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A	 s no forecast is complete without a description  
	 of its uncertainty (National Research Council  
	 of the National Academies 2006), it is necessary, 

for both atmospheric and hydrologic predictions, to 
quantify and propagate uncertainty from various 
sources in the forecasting system. For informed risk-
based decision making, such integrated uncertainty 
information needs to be communicated to forecast-
ers and users effectively. In an operational environ-
ment, ensembles are an effective means of producing 
uncertainty-quantified forecasts. Ensemble forecasts 
can be ingested in a user’s downstream application 
(e.g., reservoir management decision support system) 
and used to derive probability statements about the 
likelihood of specific future events (e.g., probabil-
ity of exceeding a f lood threshold). Atmospheric 
ensemble forecasts have been routinely produced by 
operational Numerical Weather Prediction (NWP) 
centers for two decades. Hydrologic ensemble fore-
casts for long ranges have been initially based on 
historical observations of precipitation and tem-
perature as plausible future inputs (e.g., Day 1985) 
in an attempt to account for the uncertainty at the 
climate time scales. Ensemble forecasts generated in 
this fashion were considered viable beyond 30 days 
where the climatic uncertainty would dominate 
other uncertainty sources. More recently, as the 

needs for risk-based management of water resources 
and hazards across weather and climate scales have 
increased, the research and operational communi-
ties have been actively working on integration of the 
NWP ensembles into hydrologic ensemble predic-
tion systems and quantification of all major sources 
of uncertainty in such systems. In particular, the 
Hydrological Ensemble Prediction Experiment 
(HEPEX; www.hepex.org/), launched in 2004, 
has facilitated communications and collaborations 
among the atmospheric community, the hydrologic 
community, and the forecast users toward improving 
ensemble forecasts and demonstrating their utility in 
decision making in water management (Schaake et al. 
2007b; Thielen et al. 2008; Schaake et al. 2010).

Ensemble approaches hold great potential for 
operational hydrologic forecasting. As demonstrated 
with atmospheric ensemble forecasts, the estimates of 
predictive uncertainty provide forecasters and users 
with objective guidance on the level of confidence 
that they may place in the forecasts. The end users 
can decide to take action based on their risk tolerance. 
Furthermore, by modeling uncertainty, hydrologic 
forecasters can maximize the utility of weather and 
climate forecasts, which are generally highly uncer-
tain and noisy (Buizza et al. 2005). With the major 
uncertainties quantified and their relative importance 
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analyzed, ensemble forecasting helps identify areas 
where investments in forecast systems and processes 
will have the greatest benefit.

Development and implementation of hydrologic 
ensemble prediction systems is still ongoing and 
hence only limited operational experience exists. 
A number of case studies using experimental and 
(pre) operational systems, however, have demon-
strated their potential benefits (see, e.g., Cloke and 
Pappenberger 2009 and Zappa et al. 2010 for refer-
ences). Recent verification studies of hydrologic 
ensemble forecasts or hindcasts (i.e., forecasts that are 
retroactively generated using a fixed forecasting sys-
tem) over long time periods include Bartholmes et al. 
(2009), Jaun and Ahrens (2009), Renner et al. (2009), 
Hopson and Webster (2010), Demargne et al. (2010), 
Thirel et al. (2010), Van den Bergh and Roulin (2010), 
Addor et al. (2011), and Zappa et al. (2012) for short- to 
medium-range hydrologic forecasts and Kang et al. 
(2010), Wood et al. (2011), Fundel et al. (2012), Singla 
et al. (2012), and Yuan et al. (2013) for monthly to 
seasonal hydrologic ensembles. Objective verifica-
tion analysis of ensemble forecasts or hindcasts over 
multiple years should improve not only the science of 
hydrologic ensemble forecasting but also the utility 

of hydrologic ensemble forecast products in various 
downstream applications where decision support 
systems could be “trained” (van Andel et al. 2008).

In the National Oceanic and Atmospheric 
Administration (NOAA)’s National Weather Service 
(NWS), an end-to-end Hydrologic Ensemble Forecast 
Service (HEFS) is currently being implemented as 
part of the Advanced Hydrologic Prediction Service 
(AHPS; McEnery et al. 2005) to address a variety of 
water information and service needs for flood risk 
management, water supply management, streamflow 
regulations, recreation planning, ecosystem manage-
ment, and others (Raff et al. 2013). Such a wide range 
of applications requires forcing inputs and hydrologic 
forecasts at multiple space–time scales and for mul-
tiple forecast horizons: from minutes for flash flood 
predictions in fast-responding basins to years for 
water supply forecasts over larger areas (see examples 
in McEnery et al. 2005). To account for the forcing 
input uncertainty, the NWS River Forecast Centers 
(RFCs) have been using the Ensemble Streamflow 
Prediction (ESP) component of the National Weather 
Service River Forecast System (NWSRFS; National 
Weather Service 2012). ESP produces seasonal proba-
bilistic forecasts of water supply based on the historical 
observations of precipitation and temperature (the 
climate being considered stationary and repeating 
itself) and the current hydrologic conditions (Day 
1985). HEFS enhances ESP to include short-, me-
dium-, and long-range forcing forecasts, incorporate 
additional weather and climate information, and 
better quantify the major uncertainties in hydrologic 
forecasting. The HEFS provides ensemble forecast and 
verification products and adds a major new capability 
to the NWS’s baseline river forecasting system: the 
Community Hydrologic Prediction System (CHPS).

The next section presents an overview of the HEFS 
and its various components. In the subsequent four 
sections, the individual components are described 
in more detail and selected illustrative verification 
results are presented to demonstrate HEFS potential 
benefits. Finally, future scientific and operational 
challenges for improving hydrologic ensemble fore-
casting services are discussed.

OVERVIEW OF THE HEFS. Uncertainty in 
hydrologic predictions comes from many differ-
ent sources: atmospheric forcing observations and 
predictions; initial conditions of the hydrologic 
model, its parameters, and structure; and streamflow 
regulations among other anthropogenic uncertain-
ties (Gupta et al. 2005). The uncertainties in the 
atmospheric forcing inputs are typically referred to 

as input uncertainty and 
those in all other sources 
as hydrologic uncertainty 
(Krzysztofowicz 1999). A 
hydrologic ensemble pre-
diction system could either 
model the total uncertainty 
in the hydrologic output 
forecasts (e.g., Montanari 
and Grossi 2008; Coccia 
and Todini 2011; Weerts 
et al. 2011; Smith et al. 2012; 
Regonda et a l. 2013) or 
explicitly account for the 
major sources of uncer-
tainty, which is the primary 
approach of HEFS (Seo 
et al. 2006). As noted by 
Velázquez et al. (2011), hy-
drologic ensemble predic-
tion systems presented in 
the literature often account 
for the input uncertainty 
only. Recently, however, a few systems have included 
various techniques to address specific hydrologic 
uncertainties, such as hydrologic data assimilation 
to reduce and model the initial condition uncer-
tainty, Monte Carlo–based techniques to estimate 
model parameter uncertainty, and postprocessing 
and multimodel ensemble approaches for hydrologic 
structural uncertainty modeling (see references in Seo 
et al. 2006; Schaake et al. 2007b; Velázquez et al. 2011; 
Brown and Seo 2013; Liu et al. 2012).

A schematic view of the HEFS is given in Fig. 1 
along with the information flow. For input uncertain-
ty modeling, the Meteorological Ensemble Forecast 
Processor (MEFP; Schaake et al. 2007a; Wu et al. 2011) 
combines weather and climate forecasts from various 
sources to produce bias-corrected forcing (precipita-
tion and temperature) ensembles at the space–time 
scales of the hydrologic models. These ensembles have 
coherent space–time variability among the different 
forcing variables and across all forecast locations. The 
Hydrologic Processor ingests the forcing ensembles 
and runs a suite of hydrologic, hydraulic, and reser-
voir models to produce streamflow ensembles. The 
data assimilation (DA) process currently consists of 
manual modifications of model states and param-
eters by the forecasters based on their expertise; 
therefore, it will be included in HEFS in the future 
when automated DA techniques are implemented. 
For hydrologic uncertainty modeling, the hydro-
logic Ensemble Postprocessor (EnsPost; Seo et al. 

2006) adjusts the streamflow ensembles to ref lect 
the total hydrologic uncertainty in a lumped manner 
and produce bias-corrected streamflow ensembles. 
Along with the above uncertainty components, the 
Graphics Generator and the Ensemble Verification 
Service (EVS; Brown et al. 2010) enable forecasters to 
produce uncertainty-quantified forecast and verifica-
tion information that can be tailored to user needs.

Diagnostic verification of hydrologic forecasts 
needs to be routinely performed by scientists and 
operational forecasters to improve forecast quality 
(Welles et al. 2007) and to provide up-to-date verifica-
tion information in real time to users. Such activity 
requires the capability of running the hydrologic 
ensemble forecast system in hindcasting mode to 
retroactively generate ensemble forecasts for multiple 
years using the newly developed ensemble forecasting 
approaches. Verification of hindcasts may be used to 
evaluate the benefits of new or improved ensemble 
forecasting approaches, analyze the various sources 
of uncertainty and error in the forecasting system, 
and guide targeted improvements of the forecasting 
system (Demargne et al. 2009; Renner et al. 2009; 
Brown et al. 2010). Hindcast datasets may also be re-
quired by operational forecasters to identify historical 
analog forecasts to make informed decisions in real 
time and by sophisticated users to calibrate decision 
support systems (van Andel et al. 2008). For the 
above reasons, the HEFS includes, for each ensemble 
processor, capabilities for calibration and real-time 
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Fig. 1. Schematic view of HEFS in the NWS’s CHPS, where dark gray boxes 
correspond to ensemble-specific components and light gray boxes are also 
used in operational single-valued forecasting. The current manual data 
assimilation procedures are not included in HEFS. The Hydrologic Processor 
includes a suite of hydrologic, hydraulic, and reservoir models—for example, 
Snow-17 model for snow ablation (Anderson 1973), the Sacramento Soil 
Moisture Accounting model (SAC-SMA) (Burnash 1995), and the Unit 
Hydrograph for flow routing.
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forecasting, as well as hindcasting to provide the 
large sample of events necessary to verify forecast 
probabilities with acceptable sampling uncertainty. 
Comprehensive evaluation of the individual HEFS 
components as well as the end-to-end system via 
multiyear hindcasting is underway (Brown 2013); 
illustrative examples of verification results are pre-
sented in this paper.

In the context of operational hydrologic forecasting 
in the NWS, the HEFS has been developed to im-
prove upon operational single-valued forecasting 
and seasonal ESP forecasting while capturing user 
requirements, which include 1) supporting both 
real-time ensemble forecasting and hindcasting for 
large-sample verification and systematic evaluation, 
2) maintaining interoperability with the single-valued 
forecasting system for the short range (given that 
single-valued forecasting is only a special case of en-
semble forecasting), and 3) producing ensemble fore-
cast information that is statistically consistent over a 
wide range of spatiotemporal scales. The operational 
hydrologic and water resources models used for both 
single-valued and probabilistic forecasting are simple 
conceptual models applied in a lumped fashion, 
with relatively few parameters estimated by manual 
calibration (a unique set of parameters being defined 
for all flow regimes, from low flow to flooding con-
ditions). Expectedly, the hydrologic predictability 
could be limited in poorly monitored areas, with river 
gauges malfunctioning (e.g., during flood events) and 
during rapidly changing hydrometeorological condi-
tions. Moreover, modeling reservoir regulations and 
diversions is challenging because of the lack of reliable 
information for the RFC forecasters and changes of 
reservoir operations to adjust to the current and fore-
cast flow situation. Also, the estimation of historical 
past forcings for model calibration and hindcasting 
may not be consistent with real-time meteorological 
model inputs, owing to changes in tools (e.g., gauges 
versus radar for precipitation estimation) and models, 
as well as estimation errors. To address these data 
and model challenges, the RFCs have longstanding 
practices to apply in a subjective way manual modi-
fications of model states and parameters for single-
valued forecasting (see Raff et al. 2013 for details on 
RFC practices)—modifications that are not currently 
included in HEFS.

The initial HEFS prototype system, referred to as 
the Experimental Ensemble Forecast System (XEFS; 
www.nws.noaa.gov/oh/XEFS/), began testing at 
selected RFCs in 2009. The ongoing HEFS implemen-
tation is based on three software development releases 
to five test RFCs, from spring 2012 to fall 2013. The 

development phase is targeted to be completed by 
the end of 2013 with HEFS implementation to all 13 
RFCs in 2014. The project has been accelerated by an 
agreement with the New York City Department of 
Environmental Protection, which needs these new 
probabilistic forecast services to more efficiently and 
effectively manage the water supply system for New 
York City (Pyke and Porter 2012).

Similarly to NWS operational single-valued 
hydrologic forecasting, HEFS uses CHPS, an open 
service-oriented architecture built on the Delft-
FEWS framework (Werner et al. 2004). It facilitates 
incorporation of new models and tools, establishes 
interoperability with partners, and accelerates 
research to operations. CHPS is critical in support-
ing the NOAA Integrated Water Resources Science 
and Services in partnership with federal agencies 
[e.g., U.S. Army Corps of Engineers (USACE) and 
U.S. Geological Survey] that have complementary 
operational missions in water science, observation, 
prediction, and management. Also, Delft-FEWS 
provides an open interface to various data sources 
and multiple hydrologic and hydraulic forecasting 
models (see examples of ensemble hydrologic predic-
tion systems based on Delft-FEWS in Werner et al. 
2009, Renner et al. 2009, and Schellekens et al. 2011). 
Therefore, HEFS will benefit from the Delft-FEWS 
coupling with different hydrologic and hydraulic 
models, as well as enhancements made within the 
Delft-FEWS community for hydrologic and water 
resources forecast systems and services.

METEOROLOGICAL ENSEMBLE FORE-
CAST PROCESSOR. Reliable and skillful atmo-
spheric ensemble forecasts are necessary for hydro-
logic ensemble forecasting. Ensemble forecasts from 
NWP models are widely available from several atmo-
spheric prediction centers. However, these ensembles 
are generally biased in the mean, spread, and higher 
moments (Buizza et al. 2005), both unconditionally 
and conditionally on magnitude, season, storm type, 
and other attributes. The conditional biases may be 
particularly large for heavy precipitation events that 
are crucial in flood forecasting (Hamill et al. 2006, 
2008; Brown et al. 2012). There are several statistical 
techniques for estimating the conditional probabil-
ity distribution of an (assumed unbiased) observed 
variable given a potentially biased forecast (see, e.g., 
references in Brown et al. 2012). These techniques vary 
in their assumptions about the conditional (or joint) 
probability distribution, the predictors used (e.g., sin-
gle-valued forecast, attributes of an ensemble forecast), 
and the estimation of the statistical parameters (e.g., 

full period, seasonal, moving window, threshold de-
pendent). Several techniques have been compared for 
specific variables and modeling systems (e.g., Gneiting 
et al. 2005; Wilks and Hamill 2007; Hamill et al. 2008). 
Bias correction of precipitation ensemble forecasts is 
particularly challenging because precipitation amount 
is intermittent, it depends strongly on space–time 
scale, and is relatively unpredictable in many cases 
(e.g., convective events). For hydrologic forecasting 
with lumped models, the gridded NWP ensembles 
need to be processed at the basin scale, which requires 
“downscaling” (described as a change of support in 
geostatistics) and bias correction. This downscaling 
includes corrections to match the climatology of the 
forcings used to calibrate the hydrologic model.

The MEFP aims to generate unbiased ensembles 
that capture the skill of the forecasts from multiple 
sources for individual basins while preserving the 
space–time properties of hydrometeorological vari-
ables (e.g., precipitation and temperature) across 
all basins (Schaake et al. 2007a; Wu et al. 2011). For 
short-range forecasts, human forecasters generally 
add significant value to single-valued hydrometeo-
rological forecasts derived from raw NWP forecasts 
(Charba et al. 2003). Also, postprocessing studies 
have repeatedly demonstrated that most information 
from NWP medium-term ensembles comes from the 
ensemble mean (e.g., Hamill et al. 2004; Wilks and 
Hamill 2007). Therefore, the MEFP uses the single-
valued forecasts modified by human forecasters 
for short-range forecast horizon (up to 7 days) and 
the ensemble mean forecasts from multiple NWP 
models for mid- to long range to generate seamless 
and calibrated hydrometeorological ensembles up to 
a 1-yr forecast horizon. Precipitation and temperature 
are processed slightly differently since precipitation 
is intermittent and highly skewed whereas the tem-
perature distribution is nearly Gaussian. MEFP uses 
the normal quantile transform (NQT) to transform 
observed and forecast precipitation variables into 
normal variates. The precipitation part of MEFP 
also includes an explicit treatment of precipitation 
intermittency using the mixed-type bivariate meta-
Gaussian model (Herr and Krzysztofowicz 2005), 
parametric and nonparametric modeling of the 
marginal probability distributions, and a parameter 
optimization under the continuous ranked probabil-
ity score (CRPS; Hersbach 2000) and other criteria 
(see Wu et al. 2011 for details). For temperature, the 
MEFP procedure first generates ensembles of daily 
maximum and minimum temperatures, and then 
generates ensembles at subdaily time steps from the 
daily ensembles through a diurnal variation model. 

The above scheme is based on the same interpola-
tion procedures used to calculate subdaily historical 
temperature time series and account for the diurnal 
cycle assumed in the operational calibration process 
(Anderson 1973).

For each hydrometeorological variable for a given 
basin (i.e., precipitation, maximum temperature, and 
minimum temperature), a specific forecast source, 
and a given forecast lead time, MEFP estimates the 
joint probability distribution of observations and 
single-valued forecasts based on a multiyear archive 
of the observations and forecasts. This calibration is 
performed for each day of the year by pooling histori-
cal observed–forecast pairs from a time window cen-
tered on that day in order to account for seasonality. 
In real time, given the current single-valued forecast, 
MEFP derives the conditional probability distribution 
of the observations, from which ensemble members 
are sampled. The ensemble members are generated 
for each individual time step, and then the Schaake 
shuffle (Clark et al. 2004) is applied to arrange the 
ensemble values according to the ranks of the histori-
cal observations. In this way, the produced ensemble 
time series preserve rank correlations for multiple 
lead times and basins across hydrometeorological 
variables (e.g., precipitation and temperature). The 
ensemble copula coupling approach (Schefzik et al. 
2013) also aims to recover the space–time multivariate 
dependence structure from the raw ensembles instead 
of the historical observations. Both approaches are 
very attractive computationally, requiring only the 
computation of marginal ranks, and could be applied 
for any dimensionality. However, they are both lim-
ited in the number of postprocessed ensembles and 
equal to the number of observed historical years for 
the Schaake shuffle and to the number of raw en-
sembles for the ensemble copula coupling (making 
it difficult to use multiple forecast sources with dif-
ferent numbers of ensembles). For extreme events, 
if the NWP ensembles are skillful, the multivariate 
dependence structure should be contained in the raw 
ensembles (and therefore should be realistically de-
scribed with the ensemble copula coupling approach). 
However, it may be lacking in the observation record 
for the Schaake shuffle approach owing to the likely 
lack of occurrences of similar events historically over 
the forecast horizon. If the NWP model output is 
strongly structured, parametric copula approaches 
might be used (as in Möller et al. 2013) to correct for 
any systematic errors in the ensemble’s representation 
of the conditional dependence structure. However, 
such parametric procedures are very expensive 
computationally and could be limited in practice 
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by the output dimensionality. We therefore suggest 
examining in the future alternative approaches, 
which use raw forecasts, observations, or some com-
bination of the two (e.g., “analogs”) for improved 
space–time rank structure.

In general, the forecast uncertainty and skill are 
time-scale dependent. Even though the forecast 
skill at the individual time steps may be limited, 
especially for long lead times, the skill of forecasts 
aggregated over multiple time steps is likely to be 
useful and needs to be exploited for hydrologic and 
water resources applications. Therefore, the MEFP 
calibration and ensemble forecasting procedures are 
also applied to a set of precipitation accumulations 
and temperature averages defined by the user across 
different forecast periods from the individual time 
steps (e.g., n-day events and x-month events up to 
the maximum available forecast horizon for each 
forecast source). The final ensemble members at the 
individual time steps are sequentially produced by 
the Schaake shuffle for the original and aggregated 
temporal scales according to increasing forecast skill 
at the individual scales and for the different forecast 
sources, with the highest skill having the greatest 
influence on the final values (see Schaake et al. 2007a 
for details).

MEFP has been experimentally implemented 
and evaluated at several RFCs using single-valued 
forecasts from various sources for a number of dif-
ferent forecast horizons. For the short-range forecast 
horizon, MEFP uses RFC operational single-valued 
forecasts as modified by the human forecasters. 

Depending on forecast locations, these forecasts are 
available from 1 to 5 forecast lead days for precipita-
tion and up to 7 forecast lead days for temperature. 
Validation results were reported by 1) Schaake 
et al. (2007a) for precipitation and temperature for 
one basin in California, 2) Demargne et al. (2007) 
for precipitation ensembles (and corresponding 
streamflow ensembles) for five basins in Missouri 
and Oklahoma, and 3) Wu et al. (2011) for three 
basins in Pennsylvania, Arkansas and Missouri, and 
California.

Figure 2 (from Wu et al. 2011) shows the CRPS 
va lues of MEFP-generated 6-h precipitat ion 
ensembles for the first lead day for the North Fork 
of the American River basin (NFDC1; 875 km2) 
near Sacramento, California, using three different 
methods. Method 1 uses an implicit treatment of 
precipitation intermittency (Schaake et al. 2007a); 
methods 2 and 3 model explicitly the precipitation 
intermittency, with method 3 adding parameter 
optimization based on the CRPS. Since, for single-
valued forecasts, the CRPS collapses to the mean 
absolute error, the CRPS values are compared to 
the mean absolute error of the conditioning single-
valued forecast. Figure 2 indicates that the quality 
of MEFP-generated precipitation ensembles has im-
proved significantly with the explicit intermittency 
modeling and that the technique captures the skill in 
the conditioning single-valued forecast very well. In 
Fig. 3 (from Wu et al. 2011), the reliability diagram 
and the relative operating characteristic (ROC) curve 
for method 3 indicate that the MEFP precipitation 

ensembles are reliable (left plot) and capture very 
well the discriminatory skill (right plot) in the single-
valued predictions. Wu et al. (2011) show also that 
independent validation results (based on leave-one-
year-out cross validation) are similar to dependent 
validation (i.e., parameter estimation) when using a 
historical archive of about 6 years. This suggests that 
the MEFP calibration with a similar or longer record 
length allows realizing in real-time applications the 
level of performance obtained in dependent valida-
tion, even if some degradation may be expected for 
rare events.

For medium range (up to 14 forecast lead days), the 
single-valued forecasts are obtained as the ensemble 
means from the frozen version (circa 1998) of the 
Global Forecast System (GFS; Hamill et al. 2006) of 
the National Weather Service’s National Centers for 
Environmental Prediction (NCEP). A 30-yr reforecast 
archive at T62 resolution and stored on a 2.5° grid 
is available for the MEFP calibration. Verification 
results of GFS-based forcing ensembles are described 
in Schaake et al. (2007a) and Demargne et al. (2010) 
for the NFDC1 basin.

Figure 4 shows the verification results from 
dependent validation for the 14-day GFS-based 

precipitation ensembles compared to the climatology-
based precipitation ensembles. All ensembles were 
produced at a 6-h time step from 1979 to 2005, with 
45 ensemble members, using method 3, and were veri-
fied with the EVS as daily totals. The mean error is 
reported for the ensemble mean (commonly used as a 
single-valued representation of the ensemble in opera-
tional forecasting), along with the continuous ranked 
probability skill score (CRPSS), which describes the 
overall quality of the probabilistic forecast in refer-
ence to the climatology-based ensembles. At short 
lead times, the precipitation ensembles are relatively 
unbiased in the unconditional sense as evidenced by 
the mean error for the precipitation intermittency 
threshold; however, they underforecast for larger 
observed events. These Type-II conditional biases are 
common in ensemble forecasting systems since model 
calibration typically favors average conditions and 
such conditional biases are more difficult to remove 
with postprocessing (Brown et al. 2012). When com-
paring to the climatology-based ensembles for all 14 
lead days, the MEFP-generated ensembles expectedly 
show reduced conditional biases. The quality of GFS-
based precipitation decreases rapidly with increasing 
forecast lead time as evidenced by the increased mean 

Fig. 3. (left) Reliability diagrams and (right) ROC curves relative to a threshold of 6.35 mm for MEFP-generated 
ensemble hindcasts of 6-h precipitation for all four 6-h periods in day 1 in DV and in leave-one-year-out CV. The 
reliability diagram describes the agreement between forecast probability of an event and the mean observed 
frequency of that event. Perfectly reliable forecasts have points that lie on the 45° diagonal line; the deviation 
from the diagonal line gives the conditional bias. The ROC curve plots, for a given event (e.g., flooding), the 
probability of detection (or hit rate) against the probability of false detection (or false alarm rate) for a range 
of probability levels (each one corresponding to a threshold at which a probability forecast leads to a binary 
decision).The false alarm rate and hit rate for the conditioning single-valued forecast are also plotted (“SVF”). 
The area under curve (“AUC”) is defined as the area below the ROC curve and above the diagonal (corre-
sponding to climatological forecasts), with a perfect score of 1. The vertical bars denote the 95% confidence 
intervals. The results are for the NFDC1 basin with upper and lower areas combined. (From Wu et al. 2011.)

Fig. 2. Mean CRPS of ensemble hindcasts of 6-h precipitation for all four 6-h periods in day 1 for the wet season 
(October–May) from 2000 to 2004 in dependent validation (i.e., parameter estimation) (“DV”) and independent 
validation (based on leave-one-year-out cross validation) (“CV”). The Mean CRPS measures the integrated 
squared difference between the cumulative distribution functions of a forecast and the corresponding obser-
vation, which is then averaged across a set of events. The Mean CRPS is conditioned on observed mean areal 
precipitation (MAP) ≥ 0, 6.35, and 12.7 mm (corresponding to nonexceedance climatological probabilities of 
0.73, 0.92, and 0.96, respectively, for the wet season). The vertical bars denote the 95% confidence intervals. 
The results are for the NFDC1 basin with upper and lower areas combined. (From Wu et al. 2011.)

7JANUARY 2014AMERICAN METEOROLOGICAL SOCIETY |6 JANUARY 2014|



error and the reduction in CRPSS. However, because 
of the relatively large predictability of orographic pre-
cipitation in the Sierra Nevada during the cold season 
in particular, GFS-based ensembles show useful skill 
in terms of CRPSS until 10 days.

As part of the ongoing comprehensive evaluation 
of HEFS ensembles, Brown (2013) analyzed verifica-
tion results of GFS-based precipitation and tempera-
ture ensemble hindcasts for a 14-day forecast horizon 
for four pairs of headwater–downstream test basins 
located in California, Colorado, Kansas–Oklahoma, 
and Pennsylvania–New York. The GFS-based pre-
cipitation ensembles generally show skill against 
climatology-based ensembles for the first week but 
little or no skill in the second week. However, results 
vary significantly with basin locations (e.g., reduced 
precipitation predictability in the southern plains), 
seasons (e.g., less skill during the dry season), and 
magnitudes (e.g., underestimation of the probability 
of precipitation and, more problematically, large pre-
cipitation amounts), which underlines the need for a 
systematic and comprehensive evaluation of MEFP 
ensembles across the different RFCs.

MEFP has recently been enhanced to ingest 
forecast from the NCEP’s latest Global Ensemble 
Forecast System (GEFS), which was implemented in 
February 2012. The new version of the GEFS uses 
the latest GFS model version v9.0 with an increased 

horizontal resolution of T254 (~55 km) for 8 days and 
an improved vertical resolution for all 16 days; it also 
includes uncertainty modeling enhancements (see 
Wei et al. 2008 and Hou et al. 2013, manuscript sub-
mitted to Tellus, for details). A new 25-yr ensemble 
reforecast dataset has been completed by using the 
configuration of the current operational GEFS and 
is available for public access (Hamill et al. 2013). For 
the longer range, the MEFP ingests single-valued 
forecasts from the NCEP’s Climate Forecast System 
(CFS version 2; Saha et al. 2013), which has been 
operational since February 2011 and has shown some 
skill against climatology for hydrological ensemble 
forecasting (e.g., Yuan et al. 2013). MEFP constructs 
lagged ensemble forecasts from the single-valued 
CFS forecasts to estimate the ensemble mean (used 
as single-valued forecast to drive the MEFP statisti-
cal model) for a forecast horizon up to 9 months. 
MEFP requires long hindcast datasets of weather 
and climate forecasts from a fixed model to correct 
biases in the single-valued forecasts, particularly 
for rare events. Several studies have demonstrated 
that utilizing the reforecast dataset from the frozen 
version of a NWP model significantly improves the 
skill of temperature and precipitation forecasts (in 
particular for heavy precipitation events), as well as 
hydrologic forecasts (Werner et al. 2005; Hamill et al. 
2006; Wilks and Hamill 2007; Hamill et al. 2008). 

Validation of short- to long-term ensembles for vari-
ous RFC basins is underway to evaluate the expected 
performance of MEFP for producing seamless and 
skillful ensembles.

In the future, MEFP should include forecasts from 
other NWP models [e.g., the Short-Range Ensemble 
Forecast (SREF) system produced by the NCEP (Du 
et al. 2009)], techniques to estimate precipitation from 
the combination of different NWP model output 
variables (e.g., total column precipitable water), and 
additional and/or alternative postprocessing tech-
niques, for example, to incorporate information from 
the ensemble spread and higher moments (Brown and 
Seo 2010). In the experimental Meteorological Model-
Based Ensemble Forecast System (Philpott et al. 2012), 
three Eastern Region RFCs and a Southern Region 
RFC are also investigating the use of SREF and GEFS 
ensembles, as well as North American Ensemble 
Forecast System (NAEFS) ensembles, all produced 
and bias corrected (at the grid scale) by the NCEP (Cui 
et al. 2012) (experimental products available at www 
.erh.noaa.gov/mmefs/). Grand-ensemble datasets 
such as The Observing System Research and Predict-
ability Experiment (THORPEX) Interactive Grand 
Global Ensemble (TIGGE; Park et al. 2008) have 
significant potential to capture uncertainties in the 
initial conditions, the model parameterization, the 
data assimilation technique, and the model structure 
through the use of atmospheric ensembles from dif-
ferent NWP models (e.g., Pappenberger et al. 2008; 
He et al. 2009, 2010). However, the use of any NWP 
model ensembles in hydrologic modeling requires 
a long reforecast dataset in order to calibrate the 
meteorological ensemble forecast processor as well 
as the hydrologic and water resources models for 
rare events.

HYDROLOGIC ENSEMBLE POSTPROCES-
SOR. Sources of hydrologic bias and uncertainty 
may be unknown or poorly specified in hydrologic 
ensemble prediction systems. Therefore, a range of 
statistical postprocessing techniques have been devel-
oped to account for the collective hydrologic uncer-
tainty (Krzysztofowicz 1999; Seo et al. 2006; Coccia 
and Todini 2011; Brown and Seo 2013; and references 
therein). They aim to producing reliable (i.e., condi-
tionally unbiased) hydrologic ensemble forecasts from 
single-valued forecasts or “raw” ensemble forecasts, 
sometimes with the aid of covariates, accounting only 
for the hydrologic uncertainty in the forecasts. The 
resulting probability distribution is described by a 
complete density function (e.g., Krzysztofowicz 1999; 
Seo et al. 2006; Montanari and Grossi 2008; Todini 

2008; Bogner and Pappenberger 2011) or several 
thresholds of the distribution (e.g., Solomatine and 
Shrestha 2009; Brown and Seo 2013). Examples of 
postprocessing techniques for hydrologic ensemble 
prediction systems include error correction based on 
the last known forecast error (Velázquez et al. 2009), 
an autoregressive error correction using the most 
recent modeled error (Renner et al. 2009; Hopson 
and Webster 2010; in the latter, postprocessing is also 
applied to multimodel ensembles), bias correction 
similar to the MEFP temperature methodology for 
long-term ESP streamflow ensembles (Wood and 
Schaake 2008), a Bayesian postprocessor for ensemble 
streamflow forecasts (Reggiani et al. 2009), error cor-
rection for multiple temporal scales based on wavelet 
transformation (Bogner and Kalas 2008; Bogner and 
Pappenberger 2011), and a generalized linear regres-
sion model using multiple temporal scales (Zhao 
et al. 2011). To help establish the reliability of differ-
ent statistical postprocessors and predictors under 
varied forecasting conditions, the HEPEX project 
includes an initiative to intercompare postprocessing 
techniques in order to develop recommendations for 
their operational use in hydrologic ensemble predic-
tion systems (van Andel et al. 2012).

In the HEFS, the EnsPost (Seo et al. 2006) 
accounts for the collective hydrologic uncertainty in 
a lumped form. Since MEFP generates bias-corrected 
hydrometeorological ensembles that ref lect the 
input uncertainty, EnsPost is calibrated with simu-
lated streamflow (i.e., generated from perfect future 
meteorological forcings) without any manual 
modifications of model states and parameters. The 
hydrologic uncertainty is, therefore, modeled inde-
pendently of forecast lead time. The postprocessed 
streamflow ensembles result from integration of 
the input and hydrologic uncertainties and hence 
ref lect the total uncertainty. The current version 
of the EnsPost employs a parsimonious statistical 
model that combines probability matching and 
time series modeling. Parsimony is important to 
reduce data requirements and, therefore, reduce the 
sampling uncertainty of the estimated parameter 
values. The procedure adjusts each ensemble trace 
via recursive linear regression in the normal space 
(see Seo et al. 2006 for details). The regression is a 
first-order autoregressive model with an exogenous 
variable, or ARX(1,1), and uses normal-quantile-
transformed historical simulation and verifying 
observation. The regression parameter is optimized 
for different seasons and f low categories, taking 
into account that the correlation depends greatly 
on flow magnitude and season. Recently, this model 

Fig. 4. (left) Mean error of the MEFP-generated ensemble means for GFS-based precipitation ensembles (“Pgfs”) 
and climatological precipitation ensembles (“Pclim”); (right) CRPSS for the GFS-based precipitation ensembles 
in reference to the climatological ensembles. The CRPSS is positively oriented, with perfect skill of 1 and nega-
tive value when the forecast has worse CRPS than the reference. The results are from dependent validation 
for the 1979–2005 period for the NFDC1 basin with upper and lower areas combined; the threshold values of 
0 and 25 mm day–1 correspond to nonexceedance climatological probabilities of 0.69 and 0.95, respectively.
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has been modified to better simulate temporal vari-
ability in the postprocessed streamflow ensembles 
by accounting for dependence in the normal space 
between the residual error of the model fit and the 
observed streamflow, as well as the serial correlation 
in the residual error.

EnsPost is currently applied to daily observed and 
forecast streamflows; after statistical postprocessing, 
the adjusted ensemble values are disaggregated to 
subdaily flows. In Seo et al. (2006) and subsequent 
studies for other locations, the EnsPost shows sat-
isfactory results for short forecast horizons and for 
all ranges of f low. However, independent valida-
tion shows slightly degraded results in comparison 
to dependent validation when EnsPost parameters 
were estimated from a 20-yr record, mainly owing 
to uncertainties in the empirical cumulative distribu-
tion functions of observed and simulated flows. Seo 
et al. (2006) underlined that in real-time applications, 
when the postprocessor parameters may be regularly 
(e.g., annually) updated using more than 20 years of 
data, the performance of EnsPost would be similar 
or better than the obtained independent validation 
results. Examples of cross validation results are shown 
in Fig. 5 for postprocessed flow ensemble hindcasts 
produced with perfectly known future forcing. The 
daily flow ensemble hindcasts were generated for the 
NFDC1 basin using 38 years of observed–simulated 
flow records. In Fig. 5, the reliability diagram and the 

ROC curve relative to a threshold of 95th-percentile 
f low indicate good reliability (left plot) and dis-
criminatory skill similar to the single-valued model 
predictions (right plot) for the first and fifth lead days. 
However, the current version of EnsPost is of limited 
utility for complex f low regulations and does not 
explicitly account for timing errors in the streamflow 
simulations (see Liu et al. 2011).

Regarding the quality of HEFS flow ensembles, 
examples of dependent verification results are given 
for raw and postprocessed flow ensemble hindcasts 
produced by the Hydrologic Processor and EnsPost 
using the GFS-based precipitation and temperature 
ensembles generated by MEFP. For flow hindcasting, 
the Hydrologic Processor is first run in simulation 
mode with the observed precipitation and tem-
perature time series to generate the historical initial 
conditions for all hindcast dates. Based on the his-
torical initial conditions, f low ensemble hindcasts 
are produced by the Hydrologic Processor for each 
hindcast date using the MEFP precipitation and tem-
perature ensemble hindcasts, and then postprocessed 
by EnsPost. To evaluate the performance gain using 
MEFP and EnsPost, flow ensembles produced by the 
Hydrologic Processor (using the same retrospec-
tive initial conditions) from climatological forcing 
ensembles are used as reference forecasts.

The example verification results are given for the 
NFDC1 basin, for which 6-h ensemble hindcasts were 

produced from 1979 to 2005 and verified with EVS as 
daily average flows. The comparisons of dependent 
and independent validation results for MEFP and 
EnsPost in the previous studies (e.g., Wu et al. 2011; 
Seo et al. 2006) have shown their robustness. Thus, 
the following dependent validation results for HEFS-
generated flow ensembles give a reasonable indication 
of the expected performance of HEFS in real-time 
applications, when both MEFP and EnsPost are cali-
brated with more than 25 years of data, even if some 
degradation is expected for rare events. As illustrated 
in Figs. 2–4 for the NFDC1 basin, MEFP precipitation 
ensembles perform well, particularly when compared 
with climatological ensembles. The marginal value 
of EnsPost depends largely on the magnitude of the 
systematic bias in the model-simulated streamflow. 
For the NFDC1 basin, the model simulation is of 
very high quality with a volume bias of only about 
1%. As such, one may expect the contribution from 
the EnsPost to be modest, coming mostly from im-
proved reliability by adding spread to the streamflow 
ensembles.

Figure 6 shows the mean error for the ensemble 
means and the CRPSS for the postprocessed f low 
ensembles and raw flow ensembles in reference to the 
climatology-based flow ensembles. The GFS-based 
f low ensembles exhibit a conditional bias consis-
tent with the conditional bias of the precipitation 

ensembles: overforecasting of small events and 
underforecasting of large events. However, owing 
to hydrologic persistence or “basin memory,” the 
quality of the flow ensembles declines more slowly 
than that of the precipitation ensembles. Regarding 
CRPSS results, the sharp increase in skill between 
the first and second forecast days is due to the fact 
that, for the first lead day, the climatology-based flow 
ensembles too have good skill owing to persistence, 
which results in reduced skill score for the GFS-based 
flow ensembles. The comparison of the CRPSS values 
for the raw flow ensembles and the postprocessed 
flow ensembles shows that most of the flow forecast 
skill comes from the MEFP component, with limited 
impact of EnsPost. The additional improvement by 
EnsPost is marginal because of small hydrologic 
biases and uncertainties in this basin. It decreases 
very fast within the first few days as a reflection of 
the fast-decaying memory in the initial conditions, 
noting that the prior observation is a predictor in 
the EnsPost.

However, as pointed out by Brown (2013), the 
overall skill of GFS-based postprocessed f low 
ensembles in reference to climatology-based flows, as 
well as the relative contributions of the MEFP (with 
GFS forecasts) and EnsPost components, depend 
on the basin location (as illustrated in Fig. 7 with 
basins located in four different RFCs), flow amount, 

Fig. 6. (left) Mean error of the ensemble means for GFS-based postprocessed flow ensembles (“Qgfs-post”) and 
climatology-based flow ensembles (“Qclim”); (right) CRPSS for the GFS-based postprocessed flow ensembles 
(Qgfs-post) and GFS-based raw flow ensembles (Qgfs) in reference to the climatology-based flow ensembles 
(Qclim). The results from dependent validation for the 1979–2005 period for the NFDC1 basin are shown for 
subsets of forecast-observed pairs relative to the 0.75 and 0.95 nonexceedance probability thresholds (29.6 m3 s–1 
and 80.7 m3 s–1, respectively).

Fig. 5. (left) Reliability diagrams and (right) ROC curves relative to the 0.95 nonexceedance probability threshold 
for the NFDC1 basin for the 1961–99 period for EnsPost-generated flow ensemble hindcasts under the assump-
tion of perfectly known future forcing, for days 1 and 5 in leave-one-year-out cross validation; the inset in (left) 
represents the histogram of predicted probability by the ensemble hindcasts.
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and season. In Fig. 8, examples of ensemble traces 
for two different basins illustrate how MEFP and 
EnsPost may help to predict a large flow event 5 days 
in advance but with a peak timing error (top plots), 
and may produce ensembles with a much reduced 
spread compared to climatology-based flows but with 
a low bias tendency (bottom plots).

The performance of EnsPost depends largely 
on the availability of long-term observed and 
model-simulated f lows and the assumption that 
the streamf low climatology is stationary over a 
multidecadal period. If additional stratification of 
the observed–simulated flow dataset is necessary for 
parameter estimation to improve the model fit for 
specific conditions (e.g., snowmelt), the EnsPost will 
require an even larger dataset for its calibration. In 
the future, for areas where observed and simulated 
flow data are available at subdaily scales (6 hourly 
or hourly), direct modeling of the subdaily flow will 
be necessary for improved performance. The use of 
multiple temporal scales of aggregation to improve 
bias correction at longer ranges is under investigation. 
Evaluation of other bias-correction techniques 
(including those used for atmospheric forcings) is 
also ongoing (e.g., van Andel et al. 2012) to find the 
best approaches for different forecasting situations 
and forecast attributes.

Moreover, EnsPost needs to be currently applied 
without any manual modifications of model states 
and parameters to maintain the consistency between 
the real-time ensemble f lows and the simulated 
flows used for its calibration, as well as the EnsPost-
generated streamflow hindcasts and verification 
results. Therefore, for real-time ensemble predic-
tion, the set of model states used in HEFS are 
generated with a simulation time window long 
enough to minimize the impact of any modifica-
tions previously applied in single-valued forecasting. 
Obviously, EnsPost needs to evolve along with the 
data assimilator component to utilize automated 
DA procedures. Meanwhile, given that the current 
manual modifications address significant limita-
tions in the operational models and datasets, we 
recommend analyzing the potential impact of these 
modifications on the performance of HEFS f low 
ensembles. Such comprehensive evaluation could 
offer objective guidance on best operational practices 
for applying manual modifications and cost-effective 
transitioning of experimental automated DA capabili-
ties into operational ensemble forecasting.

ENSEMBLE VERIFICATION. To evaluate 
the performance of HEFS for both research and 

operational forecasting purposes, ensemble verifica-
tion is required. Key attributes of forecast quality 
include the degree of bias of the forecast probabilities, 
whether unconditionally or conditionally upon the 
forecasts (reliability or Type-I conditional bias) or 
observations (Type-II conditional bias), the ability 
to discriminate between different observed events 
(i.e., to issue distinct probability statements), and skill 
relative to a baseline forecasting system (Jolliffe and 
Stephenson 2003; Wilks 2006). Ensemble forecasting 
systems, such as HEFS, are intended for a wide range 
of practical applications, such as flood forecasting, 
river navigation, and water supply forecasting. 
Therefore, forecast quality needs to be evaluated for 
a range of observed and forecast conditions in terms 
of forecast horizon, space–time scale, seasonality, and 
magnitude of event. The EVS, built on the Ensemble 
Verification System (Brown et al. 2010; freely available 
from www.nws.noaa.gov/oh/evs.html), was designed 
to support conditional verification of forcing and 
hydrologic ensembles, generated by HEFS, as well 
as external ensemble forecasting systems. EVS is a 
flexible, modular, and open-source software tool pro-
grammed in Java to allow cost-effective collaborative 

research and development with academic and private 
institutions and rapid research-to-operations transi-
tion of scientific advances.

Key features of EVS include the following (see 
Brown et al. 2010 for details):

•	 the ability to evaluate forecast quality for any 
continuous numerical variable (e.g., precipitation, 
temperature, streamflow, river stage) at specific 
forecast locations (points or areas) and for any 
temporal scale or forecast lead time;

•	 the ability to evaluate the quality of an ensemble 
forecasting system conditional upon many factors, 
such as forecast lead time, seasonality, temporal 
aggregation, magnitude of event (defined in 
various ways, such as exceedance of a real-valued 
threshold or climatological probability), and 
values of auxiliary variables (e.g., quality of flow 
ensembles conditional upon the amount of ob-
served precipitation);

•	 the ability to evaluate key attributes of forecast 
quality, such as reliability, discrimination, and 

Fig. 8. Daily ensemble traces and ensemble means for the GFS-based postprocessed flow (Qgfs-post), GFS-
based raw flow (Qgfs), and climatology-based flow (Qclim) for two different events in (top) the Eel River at 
Fort Seward (FTSC1) in CNRFC and (bottom) the Dolores River (DOLC2) in CBRFC.

Fig. 7. CRPSS for the GFS-based postprocessed flow 
ensembles (Qgfs-post) in reference to the climatology-
based flow ensembles. The results from dependent 
validation for the 1979–99 period are shown for all 
forecast-observed pairs for the following basins : 
the Eel River at Fort Seward (FTSC1) in California 
Nevada RFC (CNRFC), the Dolores River (DOLC2) 
in Colorado Basin RFC (CBRFC), the Chikaskia 
River near Blackwell (BLKO2) in Arkansas Basin RFC 
(ABRFC), and the inflow to Cannonsville Reservoir in 
Middle-Atlantic RFC (MARFC) (see Brown 2013 for 
details).
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skill, at varying levels of detail, ranging from 
highly summarized (e.g., skill scores such as 
CRPSS) to highly detailed (e.g., box plots of con-
ditional errors);

•	 the ability to aggregate the forecasts in time (e.g., 
hourly to daily) and to evaluate aggregate perfor-
mance over a range of forecast locations, either by 
pooling pairs or computing a weighted average of 
the verification metrics from several locations;

•	 generating graphical and numerical outputs in a 
range of file formats (R scripts are also provided 
for further analysis and generation of custom 
graphics);

•	 the ability to implement a verification study via the 
graphical user interface (GUI) or to batch process 
a large number of forecast locations on the com-
mand line, using a project file in an XML format 
(the EVS can also be run within CHPS—e.g., to 
produce diagnostic verification results for one or 
multiple hindcast scenarios); and

•	 the ability to estimate the sampling uncertainty in 
the verification metrics using the stationary block 
bootstrap—synthetic realizations of the original 
paired data are repetitively generated and the 
verification metrics are computed for each sample 
to estimate a bootstrap distribution of the verifica-
tion metrics, from which the percentile confidence 
intervals are then derived.

EVS is regularly enhanced to address needs from 
modelers and forecasters as HEFS is being imple-
mented and evaluated across all RFCs and since the 
Ensemble Verification System is being used in other 
projects such as HEPEX.

GRAPHICS GENERATOR. Communicating 
uncertainty information to a wide range of end users 
represents a challenge. As hydrologic ensemble fore-
casting is relatively new, much research is needed to 
define the most effective methods of presenting such 
information and design decision support system that 
maximize their utility (Cloke and Pappenberger 
2009). Challenges in communicating hydrologic 
ensembles include how to understand the ensemble 
forecast information (e.g., value of the ensemble 
mean, relation between spread and skill), how to 
use such information (e.g., in coordination with 
deterministic forecasts), and how to communicate 
it (e.g., spaghetti plots versus plume charts), even to 
nonexperts (Demeritt et al. 2010). A variety of prac-
tical approaches and products have been presented 
by Bruen et al. (2010) for seven European ensemble 
forecasting platforms and by Ramos et al. (2007) and 

Demeritt et al. (2013) for the European Flood Alert 
System. Pappenberger et al. (2013) formulated rec-
ommendations for effective visualization and com-
munication of probabilistic f lood forecasts among 
experts, acknowledging that there is no overarching 
agreement and one-size-fits-all solution.

In HEFS, the Graphics Generator (GraphGen), a 
generic software tool for CHPS, enables forecasters to 
generate and visualize information for internal deci-
sion support during operations as well as disseminate 
the final products to end users. This tool is expected 
to be accessed externally through a web service 
interface, which will allow the uncertainty-quantified 
forecast and verification information to be tailored 
to the needs of specific external users. GraphGen 
includes the functionality of the NWSRFS Ensemble 
Streamflow Prediction Analysis and Display Program 
(National Weather Service 2012), such as generation 
of spaghetti plots, expected value chart to describe the 
ensemble distribution (minimum, maximum, mean, 
and standard deviation), exceedance probability 
bar graph for a few probability categories and for a 
given product (e.g., monthly volume), and exceedance 
probability distribution plot using current initial 
conditions compared to historical simulations (see 
examples in McEnery et al. 2005). HEFS also needs 
to provide uncertainty-quantified forecast informa-
tion on maps for multiple forecast locations (e.g., 90% 
chance to exceed flood impact thresholds) as well as 
individual locations (e.g., expected value charts for 
all forecast lead times). New products to visualize 
the ensemble information are being evaluated, such 
as box-and-whisker plots with quantiles from the 
ensemble distribution, ensemble consistency tables, 
and visualization of peak timing uncertainty and 
magnitude uncertainty. In addition, information is 
needed to link and integrate traditional single-valued 
forecasts in the context of the estimated uncertainty. 
Several RFCs make prototype ensemble products and 
information available to their customers (see www 
.cnrfc.noaa.gov/index.php?type=ensemble) as well as 
interfaces that allow custom product generation based 
on user specifications; this will help to enhance the 
operational national web interface for AHPS (http://
water.weather.gov/ahps/).

Furthermore, verification information needs to 
be provided along with forecast information to sup-
port decision making (Demargne et al. 2009). Simi-
lar approaches have been reported by Bartholmes 
et al. (2009), Renner et al. (2009), and van Andel 
et al. (2008), where verification results on past per-
formance are provided to forecasters and decision 
makers. One such example is the web interface for 

the CBRFC water supply forecasts available from 
www.cbrfc.noaa.gov/. It enables users to gener-
ate customizable datasets and products for both 
probabilistic forecasts and verification statistics. 
Such visualization tools provide insights into the 
strengths and weaknesses of the forecasts and can 
help users assess potential forecast errors in the 
real-time forecasts. Along with the probabilistic 
forecast information, the envisioned HEFS products 
will include context information (e.g., historical 
lowest and highest, specific years of interest—
El Niño, La Niña, or neutral), recent forecasts 
and corresponding observations, forecasts from 
alternative scenarios, as well as historic analogs to 
real-time forecasts. The selection of analogs (i.e., 
past forecasts that are analogous to the current 
forecast) and the display of diagnostic verification 
statistics from similar conditions provide important 
contextual information tailored to the specific real-
time forecasting situation.

Through customer evaluations of the AHPS web-
site and the NWS Hydrology Program, the NWS has 
recognized the need to better communicate hydro-
logic forecast uncertainty information for the end 
users to understand better and use such information 
more effectively in their decision making. The NWS, 
USACE, and Bureau of Reclamation conducted a 
comprehensive use and needs assessment of the water 
management community, stressing in particular 
the need of more detailed information on product 
skill and uncertainty, guidance for synthesizing the 
large amount of hydrometeorological information, 
and training on probabilistic forecasting principles 
and risk-based decision making (Raff et al. 2013). 
Increased collaborations between forecasters, scien-
tists (including social and behavioral scientists), and 
decision makers should help to understand decision 
processes with uncertainty-based forecasts, develop 
innovative training and education activities to pro-
mote a common understanding, and, ultimately, 
increase the effectiveness of probabilistic forecasts 
(Ramos et al. 2013; Demeritt et al. 2013; Pappenberger 
et al. 2013). To this end, the NWS Hydrology Program 
and the RFCs are involved in a number of outreach 
and training activities, as well as ongoing collabora-
tion with the New York City Department of Environ-
mental Protection. Finally, as CHPS and HEFS are 
based on the Delft-FEWS platform, complementary 
visualization techniques and decision support systems 
are expected to be shared within the Delft-FEWS com-
munity as well as the broader community to maximize 
the utility of hydrologic and water resources forecast 
products and services.

C O N C L U S I O N S  A N D  F U T U R E 
CHALLENGES. The end-to-end HEFS provides, 
for short to long range, uncertainty-quantified fore-
cast and verification products that are generated by 1) 
the MEFP, which ingests weather and climate forecasts 
from multiple Numerical Weather Prediction models 
to produce seamless and bias-corrected precipitation 
and temperature ensembles at the hydrologic basin 
scales; 2) the Hydrologic Processor, which inputs the 
forcing ensembles into a suite of hydrologic, hydraulic, 
and reservoir models; 3) the EnsPost, which models 
the collective hydrologic uncertainty and corrects 
for biases in the streamflow ensembles; 4) the EVS, 
which verifies the forcing and streamflow ensembles 
to help identify the main sources of skill and bias in 
the forecasts; and 5) the Graphics Generator, which 
enables forecasters to derive and visualize products 
and information from the ensembles. Evaluation of 
the HEFS through multiyear hindcasting and large-
sample verification is currently underway and results 
obtained so far show positive skill and reduced bias 
in the short to medium term when compared to 
climatology-based ensembles and single-valued fore-
casts. However, the performance varies significantly 
with, for example, forecast horizons, basin locations, 
seasons, and magnitudes, which underlines the need 
for a systematic and comprehensive evaluation of 
HEFS ensembles across the different RFCs.

Increased skill in forcing forecasts generally 
translates into increased skill in ensemble streamflow 
forecasts. As such, the HEFS should utilize the most 
skillful forcing forecasts at all ranges of lead time. To 
translate this skill to ensemble streamflow forecasts 
to the maximum extent, hydrologic uncertainty 
must be reduced as much as possible. For example, 
assimilation of all available measurements of stream-
flow, soil moisture, snow depth, and others would 
reduce the initial condition uncertainty. Although 
not implemented in the first version of the HEFS, a 
number of DA techniques have been developed and/
or tested for the Sacramento rainfall-runoff model, 
the snow accumulation and ablation model, and 
hydrologic routing models to assimilate real-time 
observations and adjust model states within the 
assimilation window (Seo et al. 2003, 2009; Lee et al. 
2011; Liu et al. 2012; He et al. 2012). In addition to the 
data assimilator component, enhancements are also 
planned to account for the parametric and structural 
uncertainties in the hydrologic models. As shown 
by Georgakakos et al. (2004) and Velázquez et al. 
(2011), combining predictions from different models 
outperforms individual model predictions as long as 
model-specific biases can be corrected.
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Obviously, the different uncertainty modeling 
approaches available in the HEFS and in other research 
and operational systems will need to be rigorously 
compared via ensemble verification to define opti-
mized systems for operational hydrologic ensemble 
predictions. Close collaborations between scientists, 
forecasters, and end users from the atmospheric and 
hydrologic communities, through projects such as the 
HEPEX, help support such intercomparison, as well as 
address the following ensemble challenges:

•	 seamlessly combine probabilistic forecasts from 
short to long ranges and from multiple models 
while maintaining consistent spatial and temporal 
relationships across different scales and variables;

•	 include forecaster guidance on forcing input fore-
casts and hydrologic model operations, especially 
in the short term;

•	 improve accuracy of both meteorological and 
hydrologic models and reduce the cone of uncer-
tainty for effective decision support;

•	 improve the uncertainty modeling of rare events 
(e.g., record flooding or drought) when availability 
of analogous historical events is very limited;

•	 integrate and leverage conditional uncertainty as-
sociated with NWP and human adjusted forecasts 
of atmospheric forcings;

•	 improve computing power, database, and data 
storage, with forecasts becoming available at 
higher resolution and from an increasing number 
of models, to produce long hindcast datasets for all 
forcing inputs and hydrologic outputs for research 
and operation purposes;

•	 improve the understanding of how uncertainty 
and verification information is interpreted and 
used in practice by different groups (including 
forecasters and end users) to provide this infor-
mation in a form and context that is easily under-
standable and useful to customers; and

•	 develop innovative training and education 
activities to fully embrace and practice the en-
semble paradigm in hydrology and water resources 
services and increase the effectiveness of probabi-
listic forecasts in risk-based decision making.

ACKNOWLEDGMENTS.  This work has been 
supported by the National Oceanic and Atmospheric 
Administration (NOAA) through the Advanced Hydro-
logic Prediction Service (AHPS) Program and the Climate 
Predictions Program for the Americas of the Climate 
Program Office. The research and development of HEFS 
over the last decade has involved multiple scientists and 
forecasters from the Office of Hydrologic Development 

and the RFCs. The authors would also like to thank Dr. 
Yuqiong Liu for her valuable contribution and three 
anonymous reviewers.

REFERENCES
Addor, N., S. Jaun, F. Fundel, and M. Zappa, 2011: An 

operational hydrological ensemble prediction system 
for the city of Zurich (Switzerland): Skill, case studies 
and scenarios. Hydrol. Earth Syst. Sci., 15, 2327–2347.

Anderson, E. A., 1973: National Weather Service River 
Forecast System—Snow accumulation and ablation 
model. NOAA Tech. Memo. NWS HYDRO-17, 
217 pp.

Bartholmes, J. C., J. Thielen, M.-H. Ramos, and S. 
Gentilini, 2009: The European Flood Alert System 
EFAS—Part 2: Statistical skill assessment of probabi-
listic and deterministic operational forecasts. Hydrol. 
Earth Syst. Sci., 13, 141–153.

Bogner, K., and M. Kalas, 2008: Error-correction 
methods and evaluation of an ensemble based hy-
drological forecasting system for the Upper Danube 
catchment. Atmos. Sci. Lett., 9, 95–102.

—, and F. Pappenberger, 2011: Multiscale error analy-
sis, correction, and predictive uncertainty estimation 
in a flood forecasting system. Water Resour. Res., 47, 
W07524, doi:10.1029/2010WR009137.

Brown, J. D., 2013: Verification of temperature, pre-
cipitation and streamflow forecasts from the NWS 
Hydrologic Ensemble Forecast Service (HEFS): 
Medium-range forecasts with forcing inputs from 
the frozen version of NCEP’s Global Forecast System. 
HSL Tech. Rep. to the NWS, 133 pp. [Available 
online at www.nws.noaa.gov/oh/hrl/hsmb/docs 
/hep/publications_presentations/Contract_2012-
04-HEFS_Deliverable_02_Phase_I_report_FINAL 
.pdf.]

—, and D.-J. Seo, 2010: A nonparametric postproces-
sor for bias-correction of hydrometeorological and 
hydrologic ensemble forecasts. J. Hydrometeor., 11, 
642–665.

—, and —, 2013: Evaluation of a nonparametric 
post-processor for bias-correction and uncer-
tainty estimation of hydrologic predictions. Hydrol. 
Processes, 27, 83–105, doi:10.1002/hyp.9263.

—, J. Demargne, D.-J. Seo, and Y. Liu, 2010: The 
Ensemble Verification System (EVS): A software tool 
for verifying ensemble forecasts of hydrometeoro-
logical and hydrologic variables at discrete locations. 
Environ. Modell. Software, 25, 854–872.

—, D.-J. Seo, and J. Du, 2012: Verification of precipita-
tion forecasts from NCEP’s Short Range Ensemble 
Forecast (SREF) system with reference to ensemble 

streamflow prediction using lumped hydrologic 
models. J. Hydrometeor., 13, 808–836.

Bruen, M., P. Krahe, M. Zappa, J. Olsson, B. Vehvilainen, 
K. Kok, and K. Daamen, 2010: Visualizing f lood 
forecasting uncertainty: Some current European 
EPS platforms—COST731 working group 3. Atmos. 
Sci. Lett., 11, 92–99.

Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. 
Wei, and Y. Zhu, 2005: A comparison of the ECMWF, 
MSC, and NCEP Global ensemble prediction sys-
tems. Mon. Wea. Rev., 133, 1076–1097.

Burnash, R. J. C., 1995: The NWS river forecast system—
Catchment modeling. Computer Models of Watershed 
Hydrology, V. P. Singh, Ed., Water Resources Publica-
tions, 311–366.

Charba, J. P., D. W. Reynolds, B. E. McDonald, and G. 
M. Carter, 2003: Comparative verification of recent 
quantitative precipitation forecasts in the National 
Weather Service: A simple approach for scoring 
forecast accuracy. Wea. Forecasting, 18, 161–183.

Clark, M., S. Gangopadhyay, L. Hay, B. Rajagopalan, and 
R. Wilby, 2004: The Schaake shuffle: A method for 
reconstructing space–time variability in forecasted 
precipitation and temperature fields. J. Hydrometeor., 
5, 243–262.

Cloke, H. L., and F. Pappenberger, 2009: Ensemble flood 
forecasting: A review. J. Hydrol., 375, 613–626.

Coccia, G., and E. Todini, 2011: Recent developments 
in predictive uncertainty assessment based on the 
model conditional processor approach. Hydrol. 
Earth Syst. Sci., 15, 3253–3274, doi:10.5194/hess-15-
3253-2011.

Cui, B., Z. Toth, Y. Zhu, and D. Hou, 2012: Bias correc-
tion for global ensemble forecast. Wea. Forecasting, 
27, 396–410.

Day, G. N., 1985: Extended streamflow forecasting 
using NWSRFS. J. Water Resour. Plann. Manage., 
111, 157–170.

Demargne, J., L. Wu, D.-J. Seo, and J. C. Schaake, 2007: 
Experimental hydrometeorological and hydrologic 
ensemble forecasts and their verification in the U.S. 
National Weather Service. Quantification and reduc-
tion of predictive uncertainty for sustainable water 
resources management, IAHS Publ. 313, 177–187.

—, M. Mullusky, K. Werner, T. Adams, S. Lindsey, N. 
Schwein, W. Marosi, and E. Welles, 2009: Application 
of forecast verification science to operational river 
forecasting in the U.S. National Weather Service. 
Bull. Amer. Meteor. Soc., 90, 779–784.

—, J. D. Brown, Y. Liu, D.-J. Seo, L. Wu, Z. Toth, 
and Y. Zhu, 2010: Diagnostic verif ication of 
hydrometeorological and hydrologic ensembles. 
Atmos. Sci. Lett., 11, 114–122.

Demeritt, D., S. Nobert, H. Cloke, and F. Pappenberger, 
2010: Challenges in communicating and using 
ensembles in operational flood forecasting. Meteor. 
Appl., 17, 209–222.

—, —, —, and —, 2013: The European Flood 
Alert System and the communication, perception, 
and use of ensemble predictions for operational flood 
risk management. Hydrol. Processes, 27, 147–157, 
doi:10.1002/hyp.9419.

Du, J., G. Dimego, Z. Toth, D. Jovic, B. Zhou, J. Zhu, J. 
Wang, and H. Juang, 2009: Recent upgrade of NCEP 
short-range ensemble forecast (SREF) system. Proc. 
19th Conf. on Numerical Weather Prediction and 23rd 
Conf. on Weather Analysis and Forecasting, Omaha, 
NE, Amer. Meteor. Soc., 4A.4. [Available online 
at https://ams.confex.com/ams/23WAF19NWP 
/techprogram/paper_153264.htm.]

Fundel, F., S. Jörg-Hess, and M. Zappa, 2012: Long-
range hydrometeorological ensemble predictions of 
drought parameters. Hydrol. Earth Syst. Sci. Discuss., 
9, 6857–6887.

Georgakakos, K., D.-J. Seo, H. Gupta, J. Schaake, and 
M. B. Butts, 2004: Towards the characterization of 
streamflow simulation uncertainty through mul-
timodel ensembles. J. Hydrol., 298 (1–4), 222–241.

Gneiting, T., A. E. Raftery, A. H. Westveld III, and T. 
Goldman, 2005: Calibrated probabilistic forecast-
ing using ensemble Model Output Statistics and 
minimum CRPS estimation. Mon. Wea. Rev., 133, 
1098–1118.

Gupta, H. V., K. J. Beven, and T. Wagener, 2005: Model 
calibration and uncertainty estimation. The Ency-
clopedia of Hydrological Sciences, M. Anderson, Ed., 
John Wiley and Sons, 2015–2032.

Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble 
reforecasting: improving medium-range forecast skill 
using retrospective forecasts Mon. Wea. Rev., 132, 
1434–1447.

—, —, and S. L. Mullen, 2006: Reforecasts: An im-
portant dataset for improving weather predictions. 
Bull. Amer. Meteor. Soc., 87, 33–46.

—, R. Hagedorn, and J. S. Whitaker, 2008: Probabi-
listic forecast calibration using ECMWF and GFS 
ensemble reforecasts. Part II: Precipitation. Mon. 
Wea. Rev., 136, 2620–2632.

—, G. T. Bates, J. S. Whitaker, D. R. Murray, M. 
Fiorino, T. J. Galarneau, Y. Zhu, and W. Lapenta, 
2013: NOAA’s second generation global medium-
range ensemble reforecast dataset. Bull. Amer. 
Meteor. Soc., 94, 1553–1565.

He, M., T. S. Hogue, S. A. Margulis, and K. J. Franz, 
2012: An integrated uncertainty and ensemble-based 
data assimilation approach for improved operational 

17JANUARY 2014AMERICAN METEOROLOGICAL SOCIETY |16 JANUARY 2014|

http://dx.doi.org/10.1029/2010WR009137
http://www.nws.noaa.gov/oh/hrl/hsmb/docs/hep/publications_presentations/Contract_2012-04-HEFS_Deliverable_02_Phase_I_report_FINAL.pdf
http://www.nws.noaa.gov/oh/hrl/hsmb/docs/hep/publications_presentations/Contract_2012-04-HEFS_Deliverable_02_Phase_I_report_FINAL.pdf
http://www.nws.noaa.gov/oh/hrl/hsmb/docs/hep/publications_presentations/Contract_2012-04-HEFS_Deliverable_02_Phase_I_report_FINAL.pdf
http://www.nws.noaa.gov/oh/hrl/hsmb/docs/hep/publications_presentations/Contract_2012-04-HEFS_Deliverable_02_Phase_I_report_FINAL.pdf
http://dx.doi.org/10.1002/hyp.9263
http://dx.doi.org/10.5194/hess-15-3253-2011
http://dx.doi.org/10.5194/hess-15-3253-2011
http://dx.doi.org/10.1002/hyp.9419
https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_153264.htm
https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_153264.htm


streamflow predictions. Hydrol. Earth Syst. Sci., 16, 
815–831.

He, Y., F. Wetterhall, H. L. Cloke, F. Pappenberger, M. 
Wilson, J. Freer, and G. McGregor, 2009: Tracking the 
uncertainty in flood alerts driven by grand ensemble 
weather predictions. Meteor. Appl., 16, 91–101.

—, and Coauthors, 2010: Ensemble forecasting using 
TIGGE for the July–September 2008 floods in the 
Upper Huai catchment: A case study. Atmos. Sci. 
Lett., 11, 132–138.

Herr, H. D., and R. Krzysztofowicz, 2005: Generic prob-
ability distribution of rainfall in space: The bivariate 
model. J. Hydrol., 306, 234–263.

Hersbach, H., 2000: Decomposition of the continuous 
ranked probability score for ensemble prediction 
systems. Wea. Forecasting, 15, 559–570.

Hopson, T., and P. Webster, 2010: A 1–10 day ensemble 
forecasting scheme for the major river basins of 
Bangladesh: Forecasting severe floods of 2003–07. 
J. Hydrometeor., 11, 618–641.

Jaun, S., and B. Ahrens, 2009: Evaluation of a probabi-
listic hydrometeorological forecast system. Hydrol. 
Earth Syst. Sci., 13, 1031–1043.

Jolliffe, I. T., and D. B. Stephenson, 2003: Forecast Verifi-
cation: A Practitioner’s Guide in Atmospheric Science. 
John Wiley and Sons, 240 pp.

Kang, T.-H., Y.-O. Kim, and I.-P. Hong, 2010: Com-
parison of pre- and post-processors for ensemble 
streamflow prediction. Atmos. Sci. Lett., 11, 153–159.

Krzysztofowicz, R., 1999: Bayesian theory of probabi-
listic forecasting via deterministic hydrologic model. 
Water Resour. Res., 35, 2739–2750.

Lee, H., D.-J. Seo, and V. Koren, 2011: Assimilation 
of streamflow and in-situ soil moisture data into 
operational distributed hydrologic models: Effects 
of uncertainties in the data and initial model soil 
moisture states. Adv. Water Resour., 34, 1597–1615.

Liu, Y., J. D. Brown, J. Demargne, and D.-J. Seo, 2011: A 
wavelet-based approach to assessing timing errors in 
hydrologic predictions. J. Hydrol., 397 (3–4), 210–224.

—, and Coauthors, 2012: Advancing data assimilation 
in operational hydrologic forecasting: Progresses, 
challenges, and emerging opportunities. Hydrol. 
Earth Syst. Sci., 16, 3863–3887.

McEnery, J., J. Ingram, Q. Duan, T. Adams, and L. 
Anderson, 2005: NOAA’S Advanced Hydrologic 
Prediction Service: Building pathways for better sci-
ence in water forecasting. Bull. Amer. Meteor. Soc., 
86, 375–385.

Möller, A., A. Lenkoski, and T. L. Thorarinsdottir, 2013: 
Multivariate probabilistic forecasting using ensemble 
Bayesian model averaging and copulas. Quart. J. Roy. 
Meteor. Soc., 139, 982–991, doi:10.1002/qj.2009.

Montanari, A., and G. Grossi, 2008: Estimating the 
uncertainty of hydrological forecasts: A statistical 
approach. Water Resour. Res.,  44,  W00B08, 
doi:10.1029/2008WR006897.

National Research Council of the National Academies, 
2006: Completing the Forecast: Characterizing and 
Communicating Uncertainty for Better Decisions 
Using Weather and Climate Forecasts. The National 
Academies Press, 124 pp.

National Weather Service, cited 2012: National Weather 
Service River Forecast System (NWSRFS) user 
manual documentation. National Weather Service. 
[Available online at www.nws.noaa.gov/oh/hrl 
/nwsrfs/users_manual/htm/xrfsdocpdf.php.]

Pappenberger, F., J. Bartholomes, J. Thielen, H. Cloke, 
R. Buizza, and A. de Roo, 2008: New dimensions in 
early flood warming across the globe using grand-
ensemble weather predictions. Geophys. Res. Lett., 
35, L10404, doi:10.1029/2008GL033837.

—, E. Stephens, J. Thielen, P. Salamon, D. Demeritt, 
S. J. van Andel, F. Wetterhall, and L. Alfieri, 2013: 
Visualizing probabilistic flood forecast information: 
Expert preferences and perceptions of best practice 
in uncertainty communication. Hydrol. Processes, 
27, 132–146, doi:10.1009/hyp.9253.

Park, Y.-Y., R. Buizza, and M. Leutbecher, 2008: TIGGE: 
Preliminary results on comparing and combining 
ensembles. ECMWF Tech. Memo. 548, 47 pp.

Philpott, A. W., P. Wnek, and J. D. Brown, cited 2012: 
Verification of ensemble river forecasts at the 
Middle Atlantic River Forecast Center. [Available 
online at https://ams.confex.com/ams/92Annual 
/webprogram/Paper199532.html.]

Pyke, G., and J. Porter, cited 2012 Forecast-based opera-
tions support tool for the New York City water supply 
system. [Available online at http://fallmeeting.agu.
org/2012/files/2012/12/2012-AGU-Fall-Meeting-
Poster-Pyke-11x17.pdf.]

Raff, D., L. Brekke, K. Werner, A. Wood, and K. White, 
2013: Short-term water management decisions: User 
needs for improved climate, weather, and hydrologic 
information. U.S. Army Corps of Engineers, Bureau 
of Reclamation, and National Oceanic and Atmo-
spheric Administration Tech. Rep. CWTS 2013-1, 
256 pp. [Available online at www.ccawwg.us/docs 
/Short-Term_Water_Management_Decisions_
Final_3_Jan_2013.pdf.]

Ramos, M.-H., J. Bartholmes, and J. Thielen, 2007: 
Development of decision support products based on 
ensemble weather forecasts in the European flood 
alert system. Atmos. Sci. Lett., 8, 113–119.

—, S. J. van Andel, and F. Pappenberger, 2013: Do 
probabilistic forecasts lead to better decisions? 

Hydrol. Earth Syst. Sci. 17, 2219–2232, doi:10.5194/
hess-17-2219-2013.

Reggiani, P., M. Renner, A. H. Weerts, and P. A. H. 
J. M. van Gelder, 2009: Uncertainty assessment 
via Bayesian revision of ensemble streamf low 
predictions in the operational river Rhine fore-
casting system. Water Resour. Res., 45, W02428, 
doi:10.1029/2007WR006758.

Regonda, S., D.-J. Seo, B. Lawrence, J. D. Brown, and J. 
Demargne, 2013: Short-term ensemble streamflow 
forecasting using operationally-produced single-
valued streamflow forecasts—A Hydrologic Model 
Output Statistics (HMOS) approach. J. Hydrol., 497, 
80–96, doi:10.1016/j.jhydrol.2013.05.028.

Renner, M., M. G. F. Werner, S. Rademacher, and E. 
Sprokkereef, 2009: Verification of ensemble f low 
forecasts for the River Rhine. J. Hydrol., 376 (3–4), 
463–475.

Saha, S., and Coauthors, 2013: The NCEP Climate Fore-
cast System Version 2. J. Climate, in press.

Schaake, J., and Coauthors, 2007a: Precipitation and 
temperature ensemble forecasts from single-value 
forecasts. Hydrol. Earth Syst. Sci. Discuss., 4, 655–717.

—, T. M. Hamill, and R. Buizza, 2007b: HEPEX: The 
Hydrological Ensemble Prediction Experiment. Bull. 
Amer. Meteor. Soc., 88, 1541–1547.

—, and Coauthors, 2010: Summary of recommenda-
tions of the first workshop on Postprocessing and 
Downscaling Atmospheric Forecasts for Hydrologic 
Applications held at Météo-France, Toulouse, France, 
15–18 June 2009. Atmos. Sci. Lett., 11, 59–63.

Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting, 2013: 
Uncertainty quantification in complex simulation 
models using ensemble copula coupling. Stat. Sci., 
in press.

Schellekens, J., A. H. Weerts, R. J. Moore, C. E. Pierce, and 
S. Hildon, 2011: The use of MOGREPS ensemble rain-
fall forecasts in operational flood forecasting systems 
across England and Wales. Adv. Geosci., 29, 77–84.

Seo, D.-J., V. Koren, and N. Cajina, 2003: Real-time 
variational assimilation of hydrologic and hydro-
meteorological data into operational hydrologic 
forecasting. J. Hydrometeor., 4, 627–641.

—, H. Herr, and J. Schaake, 2006: A statistical post-
processor for accounting of hydrologic uncertainty in 
short-range ensemble streamflow prediction. Hydrol. 
Earth Syst. Sci. Discuss., 3, 1987–2035.

—, L. Cajina, R. Corby, and T. Howieson, 2009: 
Automatic state updating for operational stream-
flow forecasting via variational data assimilation. J. 
Hydrol., 367, 255–275.

Singla, S., J.-P. Céron, E. Martin, F. Regimbeau, M. 
Déqué, F. Habets, and J.-P. Vidal, 2012: Predictability 

of soil moisture and river f lows over France for the 
spring season. Hydrol. Earth Syst. Sci., 16, 201–216.

Smith, P. J., K. Beven, A. Weerts, and D. Leedal, 2012: 
Adaptive correction of deterministic models to 
produce accurate probabilistic forecasts. Hydrol. 
Earth Syst. Sci., 16, 2783–2799.

Solomatine, D. P., and D. L. Shrestha, 2009: A novel 
method to estimate model uncertainty using 
machine learning techniques. Water Resour. Res., 
45, W00B11, doi:10.1029/2008WR006839.

Thielen, J., J. Schaake, R. Hartman, and R. Buizza, 2008: 
Aims, challenges and progress of the Hydrological 
Ensemble Prediction Experiment (HEPEX) following 
the third HEPEX workshop held in Stresa 27 to 29 
June 2007. Atmos. Sci. Lett., 9, 29–35.

Thirel, G., F. Regimbeau, E. Martin, J. Noilhan, and F. 
Habets, 2010: Short- and medium-range hydrologi-
cal ensemble forecasts over France. Atmos. Sci. Lett., 
11, 72–77.

Todini, E., 2008: A model conditional processor to assess 
predictive uncertainty in f lood forecasting. Int. J. 
River Basin Manage., 6, 123–137.

van Andel, S. J., R. K. Price, A. H. Lobbrecht, F. van 
Kruiningen, and R. Mureau, 2008: Ensemble 
precipitation and water-level forecasts for antici-
patory water-system control. J. Hydrometeor., 9, 
776–788.

—, A. Weerts, J. Schaake, and K. Bogner, 2012: 
Post-processing hydrological ensemble predictions 
intercomparison experiment. Hydrol. Processes, 27, 
158–161, doi:10.1002/hyp.9595.

Van den Bergh, J., and E. Roulin, 2010: Hydrological 
ensemble prediction and verification for the Meuse 
and Scheldt basins. Atmos. Sci. Lett., 11, 64–71.

Velázquez, A., T. Petit, A. Lavoie, M.-A. Boucher, R. 
Turcotte, V. Fortin, and F. Anctil, 2009: An evalua-
tion of the Canadian global meteorological ensemble 
prediction system for short-term hydrological fore-
casting. Hydrol. Earth Syst. Sci., 13, 2221–2231.

—, F. Anctil, M.-H. Ramos, and C. Perrin, 2011: 
Can a multi-model approach improve hydrological 
ensemble forecasting? A study on 29 French catch-
ments using 16 hydrological model structures. Adv. 
Geosci., 29, 33–42.

Weerts, A. H., H. C. Winsemius, and J. S. Verkade, 
2011: Estimation of predictive hydrological uncer-
tainty using quantile regression: examples from the 
National Flood Forecasting System (England and 
Wales). Hydrol. Earth Syst. Sci., 15, 255–265.

Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial 
perturbations based on the Ensemble Transform 
(ET) technique in the NCEP Global Operational 
Forecast System. Tellus, 60A, 62–79.

19JANUARY 2014AMERICAN METEOROLOGICAL SOCIETY |18 JANUARY 2014|

http://dx.doi.org/10.1002/qj.2009
http://dx.doi.org/10.1029/2008WR006897
http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/htm/xrfsdocpdf.php
http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/htm/xrfsdocpdf.php
http://dx.doi.org/10.1029/2008GL033837
http://dx.doi.org/10.1009/hyp.9253
https://ams.confex.com/ams/92Annual/webprogram/Paper199532.html
https://ams.confex.com/ams/92Annual/webprogram/Paper199532.html
http://fallmeeting.agu.org/2012/files/2012/12/2012-AGU-Fall-Meeting-Poster-Pyke-11x17.pdf
http://fallmeeting.agu.org/2012/files/2012/12/2012-AGU-Fall-Meeting-Poster-Pyke-11x17.pdf
http://fallmeeting.agu.org/2012/files/2012/12/2012-AGU-Fall-Meeting-Poster-Pyke-11x17.pdf
http://www.ccawwg.us/docs/Short-Term_Water_Management_Decisions_Final_3_Jan_2013.pdf
http://www.ccawwg.us/docs/Short-Term_Water_Management_Decisions_Final_3_Jan_2013.pdf
http://www.ccawwg.us/docs/Short-Term_Water_Management_Decisions_Final_3_Jan_2013.pdf
http://dx.doi.org/10.5194/hess-17-2219-2013
http://dx.doi.org/10.5194/hess-17-2219-2013
http://dx.doi.org/10.1029/2007WR006758
http://dx.doi.org/10.1016/j.jhydrol.2013.05.028
http://dx.doi.org/10.1029/2008WR006839
http://dx.doi.org/10.1002/hyp.9595


Welles, E., S. Sorooshian, G. Carter, and B. Olsen, 2007: 
Hydrologic verification: A call for action and col-
laboration. Bull. Amer. Meteor. Soc., 88, 503–511.

Werner, K., D. Brandon, M. Clark, and S. Gangopadhyay, 
2005: Incorporating medium-range numerical 
weather model output into the ensemble streamflow 
prediction system of the National Weather Service. 
J. Hydrometeor., 6, 101–114.

Werner, M., M. van Dijk, and J. Schellekens, 2004: 
DELFT-FEWS: An open shell flood forecasting sys-
tem. Proceedings of the 6th International Conference 
on Hydroinformatics, S.-Y. Liong,  K.-K. Phoon, and 
V. Babović, Eds., World Scientific, 1205–1212.

—, M. Cranston, T. Harrison, D. Whitfield, and 
J. Schellekens, 2009: Recent developments in op-
erational f lood forecasting in England, Wales and 
Scotland. Meteor. Appl., 16, 13–22.

Wilks, D. S., 2006: Statistical Methods in the Atmospheric 
Sciences. 2nd ed. Academic Press, 648 pp.

—, and T. M. Hamill, 2007: Comparison of ensemble-
MOS methods using GFS reforecasts. Mon. Wea. 
Rev., 135, 2379–2390.

Wood, A. W., and J. C. Schaake, 2008: Correcting errors 
in streamflow forecast ensemble mean and spread. J. 
Hydrometeor., 9, 132–148.

Wood, E. F., X. Yuan, and J. K. Roundy, 2011: Enhanc-
ing hydrological seasonal forecast by downscal-
ing CFSv2. 36th Annual Climate Diagnostics and 
Prediction Workshop, Fort Worth, TX, NOAA, 
110–115.

Wu, L., D.-J. Seo, J. Demargne, J. Brown, S. Cong, and J. 
Schaake, 2011: Generation of ensemble precipitation 
forecast from single-valued quantitative precipitation 
forecast via meta-Gaussian distribution models. J. 
Hydrol., 399 (3–4), 281–298.

Yuan, X., E. Wood, J. Roundy, and M. Pan, 2013: 
CFSv2-based seasonal hydroclimatic forecasts 
over conterminous United States. J. Climate, 26, 
4828–4847.

Zappa, M., and Coauthors, 2010: Propagation of un-
certainty from observing systems and NWP into 
hydrological models: COST-731 Working Group 2. 
Atmos. Sci. Lett., 11, 83–91.

—, F. Fundel, and S. Jaun, 2012: A ‘Peak-Box’ approach 
for supporting interpretation and verification of 
operational ensemble peak-flow forecasts. Hydrol. 
Processes, 27, 117–131, doi:10.1002/hyp.9521.

Zhao, L., Q. Duan, J. Schaake, A. Ye, and J. Xia, 2011: A 
hydrologic post-processor for ensemble streamflow 
predictions. Adv. Geosci., 29, 51–59.

Abstract

NOAA’s National Weather Service (NWS) is implementing a short- to long-range Hy-

drologic Ensemble Forecast Service (HEFS). The HEFS addresses the need to quantify 

uncertainty in hydrologic forecasts for flood risk management, water supply management, 

streamflow regulation, recreation planning, and ecosystem management, among other 

applications. The HEFS extends the existing hydrologic ensemble services to include short-

range forecasts, incorporate additional weather and climate information, and better quantify 

the major uncertainties in hydrologic forecasting. It provides, at forecast horizons ranging 

from 6 h to about a year, ensemble forecasts and verification products that can be tailored 

to users’ needs.

Based on separate modeling of the input and hydrologic uncertainties, the HEFS includes 

1) the Meteorological Ensemble Forecast Processor, which ingests weather and climate fore-

casts from multiple numerical weather prediction models to produce bias-corrected forc-

ing ensembles at the hydrologic basin scales; 2) the Hydrologic Processor, which inputs the 

forcing ensembles into hydrologic, hydraulic, and reservoir models to generate streamflow 

ensembles; 3) the hydrologic Ensemble Postprocessor, which aims to account for the total 

hydrologic uncertainty and correct for systematic biases in streamflow; 4) the Ensemble 

Verification Service, which verifies the forcing and streamflow ensembles to help identify the 

main sources of skill and error in the forecasts; and 5) the Graphics Generator, which enables 

forecasters to create a large array of ensemble and related products. Examples of verification 

results from multiyear hindcasting illustrate the expected performance and limitations of 

HEFS. Finally, future scientific and operational challenges to fully embrace and practice the 

ensemble paradigm in hydrology and water resources services are discussed.
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