two valuable studies have been done based on the
operational ECMWF ensemble forecast system to apply (1) Independent random
patterns to perturb different physical processes (or iSPPT). It is a similar procedure
to current stochastic schemes (SPPT) but accounting stochastics for each individual
physical process (Christensen et al. 2017); (2) Stochastic perturbed selected 20 phys-
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Fig. 7 Schematic diagram to present current status and future direction for stochastic representation
of model uncertainties

ical parameters (SPP). Both of them increase ensemble spreads in general. The later
one could change vertical distributions of forecast uncertainties significantly and
thus may represent model uncertainties through the interaction of physical processes
more realistically.

With the rapid progress in ensemble forecast system development and better
understanding on the model physical process, the representation of forecast uncer-
tainties from model dynamics and physics should be more approach to realistic
atmosphere. Following this progress, many other sources of uncertainties, such as
soil moisture and soil temperature from land model, sea surface temperature from
ocean model, reflectivity of snow, and sea ice from sea ice model will be considered
to improve weather forecast and sub-seasonal-climate prediction.

5 Summary

Stochastic perturbation is important processes that can help to improve sub-seasonal
prediction after it succeeds for weather forecast. It advancedMJO skills significantly
and associated tropical atmospheric circulation (850 and 200 hPa zonal winds, Li
et al. 2018). It also enhanced extratropical prediction skills for weeks 3 and 4 average.
In contrast toNCEPCFSv2 that is a coupling systemwith lowermodel resolution and
older model physics, latest GEFS configuration has taken great advantage with new
SPs, two-tiered SST and new convective parameterization in terms of tropical and
extratropical, weather and sub-seasonal prediction. There are two areas we should
focus on in near future: (1) Improve current physical tendency perturbation scheme
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to represent physical processes more realistically; (2) Consider other sources of
uncertainties from land, sea, and other surface boundary.
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