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7.1 INTRODUCTION

The previous chapters have focused on verification procedures for environ-
mental predictions given in the form of a single value (out of a continuum)
or a discrete category. This chapter is devoted to the verification of prob-
abilistic forecasts, typically issued for an interval or a category. Probabil-
istic forecasts differ from the previously discussed form of predictions in
that, depending on the expected likelihood of forecast events, they assign a
probability value between 0 and 1 to possible future states.

It is well known that all environmental forecasts are associated with
uncertainty and that the amount of uncertainty can be situation dependent.
Through the use of probabilities the level of uncertainty associated with
a given forecast can be properly conveyed. Probabilistic forecasts can
be generated through different methods. By considering a wide range of
forecast information, forecasters can subjectively prepare probabilistic fore-
casts. Alternatively, statistical (empirical) techniques can be used either on
their own, based on historical observational data (e.g., Mason and Mim-
mack 2002; Chatfield 2001), or in combination with a single dynamical
model forecast and its past verification statistics (e.g., Atger 2001).

Probabilistic forecasts can also be based on a set of deterministic fore-
casts valid at the same time. Assuming the forecasts are independent real-
izations of the same underlying random process, an estimate of the forecast
probability of an event is provided by the fraction of the forecasts predicting
the event among all forecasts considered. This technique, known as ensem-
ble forecasting (see Leith 1974; Ehrendorfer 1997; Stephenson and Doblas-
Reyes 2000; and references therein), can produce probabilistic forecasts
based on a set of deterministic forecasts, without relying on past verification
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statistics. In certain fields of environmental science, such as meteorology
and hydrology, the ensemble forecasting technique is now becoming widely
used. Therefore, this chapter will also present some of the methods that
have been developed to directly evaluate a set of ensemble forecasts, before
they are interpreted in probabilistic terms.

In our analysis, the expectation taken over all available realizations of a
probabilistic forecast system will be denoted by the operator E(-), whereas
the conditional expectation of a quantity B over the subset of all values of 4
satisfying a condition C will be denoted by E4(B|C). Note that in this
chapter p will be used interchangeably to denote the forecast probability
density function (p.d.f.) of a continuous variable as well as the forecast
probability distribution (mass function) of a discrete variable. A more
precise notation would be to use f (+) for the forecast p.d.f. of a continuous
variable, F(x) for the forecast cumulative distribution function (c.d.f.) of a
continuous variable, and p(x;) for the forecast probability distribution of a
discrete variable.

The next section (Section 7.2) is devoted to a discussion of the two most
important attributes of probabilistic forecasts referred to as ‘reliability’ and
‘resolution’. Sections 7.3 and 7.4 will introduce a set of basic verification
statistics that can be used to measure the performance of probabilistic
forecasts for binary and multi-outcome events with respect to these attri-
butes. Similar verification statistics are presented in Section 7.5 for probabil-
istic forecasts for continuous variables, while some measures of ensemble
performance are introduced in Section 7.6. Many of these forecast verifica-
tion measures will be illustrated with recent meteorological applications.
Some limitations to probabilistic and ensemble verification are discussed in
Section 7.7, while the concluding remarks are made in Section 7.8. Further
background on the probability scores to be discussed in this chapter can be
found in the reviews by Murphy and Winkler (1987), Murphy and Daan
(1985), Stanski et al. (1989) and Wilks (1995).

7.2 MAIN ATTRIBUTES OF PROBABILISTIC FORECASTS

How can one objectively evaluate the quality of probabilistic forecasts? Let
us consider the following prediction: ‘There is a 40 % probability that it will
rain tomorrow’. Assuming that the event ‘rain’ is defined unambiguously, it
is clear that neither its occurrence nor its non-occurrence can be legitimately
used to validate, or invalidate the prediction. This apparent lack of account-
ability in case of a single forecast is in contrast with categorical determinis-
tic forecasts (‘it will rain’ or ‘it will not rain’), which can be unambiguously
validated, or invalidated for each individual event.

Whether a single forecast is valid or not tells little about the performance
of a forecast system. If the goal is the evaluation of a forecast system,
whether it is deterministic or probabilistic, one must use a statistical
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approach, based on a sufficiently large set of cases. In the case of the
probabilistic forecast example cited above, one must wait until the 40%
probability forecast has been made a number of times, and then first check
the proportion of occurrences when rain was observed. If that proportion is
equal or close to 40 %, one can legitimately claim the forecast to be statis-
tically correct. If, on the contrary, the observed proportion is significantly
different from 40 %, the forecast is statistically inconsistent.

One condition for the validity of probabilistic forecasts for the occurrence
of an event is therefore statistical consistency between a priori predicted
probabilities and a posteriori observed frequencies of the occurrence of the
event under consideration. Consistency of this kind is required, for instance,
for users who want to make a decision on the basis of an objective quanti-
tative risk assessment (see Chapter 8). Following Murphy (1973), this
property of statistical consistency is called reliability. A forecast system is
called reliable if it provides unbiased estimates of the observed frequencies
associated with different forecast probability values. Note that the word
consistency has several different meanings in verification (see Chapter 3,
Section 3.3, for an alternative definition) and so it should be used carefully.

Reliability alone is not sufficient for a probabilistic forecast system to be
useful. Consider the extreme situation where one would predict, as a form
of probabilistic forecast for rain, the climatological frequency of occurrence
of rain. The forecast system would be reliable in the sense that has just been
defined, since the observed frequency of rain would be equal to the (unique)
predicted probability of occurrence. However, the system would not pro-
vide any forecast information beyond climatology. It follows that reliability
in itself says nothing about whether the forecasts are able to discriminate in
advance between situations that lead to different verifying observed events.
As a second condition, a forecast system must be able to distinguish among
situations under which an event occurs with lower or higher than climato-
logical frequency values. After Murphy (1973), the ability of a forecast
system to a priori separate cases when the event under consideration occurs
more or less frequently than the climatological frequency is called reso-
lution. The better it separates cases when an event in the future occurs or
not, and gets it right, the more resolution a forecast system has. Interest-
ingly, it is a perfect deterministic forecast system that achieves maximum
resolution, indicating that deterministic forecasts can be considered as a
special case of probabilistic forecasts, with only the 0 and 1 probability
values used.

What has just been described for probabilistic prediction of occurrence of
events easily extends to all other forms of probabilistic forecasting. Con-
sider a real-valued continuous predictand x (for instance, temperature at a
given time and location), and the corresponding forecast p.d.f., p(x), repre-
sented by the full curve in Fig. 7.1. An example of a subsequent verifying
observation value is shown by xj in Fig. 7.1. Note that both the forecast
p.d.f. p(x) and the verifying observation x, are different for each individual
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Xo

Figure 7.1 A hypothetical forecast probability density function p(x) (full curve) for a
one-dimensional variable x, along with a verifying observed value xp for a single case.
The additional two curves represent possible distributions for the verifying values
observed over a large number of cases when p(x) was forecast by two probabilistic
forecast systems. The distribution p;(x) (dash-dotted curve) is close to the forecast
distribution p(x), while the distribution p»(x) (dashed curve) is distinctly different from
p(x) (see text for discussion)

forecast time (and so implicitly include time ¢ as a labeling index). If, as is
the case in Fig. 7.1, x¢ falls within a range where the forecast probability
density is non-zero, the observation can neither validate nor invalidate the
forecast. The difficulty here is that, contrary to what happens with a single-
value forecast (see Chapter 5), it is not obvious how to define, in a trivial
way, a ‘distance’ score between the forecast p.d.f. p(x) and the single
observed value xi. A potential distance is provided by the F(xy) measure
used to evaluate the reliability of density forecasts in macroeconomics (see
Chapter 9, Section 9.3.2).

A probabilistic (or any other) forecast system, as pointed out above, can
be validated only in a statistical sense. Therefore, similarly to the case
of probabilistic forecasts for a given event discussed above (There is a
40 % probability that it will rain tomorrow), one has to wait until a particu-
lar probability distribution p(x) has been predicted a number of times. Let
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us denote p,(x) the frequency distribution of observations corresponding to
the cases whenp(x) is forecast. If p,(x) is similar top(x) (as is shown by the
dash-dotted curve in Fig. 7.1), then the prediction p(x) can be described as
statistically consistent with observations. If, however, p,(x) is distinctly
different from p(x) (as is the case for the distribution p,(x) shown by the
dashed curve in Fig. 7.1), then the forecast p(x) is statistically inconsistent
with observations.

This example calls for a more precise definition of reliability. A probabil-
ity forecasting system is reliable if, and only if, the conditional probability
distribution p(xy|p = ¢g) of the verifying observations given any chosen
forecast probability distribution ¢(x) is itself equal to ¢(x) (ie.,
p(xo| p = q) = q(x) for all possible g(x)). In other words, the p.d.f. of the
observed value, when compiled over (stratified on) the cases when the
forecast probability density equalled ¢(x), is exactly equal to g(x). This
definition of reliability can also be extended to multi-dimensional and any
other type of probabilistic forecasts.

As noted earlier, reliability, albeit necessary, is not sufficient for the
practical utility of a probabilistic forecast system. Systematic prediction of
the climatological distribution of a meteorological variable is reliable yet
provides no added forecast value. Probability forecasts should be able to
reliably distinguish among situations for which the probability distributions
of the corresponding verifying observations are distinctly different. Such a
system can ‘resolve’ the forecast problem in a probabilistic sense, and is said
to have resolution. Similarly to the case of binary events, the more distinct
the observed frequency distributions for various forecast situations are from
the full climatological distribution, the more resolution the forecast system
has. Also maximum resolution is obtained when reliable forecast probabil-
ity distributions have zero spread, i.e., they are concentrated on single
points as Dirac delta functions. Again, such a probabilistic forecast system
generating perfectly reliable forecasts at maximum resolution is a perfect
deterministic forecast system.

Given a large enough sample of past forecasts, reliability of a forecast
system can be improved by a simple statistical calibration that relabels the
forecast probability values. For example, assume that the forecast distribu-
tion p(x) = g(x) is associated with a distinctly different distribution of
observations p,(x) (dashed curve in Fig. 7.1), i.e. p(xo|p = q) = pa(xp).
The next time the system predicts p(x) = ¢(x), one can use previous know-
ledge to substitute p,(x) as the forecast, i.e., use the calibrated forecast
P’ = p(xo| p = ¢) instead of the original forecastp. This a posteriori calibra-
tion will make a forecast system reliable. For statistically stationary forecast
and observed systems, perfect reliability can always be achieved, at least in
principle, by such an a posteriori calibration given a large enough sample of
past forecasts.

The two main attributes of probabilistic forecasts, reliability and reso-
lution, are a function of both the forecasts and the verifying observations.
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Resolution was defined above as the variability of the observed frequency
distributions associated with different forecast scenarios around the clima-
tological p.d.f. Another property, sharpness, measures the variability of the
forecast (and not the corresponding observed) probability distributions
around the climatological p.d.f. Note that in a perfectly reliable (well
calibrated) forecast system the forecast probability values, by definition,
are identical to the corresponding frequency of verifying observations. For
a reliable forecast system sharpness is therefore identical to resolution.

Since it is only a function of the forecast (and not the corresponding
observed) distributions, sharpness is not a verification measure. It follows
that in general an arbitrary increase in sharpness (e.g., an increase in the
highest forecast probability values) will not lead to enhanced resolution.
Resolution cannot be improved through a simple adjustment of probability
values — it can only be improved by a clearer discrimination of situations
where the event considered is more or less likely to occur as compared to the
climatological expectation. This suggests that the intrinsic value of forecast
systems lies not in their reliability (that can be improved by a calibration
procedure described above) but in the resolution that cannot be improved
by simply post-processing forecast probability values.

In summary, resolution and reliability together determine the usefulness
of probabilistic forecast systems. Assuming they behave stationarily in time
(no long-term changes in their behavior), there seems to be no desirable
property of probabilstic forecast systems other than reliability and reso-
lution. A useful forecast system must be able to a priori separate cases into
groups with as different future outcome as possible, so as each forecast
group is associated with a distinct distribution of verifying observations.
This is the most important attribute of a forecast system and is called
resolution. The other important attribute, reliability pertains to the proper
labeling of the different groups of cases identified by the forecast system. It
was pointed out that even if the forecast groups originally were designated
improperly by the forecast system, they could be rendered reliable by ‘re-
naming’ them according to the observed frequency distributions associated
with each forecast group, based on a long series of past forecasts. The
different scores that are introduced in the rest of this chapter for the evalu-
ation of binary, multi-categorical, and continuous variable probabilistic
forecasts and ensembles will be systematically analyzed to assess which of
the two main forecast attributes (resolution and reliability) they measure.

7.3. PROBABILITY FORECASTS OF BINARY EVENTS

In Sections 7.3.1-7.3.3, we will consider verification methods for the sim-
plest conceptual case of probability forecasts of binary events. Such events,
marked by A, can be defined in different ways. One can use an inequality of
the form {A4: X > u}, where X is a scalar variable for which a probabilistic



Probability and Ensemble Forecasts 143

forecast is made, and u is a given threshold value. Examples of this type
include the occurrence or not of a particular binary event 4 such as ‘the
temperature at a given location x at forecast lead-time 7 will be-greater than
0°C’, or ‘the total amount of precipitation over a given area and a given
period of time will be more than 50 mm’. Other events, like “Tropical storm
Emily will hit land’, or ‘Electric power distribution will be disrupted by
thunderstorms’, cannot be easily expressed in terms of a meteorological
parameter exceeding a certain threshold, yet are equally interesting. This
section is devoted to the verification of probabilistic forecasts of binary
events, regardless of how they are defined.

By considering individual values/categories, probabilistic forecasts of
discrete variables or categories having multiple values can also be con-
sidered as a set of probabilistic binary events. Probabilistic forecasts of
binary events are, therefore, of fundamental importance in the verification
of probability forecasts.

Let us introduce the binary random variable, X, that takes the value
1 when the event occurs (e.g., exceedance of a threshold value) and 0 when
the event does not occur. Now consider the conditional probability
f(q) = p(X = 1|p = q) for the probability of the event to occur given that
the forecast probability was equal to g. In the special case of binary events,
f(q) is equal to the conditional expectation E(X|p = ¢). An (frequentist)
estimate of f(q) is easily obtained by counting the relative frequency of the
observed event over cases when event A was forecast to occur with prob-
ability ¢g. The condition for reliability, as defined in the previous section, is
simply that f(q) = ¢ for all possible values of g.

7.3.1 The Reliability Curve

As an example, let us consider winter 1999 probabilistic forecasts produced
by the National Centers for Environmental Prediction (NCEP) Ensemble
Forecast System (Toth and Kalnay 1997). The event is defined here as the
850-hPa temperature being at least 4°C below its climatological mean
value. Diagnostics are accumulated over all grid-points located between
longitudes 90W and 45E, and between latitudes 30N and 70N, and over
65 forecasts issued between 1 December 1998 and 28 February 1999, for a
total of n = 16, 380 realizations. Forecast probability values for the event at
each grid-point are estimated by the relative frequencies, i/m, where
i=0,1,2, ..., m indicate the number of members in the ensemble of
m = 16 forecasts that predict the event to occur. The forecast probabilities
are thus restricted to m + 1 = 17 equally spaced discrete values. For decid-
ing whether the event occurred or not, the NCEP operational analysis will
be used as the best estimate of truth.

The solid line in Fig. 7.2 shows the reliability curve obtained by plotting
values of f(q) against ¢, for the forecast system and event described above.
Although rather close to the line f(q) = ¢ (i.e., perfect reliability), the
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E(PIP)

Figure 7.2 Reliability diagram for the NCEP Ensemble Forecast System (see text
for the definition of the event E under consideration). Full line: reliability curve for the
operational forecasts. Dash-dotted line: reliability curve for perfect ensemble fore-
casts where ‘observation’ is defined as one of the ensemble members. The horizontal
line shows the climatological frequency of the event, s = 0.714. Insert in lower right:
sharpness graph (see text for details)

reliability curve does show some significant deviations from it. In particular,
the slope of the reliability curve in Fig. 7.2 is below that of the f(¢) = ¢
diagonal. Note that deviations from the diagonal are not necessarily indica-
tive of true deviations from reliability but can also be due to sampling
variations. When statistics, as in our example, are based on a finite sample,
the reliability curve for even a perfectly reliable forecast system is expected
to exhibit sampling variations around the diagonal. The amount of sam-
pling variability can be easily assessed by plotting reliability curves for the
same forecast system except now using a randomly chosen member of the
ensemble of forecasts in place of the verifying observations. By definition,
the forecast system should be perfectly reliable in this case, and so devi-
ations from the diagonal in this case are due to sampling variations. When
compared to the diagonal, the difference between the perfect (dash-dotted
line in Fig. 7.2) and operational ensemble curve (solid line) reflect the true
lack of reliability in the forecast system, irrespective of the size of the
verification sample. Bootstrap methods (see Efron and Tibshirani 1993)
could easily be developed to quantify the sampling uncertainty in these
estimates of reliability.

The histogram in the lower right corner of Fig. 7.2 is known as a
sharpness diagram which shows the relative frequencies for the forecast
probabilities, i.e., sample estimates of the marginal probability distribution
of the forecast probabilities g. Since the probabilities of zero or one are used
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in 90% of the forecast cases, the forecast system exhibits a considerable
degree of sharpness, as defined above. This is due to the small spread in
temperatures in these short-range 2-day lead-time forecasts, resulting in
either none or all of the forecasts often falling 4 °C below the climatological
mean value.

7.3.2 The Brier Score

Brier (1950) proposed the quadratic scoring measure E[(p — X)?] for the
quantitative evaluation of probabilistic binary forecasts. It can be estimated
from a sample of past forecasts by

1 n
B="3% (p~x) (7.1
j=1

where 7 is the number of realizations of the forecast process over which the
validation is performed. For each realization j,p; is the forecast probability
of the occurrence of the event, and x; is a value equal to 1 or 0 depending on
whether the event occurred or not. A minimum Brier score of zero is
obtained for a perfect (deterministic) system in which p;, = x; for all j.
Such a system issues probability forecasts of 1(0) every time before the
event is (not) observed to occur. Since such a forecast system does not
use any probabilities between 0 and 1, it has no uncertain cases and can
be considered as a deterministic binary forecast system. On the contrary, the
Brier score takes the maximum value of one for a systematically erroneous
(yet perfectly resolving) deterministic system that predicts with certainty the
wrong event each time, i.e..p; =1 — x;.

In order to compare the Brier score, B, to that for a reference forecast
system, Byer, it 1s convenient to define the Brier skill score (BSS):

B

BSS=1-
Bref

(7.2)

Unlike the Brier score in Eqn. (7.1), the BSS is positively oriented
(i.e., higher values indicate better forecast performance). BSS is equal to
1 for a perfect deterministic system, and 0 (negative) for a system that
performs like (poorer than) the reference system. The reference system
is often taken to be the low-skill c/imatological forecasts in which p; = s
for all j, where s = p(X = 1) is the base rate (climatological) probability for
the occurrence of the event. The Brier score for such reference forecasts is
equal to B, = s(1 — s) (in the large sample asymptotic limit). Climatological
forecasts have perfect reliability since E(x|p = s) =s, but have no reso-
lution since s(Ey(x|p = s5)) = (s) = 0. In the rest of this chapter, the BSS
will be defined using climatological forecasts as the reference, i.e.,
Bier = B, = s(1 — s).
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Because the Brier score is quadratic, it can be usefully decomposed into
the sum of three individual parts related to reliability, resolution, and the
underlying uncertainty of the observations (Murphy 1973). To derive this
decomposition here, we will assume that the forecast probabilities can take
any continuous value of ¢ in the range 0 to 1. In other words, the predictor
values ¢ are continuous variables with a p.d.f. p(¢) defined such that

1

jp(q) dg=1 (13)
0

In realistic forecast situations, only a discrete set of forecast probabilities
are issued and the integral in Eq. (7.3) over all values must then be replaced
by a finite sum. The climatological base rate of the event s = p(X = 1) can
be written as

1 1

s=p(X =1)= Jp(X — 1lgp(g)dg = Jf(q)p(q) d (14
0 0

Alternatively, this can be expressed in terms of expectations over X and
q as

1
s = E(X) = JEx(X [9p(q) dg = E4[Ex(X|q)] (7.5)
0

and so the base rate can be written as the expectation of f(g) over all
possible g values: s = E [ f(¢)]. The statistical performance of the probabil-
ity forecast system is entirely determined by the functions p(¢) and f(g) — all
scores can be expressed in terms of these two calibration-refinement func-
tions. Different prediction systems will have different functions of p(g) and
f(q), yet the base rate that is independent of the prediction system, will
always be given by Eq. (7.4). By conditioning on the forecast probabilities,
the Brier score can be written as

B = E[(p - X)'] = EJE(q — X)|q]] (7.6)
where the expectation over X is given by

E\l(q — X)*lq] = (g — 0O)’[1 — f(@)] + (¢ — 1)*f(q)

(7.7)
=[g—f@F + (@Il - f(g)]
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based on the definition f(g) = p(X = 1|g). By taking the expectation of Eq.
(7.7) over all possible ¢ values, one then obtains the decomposition of the
Brier score:

B=E,(q-f(@))1— EJ(f(g) — 5]+ s(1 —s) (7.8)

The first term on the right-hand side of Eq. (7.8) is an overall measure of
reliability equal to the mean squared deviation of the reliability curve from
the diagonal (see Fig. 7.2). For a perfectly reliable system, f(g) = g and so
this term is then zero. The second term E,[(f(q) — 5)°] is an overall measure
of resolution identical to ([ f(g)] — systems with good resolution have f(g)
that differ from the climatological base rate s. The larger the overall reso-
lution, the better the forecast system can a priori identify situations that lead
to the occurrence or non-occurrence of the event in question in the future.
Note that resolution is entirely based on the conditional probabilities f(q)
and so is independent of the actual marginal distribution of forecast prob-
ability values (and thus also independent of reliability). Resolution is only a
measure of how the different forecast events are classified (or ‘resolved’) by
a forecast system. The third term s(1 — s) on the right-hand side of Eq. (7.8)
is known as the uncertainty and is equal to the variance of the observations
(X). This term is independent of the forecast system and cannot be reduced
by improving the forecasts. The difficulty (or lack of it) in predicting events
with close to 0.5 (0 or 1) climatological probability is represented by a large
(small) uncertainty term in Eq. (7.8).

By comparing the terms in Eq. (7.8) with one another, it is possible to
construct relative measures of reliability and resolution as follows:

_EJq—/f@)]

Brel -
s(1 —s) i (7.9)
5 1 ElU@ =5
res S(l _ S)

Both these measures are negatively oriented, and are equal to zero for a
perfect deterministic forecasting system. They are related to the BSS
(defined using the climatological forecast system as a reference, BSS.) as
follows:

BSS. = 1 — Bret — Bres (7.10)

In our operational NCEP forecasting example, the Brier score for the
system represented by the solid curve in Fig. 7.2 is equal to 0.066. The
base rate for the event under consideration is equal to 0.714, which yields
0.677 for the Brier skill score BSS.. The corresponding values of the
components defined in Eq. (7.9) are B = 0.027 and Byes = 0.296. These
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values are typical of the values produced by present-day operational short-
and medium-range weather forecasting systems. It is often found that the
reliability term is significantly smaller (typically one order of magnitude
less) than the resolution term.

Fig. 7.3 shows the BSS defined using the climatological forecast system
BSS. (full curve) and its two components By (short-dashed curve) and B
(dashed curve), as a function of forecast lead-time, for the European Centre
for Medium-range Weather Forecasts (ECMWF) Ensemble Prediction
System (Molteni et al. 1996). The event considered here is that the
850-hPa temperature falls at least 2 °C below the mean of the 1999 winter
values (sample climatology 7). Scores were computed over the same geo-
graphical area and time period as those used to construct Fig. 7.2. Since no
data were missing, the total number of cases considered is now n = 22, 680.
Forecast probabilities are defined in the same way as for Fig. 7.2, as
p =1i/m, where i =0,1,2,...,m is the number of ensemble members fore-
casting the event, m = 50, and the verifying ‘observation’ is obtained from
the ECMWF operational analysis. The skill score BSS. numerically de-
creases (meaning the quality of the system degrades) with increasing fore-
cast lead-time. The decrease is entirely due to the resolution component
Bies, whereas the reliability component By (which, as before, is significantly
smaller than B..) shows no significant variation with lead-time. The deg
radation of resolution corresponds to the fact that, as the lead-time

01r 4

1 2 3 4 5 6 7 8 9 10
L ead-time

Figure 7.3 Brier skill score (BSS. full curve, positively oriented), and its reliability
(Brel, short dash), and resolution (B,s, dashed, both negatively oriented) components,
as a function of forecast lead-time (days) for the ECMWF Ensemble Prediction
System (see text for the definition of the event E under consideration)



Probability and Ensemble Forecasts 149

increases, the ensemble forecasts give a broader spread of temperatures, and
become more similar to the climatological probability distribution. All these
features are typical of what is seen in other current ensemble weather
forecasting systems.

Finally, we note again that if both the forecast and observed systems
are stationary in time and there is a sufficiently long record of their behavior
it is possible to calibrate the forecasts to make them more reliable (see also
Section 7.2). If the conditional probability of occurrence of an event f(g) is
different from the forecast probability ¢, the forecasts can be made more
reliable by using the relabeled forecasts ¢ = f(¢). This, if done on all values
of g, amounts to moving all points of the reliability curve horizontally to
the diagonal (Fig. 7.2). As a result of this calibration, the reliability term
on the right-hand side of Eq. (7.8) becomes zero, while the resolution term,
that measures the variance of the calibrated forecasts, does not change.
As pointed out earlier, resolution is invariant under calibration, hence it
reflects a forecasting system’s genuine ability to distinguish among situ-
ations that lead to the future occurrence or non-occurrence of an event
(no matter what labels are used). We note passing by that calibration as
defined above is only one type of statistical post-processing of forecasts.
For example, in case of ensemble forecast systems, more complex post-
processing algorithms that attempt to eliminate possible biases in the fore-
cast values, before they are converted to probability values, can improve
not only the reliability but also the resolution of the forecasts (see, e.g.,
Atger 2002).

7.3.3. \Verification Based on Decision Probability Thresholds

A useful decision-theoretic approach to the verification of probability fore-
casts is to use a sequence of probability thresholds to transform a single set
of probability forecasts into a continuous set of binary yes/no forecasts that
can be verified using the methods presented in Chapter 3. For a given
probability threshold, p, in the range 0 to 1, probability forecasts of a
binary predictand can be converted into deterministic binary forecasts by
using the following decision rule: if 5 > p;, then X =1 (‘yes’ forecast),
otherwise X = 0 (‘no’ forecast). This decision rule is similar to how users
often make decisions based on probability information — they take protect-
ive action only when the forecast probability of the event exceeds a critical
(user-specific) threshold. For an ensemble of m forecasts, there are m
distinct thresholds corresponding to at least 1,2,3,...,m of the forecasts
predicting the chosen event. Therefore, probability forecasts of a continuous
variable can be first converted into probability forecasts of a binary event (by
specifying exceedance above/below a threshold for the continuous variable),
and then these can be converted into a continuous set of deterministic
forecasts of a binary event (by using a sequence of probability decision
thresholds). The verification of probability forecasts therefore amounts to
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verifying a continuous set of deterministic binary forecasts obtained for all
the possible probability thresholds in the range 0 to 1.

As explained in detail in Section 3.4 of Chapter 3, a continuous set of
deterministic binary forecasts can be verified using signal detection tech-
niques. One of the most powerful tools is the relative operating characteristic
obtained by plotting the hit rate versus the false alarm rate for each possible
decision probability threshold: the two-dimensional locus of points
(F(py), H(py). For all probability forecasts, H( p;) and F(p,) both decrease
from 1 to 0 as the decision threshold probability p, increases from 0 to 1.
The ROC curve for a climatological probability forecasting system that
always forecasts the base rate probability, s, has only two points on the
ROC diagram: (1,1) for p, > s and (0,0) for p; < s. For the special case of a
(m = 1) deterministic binary forecast, there is only one point (F,H) on the
ROC diagram in addition to the corner points (0,0) and (1,1). A probabil-
istic forecast system with good reliability and high resolution is similar to a
perfect deterministic forecast in that it will only forecast probabilities that
are close to either 0 or 1. For such a system, the majority of the points on
the ROC diagram will therefore be close to the perfect forecast (0,1) point. It
follows that in general the proximity of the ROC curve to the (0,1) point can
provide an indication of overall skill of the forecasts. For example, the area
under the ROC curve is one such measure that can be used to construct a
skill score (see Section 3.4.4 of Chapter 3).

A more detailed interpretation of the ROC results can be obtained by
noting that the probability of an event occurring is given by the threshold-
dependent base rate s(p;) = j p(g)dg and that the probablhty of a hit for a
given probability threshold p; can be written as f f(q)p(q) dgq. Therefore,
the hit and false alarm rates can be written, respectlvely, as:

1

1
Hp) == | @@ dg (7.11a)
Dt
| 1
F() = 1o | = F@)r(@ dg (7.110)
Pt

The integral in Eq. (7.11a) is the average of f(g) for those circumstances
when ¢ > p;. When f(g) is a strictly monotonically increasing function of p,
the threshold inequality ¢ > p; becomes equivalent to f(g) > f(pt), and the
comparison with the threshold can be done on the a posteriori calibrated
probabilities ¢ = f(g) as well as on the directly predicted probabilities g.
The same argument equally applies to the integral in (7.11b), which means
that the ROC curve is invariant to a posteriori calibration ¢’ = f(¢) (where
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the points on the reliability curve are moved horizontally to the diagonal).
Thus, if the reliability curve is strictly monotonically increasing, the ROC
curve, just like the resolution component of the Brier score, depends only on
the a posteriori calibrated probabilities ¢ = f(¢) (and their probability
distribution). The ROC curve, in these cases, is therefore independent of
reliability, and measures the resolution of the forecasting system. The
resolution component of the Brier score and the ROC curve therefore
often provide very similar qualitative information.

Fig. 7.4 shows the ROC curves for the same set of forecasts evaluated
in terms of their Brier score in Fig. 7.3. Note that, as expected, the area
under the ROC curves decreases monotonically as a function of increasing
forecast lead-time (with values of 0.98, 0.95, 0.92 and 0.87 for lead-times of
2,4, 6 and 8 days, respectively), just as the Brier score did in Fig. 7.3. While
both the Brier score and ROC area indicate a loss of predictability with
increasing lead-time, the corresponding values for the two scores are quan-
titatively different. Moreover, it can be shown that there is no one-to-one
relationship between the two measures. It is not clear which measure
of resolution (if any) is generally preferable for judging forecast skill.
A potential advantage of skill measures such as the ROC area is that they
are directly related to a decision-theoretic approach and so can be easily
related to the economic value of probability forecasts for forecast users (see
Chapter 8).
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False alarm

Figure 7.4 ROC curves for the same event and predictions as in Fig 7.3, for four
different forecast ranges



152 Forecast Verification

7.4. PROBABILITY FORECASTS OF MORE THAN
TWO CATEGORIES

7.4.1 Vector Generalization of the Brier Score

The Brier score was defined in Eq. (7.1) for the verification of probability
forecasts of binary events. However, Brier (1950) gave a more general
definition that considered multiple categories of events. Let us consider an
event with K complete, mutually exclusive (and not necessarily ordered)
outcomes E; (k =1, ..., K), of which one, and only one, is always neces-
sarily observed (see Chapter 4 for deterministic forecasts of such predic-
tands). A probabilistic forecast for this set of events then consists of a K-
vector of probabilities p = (p;, ps, ..., Pg) such that Z,’leﬁk = 1. The
general definition of the Brier score for probability forecasts of K categories
is given by

K
:E(%Z(ﬁk—ka). (7.12)
k=1

where X; = 1 if the observed outcome is Ej, and 0 otherwise. By defining

the observation K-vector x = (x1, x3,..., Xg) containing K — 1 zeros and
a single 1, the Brier score can be written in vector notation as
E[|| p—x |* /K] where || - || denotes the Euclidean norm. The Brier score

for K categories is simply the arithmetic mean of the binary Brier scores
(Eq. (7.1)) for each outcome Ej. A BSS can be defined as in Eq. (7.2) by
using a reference probability forecast that constantly forecasts the corres-
ponding climatological base rate s; for each category. Examples for the use
of the multiple category Brier score can be found in Zhu et al. (1996) and
Toth et al. (1998).

A reliability—resolution decomposition of the multiple-category Brier
score can be obtained by averaging the components of the binary Brier
scores for each individual category. For multi-event forecasts, a more
discriminatory decomposition, built on the entire sequence ¢ of predicted
probabilities, seems preferable. Denoting dp(g) the frequency with which
the sequence ¢ is predicted by the system, and defining the sequence
f(¢) = [ fi(q)] of the conditional frequencies of occurrence of the E;s
given that ¢ has been predicted, a generalization of the derivation leading
to Eq. (7.8) shows that

Bx :éj la-1@ 1 dp@_éj I /(@) —p, I dp(g) + Bex  (7.13)

where p_is the sequence (pci). Similarly to Eq. (7.8), Eq. (7.15) pro-
vides a decomposmon of Bk into reliability, resolution and uncertainty
terms.
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7.4.2. Information Content as a Measure of Resolution

It has been argued that given a suitably large sample of previous forecasts
and matching observations, probabilistic forecasts can be made more reli-
able by calibration. Unlike reliability, the resolution of a forecasting system
cannot be changed by calibration and so represents the (invariant) ability of
the forecasting system to resolve future events. Various measures of reso-
lution have been proposed for probability forecasts including ones based on
information theory measures such as information content (entropy) (see
Section 2.7; Toth et al. 1998; Stephenson and Doblas-Reyes 2000; Roulston
and Smith 2002). One possible definition of the information content (/) of a
forecast of the probabilities for K mutually exclusive, climatologically equi-
probable, and exhaustive categories is given by

K
IPl =1+ p, loggp; (7.14)

i=1

where 0 <p; < 1 is the forecast probability for the ith category that satisfy
S K ;= 1. When forecasts are perfectly reliable, the mean information
content over all forecasts can be considered to be another measure of
resolution. Under these conditions, the information content ranges between
zero for a uniform probability forecast that forecasts p, = 1/K for all
categories, and one for a deterministic forecast that forecasts p; = 1 for
only one category and 0 for all others. Fig. 7.5 shows the mean information
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Figure 7.5 Information content as defined in text for calibrated probabilistic force-
casts (with near perfect reliability) based on a 10-member subset of the NCEP
ensemble. Forecasts are made for 10 climatologically equally likely intervals for
500 hPa geopotential height values over the Northern Hemisphere extratropics
(20-80N), and are evaluated over the March—-May 1997 period
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content of a 10-member 0000 UTC subset of the NCEP ensemble forecasts
for 500 hPa geopotential height as a function of lead-time. For not perfectly
reliable forecasts, a more general and invariant measure of resolution can be
obtained by considering the information content of the calibrated forecasts
I[f(p)]. It should be noted that information content defined in this way is
equal to the Kullback—Leibler G?> measure of association for (K x K)
contingency tables that tends to the better known y> measure of association
in the limit of large cell counts (Stephenson 2000). Hence, the %> measure of
association for the calibrated probabilities may also provide a good overall
measure of resolution for probability forecasts.

7.5 PROBABILITY FORECASTS OF
CONTINUOUS VARIABLES

The previous sections in this chapter have discussed the verification of
probability forecasts of nominal categories of events. Probability forecasts
of continuous variables (e.g., temperature at a location) can also be treated
as categorical forecasts by partitioning the range of values into a finite
number of complete yet exclusive intervals (bins/classes). Categories con-
structed for continuous variables are ordinal categories that have a natural
ordering/distance. The verification tools presented so far were developed for
use with nominal categories where the order of the categories did not matter
(or affect the scores). If applied with ordinal categories they can lead to loss
of important verification information related to the ordering of the categor-
ies. This section will discuss two scores that have been developed specifically
for accounting for the distance information implicit in categories con-
structed for continuous variables.

7.5.1 The Discrete Ranked Probability Score

Consider K > 2 thresholds x; < x; < --- < xg for the continuous random
variable X that define the events A = {X < x;} for k=1,2,...,K. The
forecast probabilities for the events are denoted by (p, p,, ..., Px) and
the binary indicator variables for the kth observed event are denoted Oy
(i.e., O = 1 if Ay occurs, and 0; = 0 otherwise). The discrete ranked prob-
ability score (RPS) is then defined as

1 & 1 &
RPS = E[2> (7~ 00’1 = 2> _ B (7.15)
k=1 k=1

where By is the Brier score for the event 4, = {X < x;}. The RPS is similar
to the multiple category Brier score in Eq. (7.12), but, as its name implies, it
takes into account the ordered nature of the variable X. Here the events Ay
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are not mutually exclusive, and A4; implies A;~;. Consequently, if X is
forecast for instance to fall in an interval [x;, x; + 1] with probability one,
but is observed to fall into another interval [x;', x;’ + 1], the RPS increases
with the increasing absolute difference |j — j'|.

7.5.2 The Continuous Ranked Probability Score

A continuous extension of the RPS can be defined by considering an
integral of the Brier scores over all possible thresholds x, instead of
an average of Brier scores over a finite number of discrete thresholds as in
Eq. (7.15). Denoting the predicted c.d.f. by F(x) = p(X < x) and the
observed value of X by xg, the continuous ranked probability score
(CRPS) can be written as

CRPS = E J [F(x) — H(x — x0)]* dx (7.16)

—00

where H(x — xo) is the Heaviside function that takes the value 0 when
x —x9 <0, and 1 otherwise. Both the discrete and CRPS, just like the
multiple category Brier score, can be expressed as skill scores (see Eq.
(7.2)), and are amenable to reliability—resolution decompositions. For add-
itional related information the reader is referred to Hersbach (2000).

7.6 SUMMARY STATISTICS FOR ENSEMBLE FORECASTS

Ensemble forecasting is now one of the most commonly used methods for
generating probability forecasts that can take account of uncertainty in
initial and final conditions. The previous sections were devoted to the
verification of probabilistic forecasts in general. However, before ensemble
forecasts are converted into probabilistic information, it is desirable to
explore and summarize their basic statistical properties. This section will
therefore present some of the statistics that are most often used to summar-
1ze ensembles of forecasts. At the initial time, an ensemble of forecasts is
generally constructed to be centered on the control analysis — i.e., the
ensemble mean at zero lead-time is the best estimate of the state of
the system (obtained either directly or by averaging an ensemble of analysis
fields).

Section 7.2 pointed out that the inherent value of forecast systems lies in
their ability to distinguish between cases when an event has a higher or
lower than climatological probability to occur in the future (resolution). As
Figs. 7.3 and 7.4 demonstrate, resolution decreases rapidly with lead-time
(due to the loss of information in the flow). This is because in fluid systems
such as the atmosphere and oceans, naturally occurring instabilities amplify
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initial and model related uncertainties. Even though skill is reduced and
eventually lost, forecasts can remain (or can be calibrated to remain)
statistically consistent with observations (reliable). An ensemble forecast
system that is statistically consistent with observations is often called a
perfect ensemble in a sense of perfect reliability. An important property of
a perfectly reliable ensemble is that the verifying analysis (or observations)
should be statistically indistinguishable from the forecast members. Most of
the verification tools specifically developed and applied to ensemble fore-
casts are designed to evaluate the statistical consistency of such forecasts.
These additional measures of reliability, as we will see below, can reveal
considerably more detail as to the nature and causes of statistically incon-
sistent behavior of ensemble-based probabilistic forecasts than the reliabil-
ity diagram (Section 7.3.1) or the single measure of the reliability
component of the Brier score (Section 7.3.2). By revealing the weak points
of ensemble forecast systems, the ensemble-based measures provide import-
ant information for the developers of such systems that can eventually lead
to improved probability forecasts.

7.6.1 Ensemble Mean Error and Spread

If the verifying analysis is statistically indistinguishable from the ensemble
members, then its mean distance from the mean of the ensemble members
(ensemble mean error) must equal the mean distance of the individual
members from their mean (ensemble standard deviation or spread) — see
Buizza (1997) and Stephenson and Doblas-Reyes (2000). Fig. 7.6 compares
the root mean square error of the ensemble mean forecast and the mean
spread of the NCEP ensemble forecasts as a function of lead-time. Initially,
the ensemble spread is larger than the ensemble mean error, indicating a
larger than desired initial spread. The growth of ensemble spread, however,
is less than that of the error, which then leads to insufficient spread at later
lead-times. This is typical behavior in current ensemble forecast systems
that often tend to underestimate ensemble spread due to not accounting for
all possible sources of model related uncertainty (e.g., structural uncertainty
caused by the model parameterizations being incorrect).

Since for perfectly reliable forecast systems the spread of the ensemble
forecasts is equal to the error in the ensemble mean, for such systems
the spread can also be considered as a measure of resolution (and therefore
forecast skill in general). For example, an ensemble with a lower average
ensemble spread can more efficiently separate likely and unlikely events
from one another (and so has more information content). It is worth
mentioning that the skill of the ensemble mean forecast is often compared
to that of the single control forecast obtained by starting with the best initial
conditions (control analysis). Once non-linearity becomes pronounced, the
mean of an ensemble that properly describes the case-dependent forecast
uncertainty is able to provide a better estimate of the future state of the
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Figure 7.6 Root mean square error of 500 hPa geopotential height NCEP control
(open circle), ensemble mean (full circle), and climate mean (full square) forecasts,
along with ensemble spread (standard deviation of ensemble members around their
mean, open square), as a function of lead-time, computed for the Northern Hemi-
sphere extratropics, averaged over December 2001—February 2002

system than the control forecast (see Toth and Kalnay 1997). In a good
ensemble forecasting system, the ensemble mean error should therefore be
equal or less than the error of the control forecast (see Fig. 7.6). It follows
that in a reliable ensemble the spread of the ensemble members around the
mean will be less than that around the control forecast.

7.6.2 Equal Likelihood Frequency Plot

Ensemble forecast systems are designed to generate a finite set of forecast
scenarios. Some ensemble forecast systems (e.g., those produced by
ECMWF and NCEP) use the same technique for generating each member
of the ensemble (i.e., the same numerical prediction model, and the
same initial perturbation generation technique). In some other systems,
each ensemble member is generated using a different model version (e.g.,
the ensemble forecasting system employed at the Canadian Meteorological
Centre, see Houtekamer et al. 1996). In such systems, individual ensemble
members may not all perform equally well. Similarly, if the control forecast
is included in an otherwise symmetrically formed ensemble, the assumption
of equal likelihood of the forecasts can become questionable.
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Whether all ensemble members are equally likely or not is in itself
neither a desirable nor an undesirable property of an ensemble prediction
system. When ensemble forecasts are used to define forecast probabilities,
however, one must know if all ensemble members can be treated in an
indistinguishable fashion. This can be tested by generating a bar plot
showing the number of cases (accumulated over space and time) when
each member was the forecast closest to the verifying diagnostic (see Zhu
et al. 1996). Information from such a frequency plot can be useful as to
how the various ensemble members must be used in defining forecast
probability values. Equal frequencies indicate that all ensemble members
are equally likely and can be considered as independent realizations of the
same random process, indicating that the simple procedure used in Section
7.3.1 for converting ensemble forecasts into probabilistic information is
applicable.

Fig. 7.7 compares the frequency of NCEP ensemble forecasts being
closest to the verifying analysis value, averaged for 10 perturbed ensemble
members, with that of an equal and a higher horizontal spatial resolution
unperturbed control forecast as a function of lead-time. Note first in Fig.
7.7 that the higher resolution control forecast, due to its ability to better
represent nature, has an advantage against the lower resolution members of
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Figure 7.7 Equal likelihood diagram, showing the percentage of time when the
NCEP high (dashed) and equivalent resolution control (dash-dotted), and any one of
the 100000 UTC perturbed ensemble 500 hPa geopotential height forecasts (dotted)
verify best out of a 23-member ensemble (of which the other 11 members are
initialized 12h earlier, at 1200 UTC), accumulated over grid-points in the Northern
Hemisphere extratropics during December 2001—February 2002. Chance expectation
is 4.35 (solid)
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the ensemble. This advantage, however, is rather limited. As for the low
resolution control forecast, at short lead-times, when the spread of the
ensemble around the control forecast is too large (see Fig. 7.6), it is some
what more likely to be closest to the verifying analysis. At longer lead-times,
when the spread of the NCEP ensemble becomes underestimated due to
under representation of model related uncertainty, the control forecast
becomes less likely to verify best. When the spread is too low at longer
lead-times, the ensemble members are clustered too densely and the verifying
analysis often lies outside of the cloud of the ensemble. In this situation,
since the control forecast is more likely to be near the center of the ensemble
cloud than the perturbed members, a randomly chosen perturbed forecast
has a higher chance of being closest to the verifying observation than the
control. The opposite is true at short lead-times characterized by too large
spread. The flat equal likelihood values at intermediate lead-times (i.e., the
48-h perturbed and equal resolution control forecasts have the same likeli-
hood in Fig. 7.7) thus are indicative of proper ensemble spread (cf. Fig. 7.6),
and hence good reliability.

7.6.3 Analysis Rank Histogram

If all ensemble members are equally likely and statistically indistinguishable
from nature (i.e., the ensemble members and the verifying observation are
mutually independent realizations of the same probability distribution),
then each of the m + 1 intervals defined by an ordered series of m ensemble
members, including the two open ended intervals, is equally likely to con-
tain the verifying observed value. Anderson (1996) and Talagrand et al.
(1998) suggested constructing a histogram by accumulating the number of
cases over space and time when the verifying analysis falls in any of the
m+ 1 intervals. Such a graph is often referred to as the analysis rank
histogram.

Reliable or statistically consistent ensemble forecasts lead to an analysis
rank histogram that is close to flat, indicating that each interval between the
ordered series of ensemble forecast values is equally likely (see the 3-day
panel in Fig. 7.8). An asymmetrical distribution is usually an indication of a
bias in the mean of the forecasts (see 15-day lead-time panel in Fig. 7.8)
while a U (5-day panel in Fig. 7.8) or inverted U-shape (1-day panel in Fig.
7.8) distribution may be an indication of a positive or negative bias in the
variance of the ensemble, respectively. Current operational ensemble
weather forecasting systems in the medium lead-time range (3-10 days
ahead) exhibit U-shaped analysis rank histograms, which implies the veri-
fying analysis falls outside the cloud of ensemble forecasts more often than
one can expect by chance, given the finite size of the ensemble. In other
words, the ensemble forecasts underestimate the true uncertainty in the
forecasts.
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7.6.4 Multivariate Statistics

All ensemble verification measures discussed so far are based on univariate
statistics (e.g., the value at one grid-point or an area-average value). How-
ever, meteorological forecasts are often issued for many variables defined at
spatial grid-points and so one needs to consider multivariate statistics in
order to summarize such forecasts. Recently, various multivariate ap-
proaches have been proposed to evaluate the statistical consistency of
ensemble forecasts.

One approach involves the computation of various statistics (like average
distance of each member from the other members) for a selected multivari-
ate variable (e.g., 500 hPa geopotential height defined over grid-points
covering a pre-selected area), separately for cases when the verifying analy-
sis is included in, or excluded from the ensemble. A follow-up statistical
comparison of the two, inclusive and exclusive sets of statistics accumulated
over a spatio-temporal domain can reveal whether at a certain statistical
significance level the analysis can be considered part of the ensemble in a
multivariate sense (in the case when the two distributions are indistinguish-
able) or not. Smith (2000) suggested the use of the nearest neighbor algo-
rithm for testing the statistical consistency of ensembles with respect to
multivariate variables in this fashion.

Another approach is based on a comparison of forecast error patterns
(e.g., control forecast minus verifying analysis) and corresponding ensemble
perturbation patterns (control forecast minus perturbed forecasts). In a
perfectly reliable ensemble, the two sets of patterns are statistically indistin-
guishable. The two sets of patterns can be compared either in a climato-
logical fashion, based, on an empirical orthogonal function e.g. analysis of
the two sets of patterns over a large data set (e.g., Molteni and Buizza 1999;
Stephenson and Doblas-Reyes 2000), or on a case-by-case basis (e.g., Wei
and Toth 2002).

7.6.5 Time Consistency Histogram

The concept of rank histograms can be used not only to test the reliability of
ensemble forecasts but also to evaluate the time consistency between en-
sembles issued on consecutive days. Given a certain level of skill as meas-
ured by the probability scores discussed in Section 7.3, an ensemble system
that exhibits less change from one issuing time to the next may be of
more value to some users. When constructing an analysis rank histogram,
in place of the verifying analysis one can use ensemble forecasts generated at
the next initial time. The ‘time consistency’ histogram will then assess
whether the more recent ensemble is a randomly chosen subset of the earlier
ensemble set.
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Ideally, one would like to see that with more information, more recently
issued ensembles narrow the range of the possible, earlier indicated solu-
tions, without shifting the new ensemble into a range that has not been
included in the earlier forecast distribution. Such ‘jumps’ in consecutive
probabilistic forecasts would result in a U-shaped time consistency histo-
gram, indicating sub-optimal forecast performance. While control fore-
casts, representing a single scenario within a large range of possible
solutions, can exhibit dramatic jumps from one initial time to the next,
ensembles typically show much smoother variations in time.

7.7 LIMITATIONS OF PROBABILITY AND ENSEMBLE
FORECAST VERIFICATION

The verification of probabilistic and ensemble forecast systems has several
limitations. First, as pointed out earlier, probabilistic forecasts can be
evaluated only in a statistical sense. The larger the sample size, the more
stable and trustworthy the verification results become. Given a certain
sample size, one often needs to, or has the option to subdivide the sample
in search for more detailed information. For example, when evaluating the
reliability of continuous-type probability forecasts one has to decide when
two forecast distributions are considered being the same. Grouping
(pooling) more diverse forecast cases into the same category will increase
sample size but can potentially reduce useful forecast verification infor-
mation. Another example concerns spatial aggregation of statistics. When
the analysis rank or other statistics are computed over large spatial or
temporal domains a flat histogram is a necessary but not sufficient condition
for reliability. Large and opposite local biases in the first and/or second
moments of the distribution may get cancelled out when the local statistics
are aggregated over larger domains (see, e.g., Atger 2002). In a careful
analysis, the conflicting demands for having a large sample to stabilize
statistics, and working with more specific samples (collected for more
narrowly defined cases, or over smaller areas) for gaining more insight
into the true behavior of a forecast system, need to be balanced.

So far it has been implicitly assumed that observations are perfect. To
some degree this assumption is always violated. When the observational
error is comparable to the forecast errors, observational uncertainty needs
to be explicitly dealt with in forecast evaluation statistics. A possible solu-
tion is to add noise to the ensemble forecast values with similar variance to
that estimated to be present in the observations (Anderson 1996).

In case of verifying ensemble-based forecasts, one should also consider
the effect of ensemble size. Clearly, a forecast based on a smaller ensemble
will provide a noisier and hence poorer representation of the underlying
processes, given the forecast system studied. Therefore, special care should
be exercised when comparing ensembles of different sizes.
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The limitations described above must be taken into account not only in
probabilistic and ensemble verification studies, but also in forecast calibra-
tion where probabilistic and/or ensemble forecasts are statistically post-
processed based on the previous forecast verification statistics.

7.8 CONCLUDING REMARKS

Reliability and resolution are the two main attributes of forecast systems in
general. For probabilistic forecasts, reliability is defined as the statistical
consistency between forecast probability values and the corresponding
observed frequencies over the long run. Resolution, on the other hand, is
defined as the ability of a forecast system to distinguish in advance between
cases where future events are more or less likely to occur compared to the
climatological frequency. A perfect forecast system uses only 0 and 1 prob-
ability values and has a perfect reliability. Note that this is a perfect
deterministic forecast system.

This chapter has reviewed various methods for the evaluation of prob-
ability and ensemble forecasts. In the course of verifying probabilistic
forecasts, their two main attributes: reliability and resolution are assessed.
Such a verification procedure, just as that of any other type of forecasts, has
its limitations. Most importantly, we recall that probabilistic forecasts can
only be evaluated on a statistical (and not individual) basis using a suffi-
ciently large sample of past forecasts and matching observations. When a
stratification of all cases is required, a compromise has to be found between
the desire to learn more about a forecast system and the need for maintain-
ing large enough sub-samples to ensure good sampling of the verification
statistics. Additional limiting factors include the presence of observational
error, and the use of ensembles of limited size. The issue of comparative
verification, where two forecast systems are inter-compared, was also raised
and the need for the use of benchmark systems, against which a more
sophisticated system can be compared, was stressed.

It was also pointed out that for temporally stationary forecast and
observed systems, the reliability of forecasts can, in principle, be made
perfect by using a calibration procedure based on (an infinite sample of)
past verification statistics. In contrast, resolution cannot be improved by
such a simple calibration (i.e., relabeling of forecast values). Thus,
the resolution of calibrated forecasts provides an invariant measure of the
performance of probabilistic forecasts.

The relationships among the different verification scores such as the
ranked probability skill score, the relative operating characteristic, and
the information content are not clearly understood. Which scores are best
suited for certain applications is not clear either. It is important to mention
in this respect that the value of forecasts can also be assessed in the context
of their use by society. Some of the verification scores discussed above have
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a clear link with the economic value of forecasts. For example, the reso-
lution component of the BSS, and the ROC-area, two measures of the
resolution of forecast systems, are equivalent to the economic value of
forecasts under certain assumptions (Murphy 1966; Richardson 2000).
The economic value of forecasts has such significance that an entire chapter
in this book (Chapter 8) is devoted to this topic.



