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Reliability and resolution are the two main attributes of forecast systems. These

attributes statistically relate the performance of a forecast system to verifying data

in an abstract sense. Forecast attributes have been separately defined in the literature

for systems that generate forecasts of particular formats or types. In this chapter,

statistical reliability and resolution are defined in a general sense, irrespective of

the type or format of a forecast. Statistical reliability is concerned only with the

form of forecasts, whereas statistical resolution is concerned only with the predictive

capability of a forecast system, related to the time evolution of the system that is

being forecast.

The two main attributes are independent characteristics of a forecast system and

can be quantitatively assessed by a host of different verification measures. The general

definition of forecast attributes allows a systematic discussion of the relationship

between the verification and calibration of forecasts. Calibration as defined here is

an adjustment of the form of the forecasts, to match the distribution of verifying

observations that follow the issuance of forecasts of a particular form.

Resolution, as the inherent predictive value of forecast systems, is the attribute

most sought after by developers of forecast systems. Reliability, however, is equally

important in real world applications. That calls for the generation of a long enough
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record of hindcasts to allow for a good calibration of forecasts, or, preferably, for

improvements in forecast systems that directly lead to better reliability.

22.1 Introduction

There exists a vast array of statistics for the description of various aspects of forecast

systems, such as those discussed for weather and climate in this volume by Allen et
al., Anderson, Buizza, Hagedorn et al., Kalnay et al., Krishnamurti et al., Lalaurette

and der Grijn, Mylne, Tibaldi et al., Waliser, and Webster et al. Some of these statistics

are based solely on the forecast system investigated, while others, called verification

statistics, depend both on the forecast values and the corresponding observations from

the system that is being forecast (the atmosphere in the case of weather forecasts).

The specifics of these statistics or forecast verification measures are not the subject

of the present study. Interested readers can find a review of many of these statistics,

with additional references, for example, in a recent handbook edited by Joliffe and

Stephenson (2003).

Instead, this study focuses on the underlying statistical verification attributes
of forecast systems. The main statistical forecast verification attributes, statistical
reliability and statistical resolution (from here on, reliability and resolution), have

long been discussed in the literature (see, for example, Murphy and Daan, 1985,

and references therein). Yet these attributes have been discussed only with respect

to particular forecast formats (single value, categorical, or one or another of the

probabilistic forecast format types; see, e.g., Stansky et al., 1989; Wilks, 1995; Joliffe

and Stephenson, 2003) and not for weather forecasts of any type in general.

Sections 22.2 and 22.3 will introduce a general definition and discuss some char-

acteristics of statistical forecast verification attributes (in short, forecast attributes),

respectively. Section 22.4 will explore the statistical limits of measuring forecast

attributes. Based on the general definition of the forecast attributes, and on an analy-

sis of the statistical limitations in assessing them, an examination of the relationship

between forecast verification and the calibration of weather forecasts (that is, the

enhancement of certain statistical properties of the forecasts) follows in Section

22.5. Section 22.6 will explore the significance of the two main forecast attributes

to developers and users of forecast systems, while Section 22.7 offers a summary of

the main findings of this study.

22.2 Definition of forecast attributes

Forecast attributes, as their name suggests, are abstract concepts that the various veri-

fication statistics, using different metrics, quantify. Taking an example from physics,
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length is an attribute that can be measured by a number of different metrics. As

mentioned in the Introduction, forecast attributes have been discussed so far in the

context of specific types of forecasts (see, e.g., Murphy and Daan, 1885; Stansky

et al., 1989; Wilks, 1995; Toth et al., 2003). Forecast attributes are defined below in

a general sense, allowing for a comprehensive discussion of weather forecasts and

their statistical calibration.

The verification attributes discussed below are defined in a statistical sense, which

is related to forecast systems, and not to individual forecasts generated by them.

Forecasts can be of any format but are assumed to belong to a finite number of

different ‘classes’, called Fi. The set of verifying observations corresponding to

a large number of forecasts of the same class are characterised by an empirical

frequency distribution, called observed frequency distribution (ofd), and marked

by oi.

22.2.1 Reliability

When defining the first forecast attribute, statistical reliability, consider a particular

forecast class, Fi. Consider further the frequency distribution of observed outcomes

that follow forecasts from class Fi, that is oi. If forecast Fi has the exact form of oi for

all forecast classes (i), the forecasts are statistically consistent with the observations

and the forecast system is called (perfectly) reliable. Different measures of reliabil-

ity are based on various methods for comparing forecast Fi and the corresponding

observed frequency distribution oi for all forecast classes (i), and measuring their

difference.

22.2.2 Resolution

The second forecast attribute, statistical resolution, is defined as a forecast system’s

ability to distinguish, ahead of time, between different outcomes of the natural system

(in case of weather forecasts, the future state of the real atmosphere).

For a more formal definition of resolution, let us assume that the observed events

are classified into a finite number of classes, marked by Oi. If each observed class Oi

is preceded by a distinctly different forecast class Fi, the forecast system is said to

have perfect resolution. Conversely, if the forecast is the same prior to each observed

class Oi (i.e., the forecasts do not vary, Fi = F for all i), or if the forecasts vary but the

observed frequency distribution oi following the issuance of different forecasts Fi is

the same (i.e., oi = c, the climatological distribution, for all i), the forecast system

has no resolution at all.

Resolution in a forecast system can be measured by the degree of separation

among the frequency distributions of observed events (oi), conditioned on different
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forecast classes (Fi). In practice, this can be achieved by comparing the observed

frequency distributions (oi), constructed from observed events that follow different

forecast classes, with the overall climatological distribution of observations (c, that

is the reference for a forecast system with no resolution). Different measures of

resolution are based on various methods for carrying out this comparison.

22.3 Some characteristics of forecast attributes

(a) Reliability and resolution are two independent attributes. Reliability is

concerned only with the statistical consistency between each class of

forecasts Fi and the corresponding distribution of observations oi that follow

such forecasts, whereas resolution is not affected at all by this consistency. By

contrast, resolution reflects how well different forecast classes can separate

cases with different subsequent observed events, whereas reliability is

unaffected by this property of forecast systems.

While the format and the actual values used by a forecast system are

irrelevant to its resolution, they are critical for its reliability. By contrast, a

forecast system with perfect reliability does not necessarily have good

resolution. Two examples are interesting to note here. A forecast system

always issuing the observed climatological distribution has perfect reliability

and no resolution by definition, while a system using forecast anomalies that

are systematically reversed compared with observed anomalies would have

perfect resolution but no reliability.

(b) In principle, reliability can always be statistically ‘enforced’ or corrected.

This is true as long as both the forecast and observed systems are stationary in

time, and there is a long enough record of forecast-observed data pairs. This

is because reliability reflects only the statistical consistency between forecast

and observed distributions. All one has to do to achieve the desired

consistency is to replace the forecasts in a given forecast class with the

frequency distribution of observations that follow such forecasts.

(c) Unlike reliability, resolution cannot be improved by statistically correcting
the forecasts so they follow the distribution of ensuing verifying observations.

This is because resolution does not depend on statistical consistency.

Resolution reflects the inherent value of forecast systems, and can be

improved only through the modification of the forecast scheme based on

additional knowledge about the temporal evolution of the observed system.

(d) Reliability and resolution, as defined above, are general attributes of forecast
systems. They can be interpreted for systems generating forecasts of any type,

such as single value, categorical, or probabilistic.
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It is interesting to note that single value (out of a continuum) forecasts can be perfectly

reliable only if they have perfect resolution as well. This is the only way the observed

frequency distribution would exactly match the Dirac function form of the forecasts.

As mentioned earlier, forecast attributes have been interpreted in the past for

forecasts issued in specific formats (i.e. not necessarily in the general form of a

probability distribution). While this can be useful for special purposes, it must be

noted that such narrow definitions of forecast attributes are not fully consistent with

the general definition introduced in this study.

Consider, for example, the case of a forecast system with less than perfect reso-

lution that issues single value forecasts. In this case, it could be possible to define

statistical reliability (or statistical consistency, as it is also often referred to; see,

e.g., Wilks, 1995) as a lack of conditional systematic bias. According to this narrow

definition, a forecast system is considered reliable if for all forecast values the fre-

quency distribution of corresponding observations has the same mean as the forecast

value. It is easy to see that this feature is a necessary but not sufficient condition for

reliability as defined in the present study. In fact, the no-spread single value fore-

casts, even if they have no systematic bias, will have less than perfect reliability for

any system with less than perfect resolution. Such a narrow definition of reliability

will have an implication for statistical calibration as well, as it will be discussed in

Section 22.5.

22.4 The limits of assessing reliability and resolution

22.4.1 Measures of forecast attributes

As discussed by Toth et al. (2003) for forecasts in probabilistic format, some existing

verification measures assess reliability, some resolution, while still others provide a

combined measure of both. Note that some measures can be calculated for selected

subsets of all forecast cases – like the reliability and resolution components of the

Brier score verifying for only one of a set of categorical events. These measures

can be related to reliability and resolution as defined in the present study only if the

measure is aggregated over all observed categories.

22.4.2 Factors limiting the statistical accuracy
of verification statistics

While forecast attributes can theoretically be defined assuming that the number of

forecast cases goes to infinity, in practice verification measures are always computed

based on finite samples. Therefore, verification results can be considered estimates

whose accuracy will depend on the sample size. Knowledge about the uncertainty

in verification results is important (see, e.g., Hamill, 1997), especially when one
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compares two or more competing forecast systems. In such cases it is especially

important to assess the statistical significance of the comparative verification results

(see, e.g., Candille and Talagrand, 2005). The associated uncertainty in the verifica-

tion results can be reduced only through increasing the sample size, which is often

impossible when evaluating real life forecast systems.

Another factor limiting the accuracy of verification estimates is the uncertainty

in the verifying data (Candille, 2003). Observations used to verify forecasts are

generally associated with measurement and other errors. For properly assessing reli-

ability and resolution of a forecast system, such errors in the observations need to be

carefully accounted for, otherwise the results will either be biased and/or will look

statistically more certain than they are. Observational errors can be considered in

forecast verification by replacing an observed value (Delta function) with a proba-

bility density function (pdf) that reflects the observational uncertainty. The use of

incorrect observational error estimates (such as assuming perfect observations in the

presence of errors, as in the case of most verification studies) will introduce errors

in the verification (and pursuant calibration) results.

A third factor influencing the accuracy of forecast verification statistics is the

choice of the level of granularity introduced in the calculations, which is a function

of the level of detail sought in the results. The granularity of verification studies can

be controlled through a number of choices.

First, forecasts can theoretically take an infinite number of forms. Yet, when in

practice a finite sample of forecasts are evaluated statistically, forecasts of a similar

form must be grouped into a finite number of classes. For more detailed verification

statistics one might possibly wish to establish a large number of forecast classes.

The number of different classes is limited, however, by the requirement that there be

enough forecast cases in each of the classes established.

Second, forecast probability distributions can theoretically be defined and manip-

ulated as continuous functions. In practice, however, calculations are always carried

out over finite intervals. And because the sample size is limited, the width of the

intervals cannot be reduced arbitrarily, otherwise most intervals would contain no

data points.

Finally, if the overall sample size is small, one may need to group together forecast–

observed pairs from similar geographical regions and/or similar parts of the annual

cycle.

In practice, when choosing the level of granularity in verification calculations, one

seeks a compromise between having a large enough sample for all forecast classes and

verification intervals, while retaining as many classes, intervals, and geographical,

seasonal distinctions as possible, given the total number of forecast–observation pairs

(Atger, 2003). Obviously, the larger the overall sample of forecast–observation pairs

is for verification, the more questions about the performance of the forecast system

can be answered. As we will see in the next section, the same holds true for the number

of adjustment types that can be made as part of a statistical calibration algorithm.
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22.5 Calibration

The goal of calibration is to make the form for each class of forecasts statistically

more consistent with the distribution of the corresponding verifying observations.

Calibration, as defined here, is the replacement of the forecast, whatever form it

may have (i.e. single value, categorical, or probabilistic), with an estimate of the

corresponding odf (which describes the distribution of observations that in the past

followed the issuance of forecasts from the same forecast class). The success of

calibration can be measured by comparing the reliability of the calibrated forecasts

with that of the raw, uncalibrated forecasts.

Note that calibration is directly related to the verification of statistical reliability,

since both are based on estimating the distribution of observations following different

forecast classes. While verification assesses the statistical reliability of a forecast

system over a period in the past, calibration adjusts the forecasts with the intention to

make them more consistent with observed statistics in the future. Calibration is based

on the assumption that the statistical behaviour of the forecast and observed systems,

as analysed over a period in the past, will not change in the future. Calibration,

therefore, is subject to an additional limitation beyond those discussed with respect

to verification, namely that the quality of calibration will suffer if either the natural

or the forecast system is non-stationary in time. As with verification, small sample

size, the presence of uncertainty, and errors in describing uncertainty in the verifying

observations will also adversely affect calibration results, as will an inappropriate

choice for the level of granularity in the calculations.

There are a number of ways that forecasts from different classes, geographical

regions or different parts of the annual cycle can be grouped together for computing

verification statistics that are also needed for calibration. The resulting formation

of larger subsamples allows a more robust statistical estimate of the underlying

distribution of the observations corresponding to a broader group of forecasts – at the

expense of reducing the level of details in the verification, and consequently in the

pursuant calibration results. Therefore, careful compromises are needed when the

level of granularity is chosen for the computation of statistics for calibration. Allow

too many details in the verification (i.e. use too many different forecast classes), and

the calibration will suffer from sampling noise. Conversely, the lack of enough detail

in verification (i.e. grouping forecasts from areas with distinctly different verification

statistics together; see Atger, 2003) can also adversely affect the calibration by leaving

the biases present in the smaller subsamples uncorrected.

It should be noted that calibration, as discussed earlier with respect to verifica-

tion, can be introduced in a narrower sense than that defined above. Forecasts, for

example, can be corrected only to reduce their systematic bias in the first moment.

An application based on such a narrow definition of calibration will necessarily be

limited since other, higher moment aspects of the forecasts will not be statistically
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corrected. By contrast, calibration, if applied in a general sense as defined above on

single value, categorical, or any other type of forecasts, will naturally change the

format of the forecasts to the more general probabilistic format.

22.6 Significance of attributes to forecast developers
and users

Neither the reliability nor the resolution of real life weather forecast systems is

perfect. What is the significance of either attribute to the developers or users of

weather forecasts? Is one or the other attribute more important?

22.6.1 Developers’ perspective

We recall that the inherent value of forecast systems lies in their ability to predict

future events, as reflected in the statistical resolution of forecast systems. This is

equivalent to a forecast system issuing uniquely different signals prior to different

observed events. For example, if a system systematically gives a prediction of ‘heavy

snow’ (or ‘red’) and ‘light snow’ (or ‘blue’) prior to observed rain and no rain events

respectively, it has a high resolution.

Since the forecast signals issued by this forecast system are significantly different

from the subsequent observed verification events, however, the forecasts have poor

reliability. If such behaviour is systematic, the forecasts can be calibrated and the

developers of the forecast system may be content with the good resolution and may

not be overly concerned with the apparent lack of reliability.

22.6.2 Users’ perspective

It must be noted that when forecasts from the system described above are taken by the

users at their ‘face value’, they can be worthless or even harmful. A user who believes

what the forecast says and acts on that information can be seriously hurt (e.g. Zhu

et al., 2002). Even forecast systems with high predictive skill (high resolution) have

no value to users unless they also have good reliability. This explains why users often

emphasise reliability in their evaluation of forecast systems, based on the principle

of ‘do no harm’.

22.6.3 Need for calibration

Generally, a long enough record of observed–forecast pairs will allow an adjustment

or calibration of the forecast signal to match the distribution of observations that

follow a particular forecast class. Incidentally, a similarly long record of observed-

forecast pairs may be needed for the precise assessment of resolution in a forecast
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system (see Section 22.4). In the case of a forecast system with high resolution,

calibration can significantly enhance the utility of forecast systems. This underlies

the need for the provision of a large enough set of hindcasts (forecasts generated on

past events). This will allow a proper assessment of both the resolution and reliability

of the forecast system, and will facilitate a subsequent calibration of the forecasts in

case the forecast system lacks statistical reliability. In such a case, statistical reliability

can be achieved through a statistical adjustment via calibration.

22.6.4 Value of forecasts

As discussed above, beyond resolution, the users also critically depend on the reli-

ability of the forecasts. It is therefore important that when (typically after they are

calibrated) the value of forecast systems is assessed for the users, both resolution

and reliability are considered.1 One can argue that for a forecast system to show

genuine improvement, its resolution must be measurably enhanced. An experimental

forecast system with enhanced resolution, but an insufficient hindcast data set for

calibration, however, may degrade utility. One may argue that enhanced resolution

forecast systems be operationally implemented only if their reliability is not affected

negatively, or if at least a sufficient hindcast dataset is generated to ameliorate the

problem through calibration.

22.6.5 Future directions

As forecast systems mature, there is a natural tendency to use more detail from the

forecasts. For that to happen, one needs to include more detail in the calibration of

the forecasts as well. That, as discussed earlier, calls in turn for longer periods of past

observed–forecast pairs. Unfortunately, the number of such pairs is usually severely

limited due to the lack of long periods of detailed observations. This is of particular

concern when extreme events are considered. Such events, by definition, occur rarely

(Zhu and Toth, 2001). Therefore, their statistical calibration is especially problematic

(Legg and Mylne, 2005). Yet these rare events are often of the greatest interest to

users.

It follows that as forecast and application methods improve and more details are

demanded from a system, the potential value added by statistical calibration will

likely diminish. Since under such conditions statistical corrections are of little or

no help, directly improving the reliability of a forecast system itself will become

more important and sometimes will offer the only tractable solution. When the real-

ism of models representing weather systems (that is directly related to reliability) is

improved, the changes may also lead to improvements in predictive skill (i.e. res-

olution). Prediction of tropical storms is a prime example of a situation where the

role of statistical calibration is limited due to the highly non-linear nature of these

systems. If a storm, due to model deficiencies (e.g. too low spatial resolution), is not
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predicted (well) by a forecast system, the insertion (modification) of a storm into

the forecast via statistical inference/calibration may require an impractically large

training data set. In such cases the reliability (and utility) of the forecasts can be

improved only by enhancing the realism of the numerical weather prediction model

itself.

22.7 Conclusions

This study introduced a distinction between the abstract notion of forecast system

attributes and the statistical measures used to assess them. Unlike earlier studies, a

general definition of the forecast attributes was proposed, irrespective of the format

of the forecasts. Both of the two main attributes, reliability and resolution, were

interpreted in a statistical sense. Reliability was defined as a perfect match between

the form of a forecast and the distribution of verifying observations that follow the

issuance of that particular forecast form. A forecast system is said to have perfect

resolution, by contrast, if it consistently gives different signals prior to the occurrence

of different observations.

Reliability and resolution were shown to be independent of each other. Of the two

attributes, forecast system developers are more concerned about resolution since that

is related to the intrinsic predictive capability of forecast systems. For the users who

take the weather forecasts at face value, reliability is equally or even more important.

This is because it is reliability that assesses how what is being forecast (i.e. the form

of the forecasts) and directly acted upon by the users compares statistically with what

is being observed.

A number of verification measures exist for the assessment of reliability and

resolution. These measures, like any other statistics based on finite samples, are

subject to sampling and other types of errors. These same errors were also shown to

affect calibration, where the reliability of forecast systems is enhanced. Calibration

was defined in general terms as the replacement of the form of the forecasts by the

distribution of observations that follow the issuance of any particular forecast form,

based on a set of observed–forecast data pairs.

It follows from the general definition of the main forecast attributes and calibration

that the general format of forecasts is that of a probability density function (pdf)

since that is the only format that can, in general, be consistent with the distribution of

ensuing observations. A pdf format allows the forecast system to reflect case-by-case

variations not only in the expected first moment of future weather parameters but also

in the higher moments, such as error variance. For example, forecasts in pdf format

can distinguish, given a certain expected value, between cases with higher and lower

uncertainty (Toth et al., 2001). Such information is known to have potentially great

economic value for the users (Zhu et al., 2002), yet cannot be provided by a forecast

system using a single value format. To what extent ensemble forecast systems can
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provide useful information beyond the first moment of the distribution is still an open

question (see, e.g., Atger, 1999).
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Note
1. As discussed in Zhu et al. (2002), some measures of forecast performance, such as the

potential economic value, assume that the forecasts can be perfectly calibrated (i.e.

forecasts are automatically calibrated as part of the computation of potential economic

value, using the dependent and not an independent set of data for calibration). These

results will overestimate the actual utility of forecasts that in practice will necessarily

be lowered by the limits of calibration discussed in Section 22.5.
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