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D personal communication; and the Korea Meteorologi-
cal Administration, KMA 2001] began producing op-
erational ensemble forecasts, where the models are in-
tegrated a number of times, started from slightly
perturbed initial conditions, in addition to generat-
ing the traditional “control” forecast that starts from
the best available atmospheric analysis. Through the
ensemble approach one can generate probabilistic
forecasts for assessing the case-dependent forecast un-
certainty related to small errors in the initial condi-
tions and the models used.

When new forecast techniques emerge, some ques-
tions naturally arise: Does the new method provide
guidance that is of higher quality or more use than
existing methods? Is the potential benefit from run-
ning a new technique cost effective? Is the new
method sufficient with respect to old methods
(Ehrendorfer and Murphy 1988), that is, is using the
old technique redundant, given the new guidance?
These are questions that should be addressed with
respect to using the relatively new ensemble tech-
nique, as compared to relying on the use of a tradi-
tional single control forecast.

In earlier studies we presented a detailed analysis
of the quality of probabilistic forecasts generated
based on the NCEP ensemble forecasting system
(Toth and Kalnay 1997). The performance of the
NCEP ensemble forecasts was also compared to that
of the ECMWF ensemble prediction system (Zhu

THE ECONOMIC VALUE
OF ENSEMBLE-BASED

WEATHER FORECASTS
BY YUEJIAN ZHU, ZOLTAN TOTH, RICHARD WOBUS, DAVID RICHARDSON, AND KENNETH MYLNE

Quantifying forecast uncertainty with an ensemble

approach can improve the users’ bottom line

AFFILIATIONS: ZHU, TOTH, AND WOBUS—SAIC at National Centers
for Environmental Prediction, Camp Springs, Maryland; RICHARDSON—
European Centre for Medium-Range Weather Forecasts, Reading,
United Kingdom; MYLNE—Met Office, Bracknell, Berkshire, United
Kingdom

CORRESPONDING AUTHOR: Yuejian Zhu, NCEP, Environmental
Modeling Center, 5200 Auth Rd., Room 207, Camp Springs, MD
20746
E-mail: Yuejian.Zhu@noaa.gov

In final form 2 July 2001
©2002 American Meteorological Society

uring the past decade, due to increased com-
puter resources, the development of more re-
alistic atmospheric models, and the recognition
of the importance of atmospheric predictabil-

ity in general, ensemble forecasting became a major
component of Numerical Weather Prediction
(NWP). NWP centers around the globe [European
Centre for Medium-Range Weather Forecasts
(ECMWF), Molteni et al. 1996; the National Centers
for Environmental Prediction (NCEP), Toth and
Kalnay 1993; the Canadian Meteorological Center,
Houtekamer et al. 1996; the Fleet Numerical Oceano-
graphic and Meteorological Center, Rennick 1995; the
Japan Meteorological Agency, Kobayashi et al. 1996;
the South African Weather Bureau, W. Tennant 1998,
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et al. 1996), and a single higher-resolution control
forecast made by the medium-range forecast model
(MRF) (Toth et al. 1998). These earlier studies gave
valuable insight into the behavior of the different fore-
cast systems, thus providing feedback to the develop-
ers. Nevertheless, the ultimate measure of the utility
of weather forecasts is arguably the economic and
other benefits associated with their actual use in the
daily decision-making process of individuals and dif-
ferent organizations.

Simplistically, users of weather forecasts either do,
or do not take action (e.g., introduce protective ac-
tion to prevent/reduce weather-related loss), depend-

ing on whether a particular weather event is forecast
or not. Cost–loss analysis of different complexity can
be applied to evaluate the economic impact of the use
of weather forecasts on the users (Murphy 1985; Katz
and Murphy 1997). Studies of the economic value of
weather forecasts can either be descriptive, assessing
the value of forecasts used, often suboptimally, by ex-
isting customers; or prescriptive, identifying the po-
tential value of forecasts, assuming they are used in
an optimum manner (Stewart 1997).

In this paper we evaluate the potential economic
value associated with the use of an ensemble of fore-
casts, versus an equivalent, and a higher-resolution
control forecast, after minimal postprocessing. A rela-
tively simple cost–loss model that was discussed pre-
viously by Richardson (2000a) and Mylne (1999) and
is similar to that of Wilks (2001) will be used. We note
that cost–loss analysis is only one type of model that
can be applied to investigate the potential value of
weather forecasts, as described in Katz and Murphy
(1997). The cost–loss analysis approach followed in
this study obviously has its limitations. For example,
not all values can be expressed in terms of dollar
amounts; the loss of life is one such example.

Nevertheless the economic analysis used offers a
framework that, after some simplifications, can gen-
erally be applied in most cases.

COST–LOSS ANALYSIS. A decision maker be-
comes a user of weather forecasts if he/she alters
his/her actions based on forecast information.
Whether a user is expected to benefit from the use
of a forecast system in the long run can be assessed
based on 2 × 2 matrices (Table 1). If the user does
not take action and the event does not occur (cor-
rect rejection), there is no cost to the user (N = 0). If
the event does occur and the user is not protected
(miss), he/she will suffer a loss L. If a user takes pre-
ventive action to guard against this potential loss, the
user will incur a cost (C < L). If the event does not
occur (false alarm), C is the total cost on the user’s
side; if the event occurs (hit), in addition to C, the
user may also incur some reduced, unprotectable
loss, Lu. Note that the sum of C and Lu is usually called
mitigated loss (M), and typically C ≤ M < L. The ex-
penses associated with each combination of action
and outcome are shown in Table 1, where the total
loss is expressed as the sum of the loss that can be pro-
tected against (Lp), and the remaining unprotectable
loss (Lu).

Expected expense. We assume that the user takes ac-
tion depending on whether the event is forecast or
not. If the relative frequency of the four different out-
comes in Table 1 is known and marked by h, f, c, and
m, one can assess, in a statistical sense, the expected
expense of a user of a forecast system:

Eforecast = h(C + Lu) + fC + m(Lp + Lu). (1)

Since we assume that a correct rejection is associ-
ated with no cost (N) on the part of the user of
weather forecasts, this term is omitted from Eq. (1).
Furthermore, one can determine the expected ex-
pense associated with using climatological informa-
tion only:

(2)

where o is the climatological frequency of the event.
Based on the climatological frequency of the event,
and on the user’s associated costs and losses, lacking
other forecast information the user will either always
or never take protective action. A decision maker will
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Forecast/action

Yes No

Hit (h) Miss (m)

Mitigated loss (C + Lu) Loss (L = Lp + Lu)

False Alarm (f ) Correct rejection (c)

Cost (C ) No cost (N)

TABLE 1. Contingency table indicating the costs
and losses accrued by the use of weather
forecasts, depending on forecast and observed
events.
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choose to use a forecast system if his/her expected
expense associated with the forecast system will be
lower than that associated with using only climato-
logical information.

The minimum expense of a user, given a perfect
forecast system that provides accurate predictions for
the occurrence and nonoccurrence of a particular
event, can be written as

Eperfect = o(C + Lu). (3)

In this ideal situation, the user takes protective action
if and only if a harmful event actually occurs.

Economic value. Using Eqs. (1)–(3) the definition of
the relative economic value (V) of a forecast system
can be given as

(4)

Using a forecast system that is perfect will result
in an economic value of 1 (maximum value), while a
forecast system associated with the expected expense
equal to (larger than) that attainable using climato-
logical information only will have zero (negative) eco-
nomic value. Economic value is unbounded from the
negative side. Negative values indicate that following
a forecast system will actually cost the user more than
following the best climatological option. The best way
to avoid such a misuse of forecasts is to use the con-
cept of “value” as discussed here and elsewhere to op-
timize decision making.

By noting that h + m = o, we can rewrite Eq. (1)
as

Eforecast = oLu + (h + f )C + mLp. (5)

It is now clear that the term oLu is common to each
expected expense and that this unavoidable part of the
total loss will not appear in the expression for V.
Substituting Eqs. (2), (3), and (5) into Eq. (4) gives

(6)

Dividing each term on the right-hand side of Eq. (6)
by Lp and recognizing that the ratio (r) of the cost of
protection to the amount of potential loss that can be
protected is r = C/Lp, we arrive at

(7)

Note that the economic value of forecasts (V) de-
pends only on two forecast performance parameters
[h and m in Eq. (7)], which can also be expressed by
the hit rate (HR) and false alarm rate (FAR) used in
the definition of the relative operating characteristics
(ROC), indicating the close relationship discussed
further in section 4 between economic value and ROC
characteristics. Beyond the parameters describing the
forecast system, V also depends on o, the climatologi-
cal frequency of the event, and on r = C/Lp, the cost–
loss ratio characterizing the users of a forecast system.
The fact that all users can be characterized in this
framework by a single variable, C/Lp, offers a conve-
nient way to evaluate the potential economic value of
any forecast system for all users on a two-dimensional,
V versus C/Lp plot.

EXPERIMENTAL SETUP. In the following sec-
tion we compare the economic value of the MRF T62
and T126 resolution control forecasts (Derber et al.
1998) to that of a 14-member set of the T62 horizon-
tal resolution NCEP ensemble (Toth and Kalnay
1997) for the April–June 1999 period. Note that the
computational cost of generating either a higher, T126
resolution control forecast, or a 14-member T62 reso-
lution ensemble is an order of magnitude higher than
that of running a T62 resolution control forecast only.
In the example below, weather events are defined as
the 500-hPa geopotential height at grid points over
the Northern Hemisphere extratropics (as routinely
defined for verification purposes at NCEP, 20°–
77.5°N) being in any of 10 climatologically equally
likely bins. The reason for the choice of 500-hPa
geopotential height is that climatological information
in the above format was readily available from an ear-
lier study (Toth et al. 2001). Climatological decisions
[see Eqs. (2) and (4)] are also based on this 15-yr cli-
matology.

The user of an ensemble of n forecasts has n op-
tions for use as decision criteria with respect to
his/her weather-related action. He/she can choose to
take action only if all n forecasts predict the adverse
weather, act if at least n − 1, n − 2, . . ., or even if at
least one member predicts the adverse weather. Each
of these decision criteria corresponds with a differ-
ent economic value. Based on their C/Lp ratio, users
can choose the decision criterion that offers the most
value to them. In fact, it can be shown that the best
decision level p, corresponding to the predicted prob-
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ability of the weather event, is equal to C/Lp (assum-
ing perfectly reliable forecasts; Murphy 1977). The
higher the cost of the protective action relative to the
potential loss, the more certainty the user requires
about the forecast before he/she takes action. One of
the potential advantages of using an ensemble fore-
cast system is that it naturally provides a multitude
of such decision criteria. Different users can then
tailor their use of the forecast information to their
particular application, characterized by their cost–
loss ratio.

Relative frequency values based on counting how
many ensemble members predict a certain event usu-
ally provide probabilistic forecasts that are not reli-
able in a sense that they do not necessarily match cor-
responding observed frequency values. This is because
of deficiencies in model and ensemble formulation.
For example, when half of the ensemble members
predict a weather event, that event may, over a long
verification period, verify only 40% of the time. Such
biases in ensemble-based probabilities are generally
consistent in time and can be easily eliminated (see,
e.g., Zhu et al. 1996). The calibrated forecast that
would be issued based on the past verification statis-
tics in the above case, where half of the ensemble
members predict an event, for example, is 40%. The
April–June 1999 ensemble-based probabilistic fore-
casts evaluated in this paper have been calibrated us-
ing independent data from February 1999 verification
statistics.

For each cost–loss ratio shown in Figs. 1–4, the
decision criterion for the ensemble is based on the
calibrated probability forecasts. In particular, it is as-
sumed that a user will take protective action if the
calibrated probability forecast value is greater than or
equal to the cost–loss ratio (p ≥ C/Lp). For the ex-
tremely high (and low) probability values where the
finite ensemble cannot provide optimum guidance,
the best available guidance was used, that is, the high-
est (lowest) probability values associated with all (at
least one) members predicting the weather event.

The above decision-making algorithm, based on
the user’s cost–loss ratio and probabilistic forecasts
calibrated based on independent verification data,
represents an operationally feasible strategy for the
use of ensemble guidance. In some earlier studies
(Mylne 1999, 2002; Richardson 2000a) a slightly dif-
ferent approach was used, where the optimum deci-
sion level for a particular user was identified directly
by evaluating the economic value associated with the
use of different decision criteria. This process, in some
sense, is equivalent to calibration. Note, however, that
in these earlier studies, calibration was performed on

the forecast sample that was evaluated (dependent
data), assuming that the forecasts can be perfectly cali-
brated. In contrast, no such assumption is made in the
present study. By using calibrated probabilities that
are adjusted based on prior and independent verifi-
cation statistics, the economic value of the ensemble
forecast system is evaluated in a more realistic setting,
accounting for the information loss that inevitably
occurs in the calibration process.

In contrast to the ensemble system that naturally
offers multiple decision levels, deterministic guidance
from a single forecast, unless its form is changed via
postprocessing, can only be interpreted by a user in
one way. If a particular adverse weather event is fore-
cast, the user can take protective action, and do noth-
ing otherwise. The yes–no forecast of a deterministic
system, based on past verification statistics, can be
converted to dichotomous probabilistic forecasts just
as the ensemble-based probabilistic forecasts can be
calibrated [see, for example, Murphy (1986) and Toth
et al. (1998)]. Since there is only one decision level in-
volved, we assume probabilistic forecasts based on a
control forecast can be perfectly calibrated, and for
calibration we use verification statistics based on the
sample period. Given that the ensemble forecasts are
not assumed to be perfectly calibrated and that their
actual calibration is done with a simple algorithm, the
economic value results shown in the next section rep-
resent a conservative estimate with respect to the ben-
efits of using an ensemble as compared to a single
control forecast.

RESULTS. Economic value. In Fig. 1 we show the eco-
nomic value of the two control forecasts versus an
ensemble of forecasts at 24-h lead time, as a function
of the C/Lp ratio, as discussed above. The economic
value comparison results indicate that most potential
users, except those with cost–loss ratios in a relatively
narrow band between 0.2 and 0.5, can realize more
economic value when using the ensemble forecasts.
At and beyond (72)120-h lead time (Figs. 2–4) (vir-
tually) all users are better off using the ensemble sys-
tem than the control forecasts. Furthermore, the
range of cost–loss ratios for which the forecasts ex-
hibit value, compared to using climatological infor-
mation only, is substantially widened, indicating that
a much larger group of users can benefit from the en-
semble forecasts as compared to the control forecasts.

Note that on each of the figures the largest eco-
nomic benefit, as expected theoretically (see, e.g.,
Richardson 2000a), is attained by users whose C/Lp ra-
tio is approximately equal to o, the climatological fre-
quency of the weather event, which in our case is 0.1.
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Note also that with increasing lead time the economic
value, as compared to using perfect forecasts, just as
the forecast information content (see Fig. 8 of Toth
et al. 1998), is reduced. Finally, the low negative val-
ues for the ensemble at very low cost–loss ratios arise
due to the small size of the ensemble. As described in
previous section (experimental setup), the lowest cali-
brated probability level available from the ensemble
(pl), corresponds to the outcome of at least one en-
semble member predicting the event in question. For
lack of a better choice this criterion is used for all cost–
loss ratios below pl, leading to poor performance in
that range.

Summary measures. Beyond the economic value de-
fined in Eq. (7) and evaluated in Figs. 1–4 there exist
a number of measures that attempt to summarize the
general value of different forecast systems. Some of
these summary measures are based on an assumption
about the distribution of properties protected by all (or
a group of) users with various C/L ratios. These sum-
mary measures, therefore, can be considered as overall
economic value estimates given their assumption about
the distribution of protected values along different
C/L ratios. Unfortunately little if any information is
available on most users’ cost–loss ratio. As an alter-
native, Wilks (2001) considers several artificial distri-
butions of C/L among users in his cost–loss analysis.

Relative operating characteristics area (ROC area;
see, e.g., Mason 1982) is one common summary mea-
sure of ensemble forecast performance based on sig-

nal detection theory. Using the notation of Table 1, a
ROC diagram plots the hit rate [HR = h/(h + m)] of a
forecast system against its false alarm rate [FAR
= f/(f + c)]. The overall performance of a forecast sys-
tem is measured by the ROC area (ROCA) defined by
the points (0,0), (1,1) and the point(s) representing
the forecast system (see, e.g., Stanski et al. 1989). The
closer a curve is to the upper-left-hand corner, the
more ability the studied forecast system has in delin-
eating between conditions under which a certain

FIG. 1. Economic value of 24-h MRF T126 (dashed) and
T62 (dotted) control forecasts, and 14-member T62
ensemble forecasts (solid) in predicting events defined
in terms of 10 climatologically equally likely bins for
500-hPa height over the NH extratropics, for Apr–Jun
1999, for users characterized by different cost–loss ra-
tios (horizontal axis). For the ensemble, the optimum
decision strategy evaluated here is based on probabi-
listic forecasts (calibrated using Feb 1999 verification
statistics) being greater or equal to C/Lp (p > C/Lp).
Values below –1.00 are not plotted.

FIG. 2. Same as Fig. 1, except for 72-h forecast lead time.

FIG. 3. Same as Fig. 1, except for 120-h forecast lead
time.

FIG. 4. Same as Fig. 1, except for 168-h forecast lead
time.
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event (in this study, one of 10 climatologically equally
likely bins) does or does not occur. A perfect forecast
system would have a ROC area of 1 while a system
with no ability to distinguish in advance between dif-
ferent weather events would have a score of 0.5 (i.e.,
points lying on the diagonal defined by 0,0, and 1,1).
As shown by Mylne (1999) and Richardson (2000b,
2001) the ROC area is closely related to the economic
value of a forecast system. Note that ROC disregards
forecast reliability (or lack of it) altogether, effectively
assuming that before their use the forecasts can be
perfectly calibrated.

Another summary score is the Brier skill score
(BSS), which is a measure related to ROC area for
systems that produce reliable forecasts (i.e., forecast
probabilities that exactly match observed frequencies,
Talagrand et al. 1998). BSS measures the overall eco-
nomic value associated with a particular forecast sys-
tem, assuming that when all users are considered, the
same amount of property is at stake at each cost–loss
ratio value (Murphy 1966). For the comparison of a
single control forecast with ensemble-based probabi-
listic forecasts, BSS gives an even larger benefit to the
ensemble than ROC area, reflecting the wider range
of users who gain positive value from the ensemble.
Another alternative would be to use the economic
value associated with the C/Lp yielding the maximum
value (Richardson 2000a). Compared with the ROC
area, this would give somewhat smaller differences
(but still up to 50% in Figs. 1–4). The maximum value
recognizes the fact that the ensemble forecast system
is better for users with C/L = o, but does not reflect
the additional benefits for the majority of other users
that exist due to the provision of multiple decision

levels in the form of multiple-level probabilistic fore-
casts (Richardson 2000a).

As an example of a summary measure Fig. 5 shows
an ROC area–based skill score (ROCS), defined by
Richardson (2000a) as

ROCS = 2(ROCA − 0.5), (8)

which is an indicator for the overall utility of a fore-
cast system, as a function of lead time. As can be seen
from Figs. 1 to 4, the relative benefit of the ensemble
(compared to the controls) will tend to be greater than
this for users with C/L < o, but will be less for some
users with C/L > o.

The ensemble forecast system is found to outper-
form the control forecasts at all lead times. For ex-
ample, at day 2 (day 6) lead time the use of the en-
semble forecast system provides close to 70% (130%)
improvement over the control forecasts; to put it an-
other way, a 4-day (10 day) ensemble forecast has a
score as high as a 2-day (6 day) single control fore-
cast. These results are in good agreement with
Figs. 1–4, and at a later lead time with those of Mylne
(1999) and Richardson (2000a).

It is interesting to note how much more the users can
benefit from the ensemble-based multiple-decision-
level forecast system than from a simple increase in
the horizontal resolution of the control forecast from
T62 to T126—each of which requires approximately
an order of magnitude more resources than running
a low-resolution T62 control only. The high ensemble
scores make the difference between the two different
resolution model versions look rather small. However,
in terms of NWP advancements, the T126 resolution
model represents a rather significant improvement
over the T62 version of the NCEP MRF model.

The economic value results in Figs. 1–4 and the
related ROC area results in Fig. 5 refer to the value
of direct output from the NWP systems investigated,
after minimal postprocessing that makes both the
control and ensemble systems reliable. When evalu-
ating these results, however, we must note that a
single control forecast, without statistical postpro-
cessing, offers only one threshold for decision mak-
ers while an ensemble of n members offers n, depend-
ing on how many members indicate the occurrence
of a critical weather event. The large difference be-
tween the ensemble and the control curves in Figs.
1–5 highlights the importance of using detailed
probabilistic forecast information in economic deci-
sion-making processes.

The fact that direct output from a control forecast
offers only a single decision level is clearly reflected

FIG. 5. ROC area skill score for the T126 (dashed) and
T62 (dotted) control, and the 14-member T62 en-
semble forecasts (solid) predicting events defined in
terms of 10 climatologically equally likely bins for the
500-hPa height, NH extratropics, for Apr–Jun 1999.
Scale on vertical axis is logarithmic.



79JANUARY 2002AMERICAN METEOROLOGICAL SOCIETY |

on ROC curves like that shown in Fig. 6 for 5-day lead
time forecasts where both control forecasts are rep-
resented by one point only. For a single forecast that,
without postprocessing, offers only one decision cri-
terion, the ROC area is defined by the triangle given
by the (FAR,HR) point for the single forecast and the
(0,0) and (1,1) points. Note in the example of Fig. 6
that the control points are only slightly below the en-
semble curve. The main difference in ROC area be-
tween the control and ensemble forecast systems
comes from the larger number of thresholds used to
define the ensemble ROC curve. This greater num-
ber of thresholds is directly related to the wider range
of users for which the ensemble has positive value
compared to the control forecast (cf. Figs. 1–4). The
substantial difference in ROC area between ensemble
and control forecasts emphasizes the importance of
the flexibility this range of decision thresholds offers
to the users.

We note that if we parameterized the ROC curves
for both the ensemble and the control forecasts
(Mason 1982; Richardson 2000a), the difference in
ROC area would be substantially reduced. However
this would indicate potential (and not actual) differ-
ences in value, achievable only if a sufficiently wide
range of useful forecast thresholds for the single con-
trol forecast system could somehow be made (Harvey
et al. 1992). One possible way to achieve this would

be to predict 50-mm precipitation, for example, not
only when the control forecast exceeds that amount,
but with less probability, but also when the forecast
reaches 20 or even only 10 mm (see, e.g., Atger 2001).

It is conceivable that the performance of such a
multiple decision level system based on a control fore-
cast can reach or possibly even exceed the perfor-
mance level of an ensemble-based system in case the
unpostprocessed control forecast point lies above the
ensemble curve on a ROC chart. This is the case for
the low- (T62) and high-resolution (T126) controls
for lead times up to 12 and 96 h, respectively (Fig. 7).
This indicates that for some users the control forecasts
are more valuable at short lead times. Beyond 4-day
lead time both control forecast points, however, lie
below the ensemble curve (Figs. 6 and 7), indicating
that the ensemble is a better forecast system for all
users. At these lead times there is no reason to assume
that if more sophisticated statistical postprocessing is
applied to both the high-resolution control and the
low-resolution ensemble forecast systems the one
based on the control forecast only would perform
better. These results indicate that using the same com-
putational resources, potentially more economic ben-
efit can be gained from generating an ensemble of
forecasts than from increasing the horizontal resolu-
tion of the control forecast, at least for lead times be-
yond 4 days.

DISCUSSION. Why the ensemble approach is suc-
cessful. As discussed earlier, an ensemble of forecasts
naturally offers a multitude of decision levels com-
pared to a single yes/no decision based on a control
forecast, providing detailed probability distributions
instead of only two levels of probabilities. Toth et al.

FIG. 6. ROC HR vs FAR curve for a 5-day lead time 14-
member T62 ensemble of forecasts, and for the T126
and T62 control forecasts predicting events defined in
terms of 10 climatologically equally likely bins for the
500-hPa height, NH extratropics, Apr–Jun 1999.

FIG. 7. Same as Fig. 5 except for ROC distance, defined
(on linear vertical axis) as the distance between a con-
trol point and the closest point on the ensemble poly-
gon. Positive (negative) values indicate the control point
is above (below) the ensemble curve.
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(1998) showed that the use of detailed ensemble-
based probability distributions (as compared to the
use of only two probability levels) substantially im-
proves forecast performance in terms of ROC, ranked
probability skill score, and information content. As
discussed earlier, multiple-value probability forecasts
can of course be constructed based on a single deter-
ministic forecast, using past verification statistics.
Such a system can produce statistically postprocessed,
bias-free probabilistic forecasts. Atger (1999) found
that at least beyond 3-day lead time 500-hPa height
forecasts the ECMWF ensemble prediction system
outperformed such a system based on postprocessed
control forecasts. In their complex economic value
analysis addressing hypothetical applications in the
electricity sector, Smith et al. (2001) came to similar
conclusions. O. Talagrand and G. Candille (1999,
personal communication) reported similar results in
their study. The ensemble’s better performance in
these comparisons, since the control forecasts were
supplemented by a detailed probability distribution,
must be due to some genuine information contained
in the ensemble but not in the control-based distri-
butions.

The ensemble-based distributions can surpass
their control-based couterparts in two ways. First,
due to nonlinear effects (Toth and Kalnay 1997) the
ensemble distribution may be centered closer to truth
than the distribution based on a single forecast only.
While at short lead times a higher-resolution control
may have an advantage due to its increased accuracy
(see, e.g., Fig. 3 of Toth et al. 1998), at longer lead
times the ensemble has an advantage, due to its non-
linear error-filtering capability. While these differ-
ences may have a substantial contribution, compar-
ing Figs. 3 and 7 of Toth et al. (1998) suggests that
they play only a secondary role. A more important
contribution of the ensemble may be its ability to cap-
ture day-to-day variations in the expected uncer-
tainty of the forecasts (Toth et al. 2001; Ziehmann
2001). The ensemble can distinguish between fore-
casts with higher- and lower-than-average uncer-
tainty at the time the forecasts are issued. As Toth
et al. (1998) showed, the ensemble provides impor-
tant extra information to the users through its case-
dependent uncertainty estimates. While statistical
postprocessing of some sophistication applied on a
control forecast system may be able to capture part
of the day-to-day variations in predictability, it is not
likely that all information that affects predictability
(i.e., case-dependent initial errors and their evolution
in the forecast) could be captured through statistical
approaches.

Limitations and open questions. All the results pre-
sented in this study pertain to forecasts of the 500-hPa
height over the Northern Hemisphere extratropics,
made at T62 and T126 model resolution. Similar re-
sults were obtained by Richardson (2000a) and Mylne
(1999) using sensible weather elements. Further stud-
ies, however, are necessary to analyze the economic
value related to the use of ensembles versus higher-
resolution control forecasts with respect to other
weather elements in higher-resolution forecast mod-
els at various lead time ranges, with the use of more
complex decision-making tools. Can some general
guidelines, such as the presence of large forecast un-
certainty, and/or large and predictable variations in
it, be established under which it is more advantageous
to spend resources on running an ensemble, instead
of increasing the spatial resolution of the model used
in NWP forecasting? Under what general conditions
may an ensemble forecast system be sufficient
(Ehrendorfer and Murphy 1988) for the high-reso-
lution control forecast, making the control forecast
redundant (and its generation unnecessary)?

Ensemble forecasts for sensible weather elements
should preferably be statistically postprocessed to
eliminate possible systematic errors or model biases
before they are used in weather forecasting. Calibration
is an important issue for practical applications since,
as Wilks (2001) showed, uncalibrated forecasts can
suffer a great reduction in their expected economic
value. Probabilistic forecasts based on the NCEP en-
semble (500-hPa height, 10 climatologically equally
likely events) were successfully calibrated by a simple
method, used also in the present study, by Zhu et al.
(1996) and Toth et al. (1998). The success of such a
calibration depends on the relative stationarity of the
NWP analysis and forecast system on one hand, and
the natural climate system on the other. The calibra-
tion of forecasts for intermittent or less frequent
events is a more problematic task that calls for fur-
ther investigation.

Statistical postprocessing has also been a critical
element in the interpretation of traditional single con-
trol forecasts (e.g., Carter et al. 1989). Note that the
purpose of statistical postprocessing of the ensemble
forecasts is different from that of a single control fore-
cast. Model Output Statistics (MOS), for example, not
only attempts to eliminate the bias from the forecasts
on which it is applied but also hedges the forecasts
(Murphy 1978) toward climatology (the larger the ex-
pected forecast error, the more so). A single control
forecast is normally used to provide a best estimate
of the future state of the atmosphere, and hedging
serves well this purpose. Ensemble forecasting, how-
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ever, has a different goal, providing a detailed fore-
cast probability distribution. In this case hedging,
which brings all forecasts, originally intended to rep-
resent the inherent forecast uncertainty, closer to cli-
matology is counterproductive.1 Additional open
questions that remain to be investigated include
whether and to what extent the application of more
sophisticated statistical postprocessing algorithms
applied on both the control and ensemble forecast sys-
tems can bring the performance of the control system
closer to that of the ensemble.

Implications for weather forecasting. The role of fore-
casters is to provide all relevant information on future
weather to the users. As the results and discussion
above indicate, it is critical that the users have access to
multiple-value probabilistic information that captures
day-to-day variations in the expected uncertainty of
the forecasts. A weather forecast is in fact not com-
plete unless it is expressed in the form of probability
distributions. And in the case of appreciable uncer-
tainty, the goal of weather forecasting, including sta-
tistical postprocessing, such as MOS and other meth-
ods, should be the provision of a detailed
case-dependent probability distribution (Murphy
1977), and not only a best estimate of the state of the
atmosphere. Such information facilitates the use, and
increases the potential economic value of weather
forecasts. It is not surprising that companies selling
weather derivatives2 are among the core users of en-
semble forecasts.

The users in turn can take this information, along
with other factors, into consideration when making
their decisions related to operations that are sensitive
to the weather (Pielke 1999). Many of the users who
could potentially benefit from ensemble forecasts may
be unaware of this because of their possible negative
experience with weather guidance based on a single
control forecast. This is well demonstrated by the lim-
ited C/Lp range in which users gain value from using
the control forecasts compared to using climatologi-

cal information (see Figs. 1–4), and also by the results
of Smith et al. (2001). These potential users may not
realize, until they are introduced to probabilistic fore-
casting, that the relative low average hit rate of cer-
tain weather forecasts is not an obstacle to their us-
age, especially if reliable forecast probabilities show
variations from case to case.

Initially, some users may feel uncomfortable with
the notion of “probabilities,” thinking they need to
make decisions and for that they need a “yes/no” fore-
cast. The idea behind the cost–loss analysis discussed
above is that if reliable probabilistic forecasts are
available, each user can choose, depending on their
estimated or known cost–loss ratio, a different cri-
terion (probability level) for making their own yes/no
decision. After all, weather forecasters are for mak-
ing weather forecasts, and decision makers are for
making decisions (Murphy 1978). If the forecaster
conveys all available information, the weather fore-
cast, for example, will no longer be “yes, it will rain,”
but rather, “there is an 80% chance of rain.” Well-
trained users with cost–loss ratios 0.8 and below will
interpret this forecast as “yes,” while those with ra-
tios above 0.8 as “no.” We know that each weather
forecast has an associated case-dependent uncer-
tainty, and that this uncertainty can generally be
quantified by an ensemble of forecasts (Toth et al.
2001); it is in the user’s best interest to seek and uti-
lize this information.

An example. As an example, let us consider the use of
minimum temperature forecasts by two farmers in
the same geographical area who grow different crops
that are all sensitive to freezing temperature that cli-
matologically occurs 20% of the time (o = 0.2). Let
us assume that the cost of protecting their crops is
the same but their potential loss differs dramatically
due to differences in the vulnerability and value of
their crops. The farmer with less to lose (C/Lp = 0.9,
high cost–loss ratio) will only spend on protection if
the frost is almost a certainty (p = 0.9, or higher fore-
cast probabilities), whereas the farmer who can suf-
fer large losses (C/Lp = 0.05) will want to take pro-
tective action even if the forecast probability values
are low (p = 0.05, or higher). Note that in this ex-
ample the farmers translate the probabilistic weather
forecast into their “protect–do not protect,” yes/no
decision, using very different decision criteria (high
vs low probability values).

If a forecaster provides only his/her best estimate
on whether the minimum temperature will be above
or below freezing, this forecast will likely be useless
for either farmer (cf. Fig. 2). Such a forecast, with an

1 Note that if the mean of the ensemble is used as a best estimate
of the future state of the atmosphere it can be further improved
in an rms error sense by some additional smoothing (see Leith
1974; Houtekamer and Derome 1995).

2 Weather derivatives are insurance-type policies that pay the
client if certain agreed weather events occur. The premium
depends on the expected forecast uncertainty. Unlike normal
insurance policies, derivatives can be resold by the original cli-
ent. The cost of the transaction may well differ from the initial
premium as updated forecast information becomes available.
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intermediate average hit rate of say 80% and missing
rate [m/(m + c)] of 10%, will be useful only for users
with intermediate cost–loss ratios. Neither the low,
nor the high cost–loss ratio customer can benefit from
such a product. Instead, they will tend to use clima-
tological information and the former farmer will al-
ways, while the latter never protect his/her crop. To
be of any use for them, the forecasts would need to
be issued in the form of multiple probability values
including their C/Lp values of 0.05 and 0.9. To achieve
that, one needs information on case-dependent un-
certainty (instead of average uncertainty associated
with all unclassified yes forecasts). As discussed ear-
lier, such guidance can be readily derived from an
ensemble of forecasts, which in turn can lead to sub-
stantial savings for the farmer with low (high) cost–
loss ratio by identifying those cases when he/she can
forgo (implement) protection.

CONCLUSIONS. An economic value analysis
based on a simple cost–loss model was carried out on
minimally postprocessed 500-hPa geopotential
height model output from low-resolution ensemble
and low- and high-resolution control forecasts. The
analysis revealed that a wider range of potential us-
ers can benefit from the ensemble than from the con-
trol forecasts, compared to relying simply on clima-
tological information. Moreover, for most users the
ensemble offers more economic value than the con-
trol forecasts. Similar results were obtained by
Richardson (2000a) and Mylne (1999), who studied
the economic benefit of precipitation and tempera-
ture forecasts at ECMWF, and surface wind speed
forecasts at the Met Office (Bracknell, Berkshire,
United Kingdom), respectively.

The economic value and ROC results presented in
Figs. 1–5 clearly demonstrate the benefit of detailed
probabilistic forecasts generated by an ensemble over
categorical forecasts based on a single control integra-
tion, even if that single forecast is made at a resolution
higher than that of the ensemble. For economic deci-
sion making it is imperative to use forecasts that pro-
vide multiple decision levels. Ensemble forecast sys-
tems naturally offer such guidance. The present paper
has focused on the evaluation of direct output from the
ensemble and from the control forecasts, without at-
tempting to assess the potential benefits of advanced
statistical postprocessing of either the ensemble-based
probabilities or of the control forecast. Obviously,
through statistical postprocessing control forecasts
can be supplemented by detailed probability infor-
mation. Atger (1999), Smith et al. (2001), and
O. Talagrand and G. Candille (1999, personal com-

munication) studied such forecast systems and found
that ensemble forecasts, at least from 4-day lead time
on, outperform them. These results suggest that the
ensemble can provide some genuine and useful infor-
mation, likely by the identification of day-to-day varia-
tions in forecast uncertainty, that will be difficult to re-
produce by simply postprocessing a control forecast.

A detailed analysis of ROC results (Figs. 5–7)
indicate that beyond 4-day lead time the lower hori-
zontal resolution T62 ensemble, generated at a simi-
lar computational cost, outperforms the high-
resolution T126 control forecast in every respect,
suggesting that at least in this lead time range the en-
semble forecast system is more cost effective. We con-
clude that the use of ensemble-based probabilistic
forecasts has the potential to substantially increase the
overall economic benefit weather predictions can de-
liver to society.
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