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Abstract
This paper presents a strategy for diagnostic verification of hydrologic ensembles, based on
the selection of summary verification metrics (which could be extended to more detailed
metrics) and the analysis of the relative contribution of the different sources of error.
Such diagnostic verification could be conducted with the Ensemble Verification System
(EVS) and is illustrated with a verification case study of experimental precipitation and
streamflow ensemble reforecasts over a 24-year period. The EVS is proposed as a flexible
and modular tool for the HEPEX verification test-bed to evaluate existing and emerging
verification methods that are appropriate for hydrologic applications. Published in 2010 by
John Wiley & Sons, Ltd.
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1. Introduction

Atmospheric and hydrologic forecasts are subject to
uncertainty, which needs to be systematically quan-
tified and effectively communicated to users (NRC,
2006). A common approach to providing such infor-
mation in an operational forecasting context is to
generate ensemble forecasts from which probabilistic
statements are issued [e.g. see examples of operational
ensemble flood forecasting systems in (Cloke and Pap-
penberger, 2009)]. Hydrologic ensembles and their
corresponding hydrometeorological forecasts need to
be routinely verified to improve both research and
operations (Welles et al., 2007). Although hydrologic
forecast verification has been limited to date, a number
of verification case studies with hydrologic ensembles
have been published (see references quoted in Cloke
and Pappenberger, 2009). Furthermore, the meteo-
rology and hydrology communities need to closely
collaborate to define verification metrics and prac-
tices that are appropriate for hydrologic applications
(Pappenberger et al., 2008). Such forecast verifica-
tion needs to include two activities (Demargne et al.,
2009): (1) diagnostic verification performed by scien-
tists and operational forecasters to monitor forecast
quality over time, analyze the different sources of error
and skill across the entire river forecasting process, and
evaluate forecast skill improvement from new science

and technology; and (2) real-time verification, which
aims to communicate along with real-time forecasts
(and before the corresponding observations occur),
verification information relative to historical analogue
forecasts to assist operational forecasters and end users
in their decision making.

The Office of Hydrologic Development (OHD) of
the National Oceanic and Atmospheric Administration
(NOAA) National Weather Service (NWS) has devel-
oped various capabilities for the Hydrologic Ensemble
Forecast System (HEFS) to provide river ensemble
forecasts for a wide range of spatiotemporal scales,
from hours for flash flood forecasts at local scale, to
months for water supply forecasts at regional scale.
The Ensemble Verification System (EVS) developed
by Brown et al. (2010) is the diagnostic verification
component of the HEFS, designed to verify ensemble
forecasts of any continuous numeric variables, pro-
duced at discrete locations and for any forecast horizon
and time step. The OHD and the National Centers for
Environmental Prediction (NCEP) are currently col-
laborating to improve the climate, weather, and river
forecasts at the catchment scale for the HEFS and
define standard verification metrics and products that
are meaningful for hydrologic applications.

In this paper, a strategy for diagnostic verification is
proposed for hydrologic ensembles, based on the selec-
tion of summary verification metrics and the analysis
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of the different sources of error in the forecasting
system. This approach is illustrated with a verifica-
tion case study of experimental HEFS precipitation
and streamflow ensembles from a 24-year period using
the EVS software. Finally, future work and on-going
collaborations to advance ensemble verification in
operational river forecasting are described.

2. Diagnostic verification of hydrologic
forecasts

The quality of forecast ensembles includes several
attributes (Wilks, 2006), such as reliability, resolu-
tion, discrimination, and skill. Therefore, a variety of
verification metrics need to be analyzed concurrently.
The following verification metrics are proposed as key
summary metrics to describe the main aspects in fore-
cast quality and are briefly described hereafter (see
further details in Jolliffe and Stephenson, 2003, Wilks,
2006, and Brown et al., 2010). Such summary verifi-
cation information could be used by forecasters and
scientists, as a screening tool before analyzing further
specific quality attributes for events of interest, as well
as by managers for tracking forecast performance.

To analyze first the quality of the ensemble mean,
which is commonly used in operational forecasting as
a convenient choice for single-valued representation
of the ensemble forecast, two metrics from single-
valued forecast verification are used: the mean error
to measure how the ensemble mean agrees with the
observed outcome on average, and the correlation
coefficient to describe the relationship between the
ensemble mean and the corresponding observation.
Then the overall quality of the probabilistic forecast
is described with the Continuous Ranked Probability
Score (CRPS), which measures the integrated squared
difference between the cumulative distribution func-
tion (cdf) of a forecast, FY(y), and the corresponding
cdf of the observation, FX(x) (which has probability
1.0 for values greater than or equal to the observation
and probability 0.0 otherwise). The CRPS is given by:

CRPS =
∫ +∞

−∞
[FY (y) − FX (y)]2dy

In practice, the CRPS is averaged across a set
of observed-forecast pairs. To evaluate the skill of
the forecasting system relative to a reference system,
the associated skill score, the Continuous Ranked
Probability Skill Score (CRPSS), is computed from:

CRPSS = 1 − CRPSforecast

CRPSreference

the overbar referring to the CRPS averaged across
the sample of events. The CRPSS ranges from −∞
to 1, with perfect skill of 1 and negative value
when the forecast has worse CRPS than the refer-
ence. The CRPSS is a useful companion to the CRPS,

because events with small probabilities of occurrence
are associated with very small (squared) probabilities
of error, and this attribute will be shared with the ref-
erence forecasting system, allowing errors in the tails
of the probability distribution to be better identified.

To provide further details about the forecast perfor-
mance, the CRPS decomposition (Hersbach, 2000) is
given by:

CRPS = Reliability + Potential CRPS

The reliability component of the CRPS, called CRPS
Reliability, measures the average reliability of the
ensemble forecasts similarly to the rank histogram
(see references in Wilks, 2006). Specifically, it tests
whether the fraction of observations that fall below
the k -th of n ranked ensemble members is equal
to k/n on average. The second component of the
CRPS, called the Potential CRPS, represents the CRPS
one would obtain when the forecasting system would
become perfectly reliable (i.e. CRPS Reliability = 0).
It is sensitive to the average ensemble spread and
the frequency and magnitude of the outliers. For best
Potential CRPS, the forecasting system needs narrow
ensemble spread on average without too many and too
high ensemble outliers (Hersbach, 2000). The CRPS,
the CRPS Reliability, and the Potential CRPS are all
negatively oriented, with perfect score of 0.

Finally, the Relative Operating Characteristic (ROC)
score is used as a summary score to describe the abil-
ity of the forecasts to discriminate between events and
non-events. The ROC curve plots the probability of
detection against the probability of false detection for
a range of probability levels (each one corresponding
to a threshold at which a probability forecast leads
to a binary decision), and for a given event (such as
flooding). The ROC score is defined as the area below
the ROC curve and above the diagonal, with a perfect
score of 1, and measures the overall gain in discrimi-
nation over climatological forecasts for all probability
levels.

All these verification metrics are proposed as key
summary verification metrics because they are thought
to convey the main attributes of forecast quality. For
further analysis, more detailed verification statistics
could be examined. For example, further information
may be required on the reliability of the forecast prob-
abilities in different parts of the forecast distribution,
which could be analyzed with the cumulative rank
histogram (a measure closely related to the CRPS).
Similarly, the ROC score may be extended to the ROC
diagram, which identifies the discriminatory power of
the forecasting system for different decision situations.
Because the ROC metrics measure only discrimination
relative to specific observed events, their analysis may
be accompanied by metrics that specifically measure
reliability for each observed threshold, such as the reli-
ability component of the Brier Score or the reliability
diagram (Wilks, 2006). However, discussions of more
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detailed verification metrics are not included in this
paper.

In addition, hydrologic ensemble forecasts need to
account for the atmospheric uncertainty and the hydro-
logic uncertainty, which includes uncertainty in the
initial conditions, the model parameters and the model
structure (Gupta et al., 2005). Forecasters and model-
ers need to analyze how the different sources of error
affect the quality of hydrologic forecasts and which
parts of the forecasting system represent the main
sources of skill and error in these forecasts. Therefore,
all the forcing input forecasts and hydrologic out-
put forecasts should be verified, potentially at various
temporal and spatial scales and for different forecast
horizons depending on the forecast applications. The
forecast performance needs to be analyzed under dif-
ferent conditions by stratifying the forecast-observed
dataset and reporting verification statistics for sub-
sets of events. To assess the skill in the atmospheric
and hydrologic ensemble forecasts, skill scores should
be computed with a reference probabilistic forecast
that is meaningful for the application of interest. For
example, to show how much skill the use of weather
and/or climate forecasts may add to the atmospheric
and hydrologic ensemble forecasts, reference forecasts
could be defined using only climatology information
for the atmospheric ensembles and the corresponding
climatology-based hydrologic ensembles that are pro-
duced by the same hydrologic prediction system.

Furthermore, to analyze the relative importance
of the atmospheric and hydrologic uncertainties,
flow ensemble forecasts should be verified with the
observed flows and with the simulated flows that
are produced from the observed hydrometeorologi-
cal inputs using the same model and the same initial
conditions. The verification of flow ensembles with
observed flows leads to the computation of the total
error, including the contribution of the atmospheric
uncertainty and the hydrologic uncertainty. The veri-
fication with simulated flows allows for the contribu-
tion of the atmospheric uncertainty (in the hydrom-
eteorological forecasts) to be diagnosed, assuming
that uncertainties in the observed hydrometeorolog-
ical inputs are much smaller than the hydrologic
uncertainty.

Such a diagnostic verification strategy could be
conducted with the EVS software. The main fea-
tures of the EVS are summarized below; a detailed
description is provided in Brown et al. (2010). The
EVS can perform temporal aggregation (e.g. daily
total flows aggregated from 6-hourly instantaneous
flows) and data stratification to verify subsets of
forecast-observed pairs (e.g. for winter months, above
an exceedance threshold). The EVS can aggregate
the verification statistics produced across different
locations to easily report forecast quality on larger
areas. Finally, the EVS produces a range of graph-
ical and numerical outputs of the verification statis-
tics. The EVS software has been made available on
line (http://www.nws.noaa.gov/oh/evs.html) to support

collaborative work such as the Hydrological Ensemble
Prediction Experiment (HEPEX) verification test-
bed project (http://hydis8.eng.uci.edu/hepex/testbeds/
Verification.htm).

3. Verification case study

To illustrate the proposed diagnostic verification strat-
egy, a case study is presented for experimental ensem-
ble hindcasts of precipitation and flow generated with
the current HEFS prototype. The precipitation ensem-
bles (as well as temperature ensembles) are generated
from single-valued forecasts by the NWS Ensemble
Preprocessor (EPP) (Schaake et al., 2007). The EPP
aims to remove the bias in the NWP single-valued
forecasts while capturing the skill and uncertainty
therein. The EPP estimates the joint distribution of
single-valued forecasts and observations based on his-
torical pairs. Ensemble members are sampled from the
conditional probability distribution of the observations
given a particular single-valued forecast. The Schaake
Shuffle technique (Clarke et al., 2004) is applied to
approximately reconstruct the space-time statistical
properties of the precipitation and temperature vari-
ables for multiple lead times and locations based on
historical observations. When no single-valued fore-
cast is available, EPP estimates the climatological dis-
tribution from the historical observations and applies
the Schaake Shuffle to the values sampled from the
distribution. The resulting ensembles, termed resam-
pled climatological ensembles, are used as reference
forecasts to analyze the skill in the ensembles derived
from the NWP single-valued forecasts.

The hydrometeorological ensemble hindcasts pro-
duced by the EPP are ingested into the Hydrologic
Ensemble Hindcaster (HEH) (Demargne et al., 2007)
to produce corresponding flow ensemble hindcasts
based on various hydrological models. The HEH ret-
rospectively generates the initial conditions of the
hydrological models for each hindcast date. These ret-
rospective initial conditions may not reflect the initial
conditions used in real-time forecasting, which are
usually modified by the forecasters based on their
expertise, or by data assimilation techniques. How-
ever, this hindcast process supports the analysis of the
impact of the atmospheric ensembles on the quality
of hydrologic ensembles. Two sets of flow ensembles
are generated: one using the EPP ensembles derived
from the NWP single-valued forecasts, the other using
the EPP resampled climatological ensembles, to ana-
lyze the skill in the flow forecasts when incorporating
information from the NWP single-valued forecasts.
These two sets of hydrologic ensembles account only
for the atmospheric uncertainty, the hydrologic uncer-
tainty being quantified by other components of the
HEFS.

The verification study is presented for the North
Fork of the American River above the North Fork Dam
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(USGS stream gauge station ID 11427000) near Sacra-
mento in north-central California. This is a headwater
basin of 875 km2 for which precipitation is the main
forcing input. The NWP single-valued forecasts were
obtained from the ensemble means of the precipitation
and temperature reforecasts from the frozen version
(circa 1998) of the NCEP’s Global Forecast System
(GFS) at T62 resolution for 14 days into the future
(Hamill et al., 2006). The EPP produced 6-hourly
mean areal precipitation and mean areal temperature
ensemble hindcasts at 12 : 00 UTC, from which the
HEH generated 6-hourly flow ensembles for 14 days
of forecast horizon. These hindcasts were produced
for a period of almost 24 years from 1 January 1979
to 30 September 2002, each hindcast containing 55
ensemble members. The EPP resampled climatolog-
ical ensembles and the corresponding climatology-
based flow ensembles were also produced as reference
forecasts. The EPP was calibrated using the fore-
casts and observations from the same period; inde-
pendent verification analysis is currently being con-
ducted. The precipitation forecasts were aggregated
in EVS to be verified for each lead time as daily
totals using precipitation observations. The precipita-
tion verification statistics were also aggregated across
two precipitation subareas. The 6-hourly flow forecasts

were aggregated to daily averages to be verified with
the USGS flow measurements that were available only
at daily time step. To assess the relative contribu-
tion of the atmospheric and hydrologic uncertainties in
the flow forecasts, the daily flow forecasts were also
verified with the daily averages of the 6-hourly flow
simulations generated from the observed hydrometeo-
rological inputs using the same hydrologic model and
initial conditions.

Verification statistics were computed using the
whole 24-year period to verify, with sufficiently large
sample sizes, the forecast performance for high events
(defined by thresholds on the observed sample), which
is critical for operational forecasting. Work is under-
way to estimate the confidence intervals of the ver-
ification metrics based on a bootstrapping approach
to account for the sampling uncertainty. A prelimi-
nary assessment of confidence intervals for this case
study (not shown) showed that sampling uncertainty
becomes significant after Day 12 (i.e. a lead time
of 12 days) (especially for the higher thresholds),
rendering it difficult to draw any meaningful con-
clusions regarding the differences in forecast qual-
ity between the climatology-based ensembles and
the GFS-based ensembles for these long forecast
horizons.
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Figure 1. Mean Error (a) and Correlation Coefficient (b) of the ensembles means, as well as CRPS (c) and CRPSS (d) (in reference
to resampled climatological ensembles) for the GFS-based precipitation ensembles.
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Figure 2. Box-and-whisker plot for the 0, 25, 50, 75, and 100 percentiles of the forecast error distribution for the GFS-based
precipitation ensembles and for the first 24-h lead time.
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Figure 3. CRPS (a), CRPS Reliability (b), Potential CRPS (c), and ROC Score (d) for the GFS-based precipitation ensembles
(‘GFS’) and the resampled climatological ensembles (‘Clim’).
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Figure 4. Mean Error (a) and Correlation Coefficient (b) of the ensembles means, as well as CRPS (c) and CRPSS (d) (in reference
to climatology-based flow ensembles) for the GFS-based flow ensembles.

4. Results

The daily precipitation totals are verified for all the
forecast-observed pairs (8660 pairs for the first 24-h
lead time) and for different subsets of pairs defined
by the observation exceeding 0 mm/day (i.e. proba-
bility of precipitation, PoP), 5 mm/day, 12.5 mm/day,
25 mm/day, and 50 mm/day. The last three thresholds
correspond to non-exceedance probabilities in the cli-
matological probability distribution of approximately
0.9, 0.94, and 0.98, respectively.

In Figure 1(a)–(c), the mean error and the corre-
lation coefficient for the ensemble means, as well
as the CRPS reflect the decreasing forecast quality
with increasing lead time and with increasing observed
precipitation amount for the GFS-based precipitation
ensembles. Regarding the CRPSS [Figure 1(d)], the
GFS-based ensemble forecasts have more skill than
the resampled climatological ensembles at all lead
times, with a larger gain for high precipitation events
compared to low precipitation events. The skill score
is slightly negative for the lower thresholds (when
excluding the no-rain events) after Day 9, showing
that the GFS-based ensembles are not skillful for
the small precipitation events beyond this forecast
horizon. However, the GFS-based ensembles clearly

outperform the resampled climatological ensembles
for the prediction of PoP at all lead times.

The modified box plot given in Figure 2 for the 24-
h lead time shows the distribution of the errors in the
ensemble members against the corresponding observed
amount, arranged by increasing observed amount to
help detect potential conditional bias. The forecast
error (ensemble member – observation) is represented
with a box-and-whisker diagram for the 0, 25, 50, 75,
and 100 percentiles of the forecast error distribution,
where the box corresponds to the interquartile range.
The GFS-based precipitation ensembles exhibit a con-
ditional bias, which increases with forecast lead time,
as the mean error on Figure 1(a) also indicates: they
tend to over-forecast small precipitation amounts and
under-forecast large precipitation amounts. However,
this conditional bias is much reduced than the bias in
the resampled climatological ensembles (not shown),
especially for high precipitation events.

In Figure 3, verification statistics for the GFS-based
precipitation ensembles and the resampled climato-
logical ensembles are compared against each other
for all forecast-observed pairs and two subsets of
pairs. Figure 3(b) shows that the GFS-based ensem-
bles improve the CRPS Reliability compared to the
resampled climatological ensembles, as expected from
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Figure 5. CRPS (a), CRPS Reliability (b), Potential CRPS (c), and ROC Score (d) for the GFS-based flow ensembles (‘GFS’) and
the climatology-based flow ensembles (‘Clim’).

the reduced conditional bias in the GFS-based ensem-
bles. For the intermittency threshold, the reliability is
improved up to Day 12. For the >25 mm/day precipi-
tation threshold, this relative improvement starts from
75% at Day 1 to reach 17% at Day 14. Regarding the
Potential CRPS [Figure 3(c)], the GFS-based ensem-
bles outperform the resampled climatological ensem-
bles at all lead times for all the forecast-observed pairs,
and until Day 7 when excluding the no-rain events, due
to their narrower spread for small precipitation events.
However for the >25 mm/day precipitation threshold,
the GFS-based ensembles have worse Potential CRPS
due to their larger ensemble spread. Therefore, for the
high precipitation events, Figures 3(b) and (c) show
that GFS-based ensembles exhibit better CRPS than
climatology-based ensembles due to improved relia-
bility. Regarding the ROC Score [Figure 3(d)], the
forecast discrimination is much improved with the
GFS-based ensembles compared to resampled clima-
tological ensembles, especially for the prediction of
PoP; this gain decreases with lead time, as expected.

Daily average flow ensembles are verified for all
forecast-observed pairs (8660 pairs for the first 24-h
lead time) and subsets of pairs based on the following
non-exceedance probability thresholds (defined from
the 24-year observation record): 0.5 (7 m3 s−1), 0.75

(30 m3 s−1), 0.9 (60 m3 s−1), 0.95 (84 m3 s−1), and
0.99 (210 m3 s−1). As indicated in Figure 4(a)–(c),
the forecast quality decreases with increasing flow
thresholds and with lead time. The GFS-based flow
ensembles exhibit a conditional bias consistent with
the conditional bias of the precipitation ensembles:
over-forecasting of small events and under-forecasting
of large events. Regarding the CRPSS [Figure 4(d)]
in reference to the climatology-based flow ensembles,
the GFS-based flow ensembles are more skillful at
all forecast horizons and their skill at individual lead
times increases with the flow thresholds until Day 10.
The sharp increase in skill between Day 1 and Day 2 is
due to the basin response time to precipitation amount.

The influence of the atmospheric ensembles on the
flow forecasts is more pronounced after Day 1 as
indicated in Figure 5. Because these flow ensembles
do not capture any hydrologic uncertainty, both sets
of flow ensembles are less reliable at Day 1 except
for the very high flows [Figure 5(b)]. Figures 5(b)–(d)
show that the GFS-based flow ensembles outperform
the climatology-based ensembles in terms of the CRPS
Reliability, the Potential CRPS, and the ROC Score
for all lead times and all flow thresholds, except
the Potential CRPS for the >0.95 non-exceedance

Published in 2010 by John Wiley & Sons, Ltd. Atmos. Sci. Let. 11: 114–122 (2010)



Verification of hydrometeorological and hydrologic ensembles 121

(a)

Lead time (days)

C
R

P
S

10 11 12 13 14

GFS w/ obs: All data
GFS w/ obs: Obs. > 75th %
GFS w/ obs: Obs. > 95th %
GFS w/ sim: All data
GFS w/ sim: Sim. > 75th %
GFS w/ sim: Sim. > 95th %

(b)

Lead time (days)

C
R

P
S

 R
el

ia
bi

lit
y

10 11 12 13 14
0

5

10

15

20

25

30

35

40

45

50

55
GFS w/ obs: All data
GFS w/ obs: Obs. > 75th %
GFS w/ obs: Obs. > 95th %
GFS w/ sim: All data
GFS w/ sim: Sim. > 75th %
GFS w/ sim: Sim. > 95th %

(c)

Lead time (days)

P
ot

en
tia

l C
R

P
S

10 11 12 13 14

GFS w/ obs: All data
GFS w/ obs: Obs. > 75th %
GFS w/ obs: Obs. > 95th %
GFS w/ sim: All data
GFS w/ sim: Sim. > 75th %
GFS w/ sim: Sim. > 95th %

(d)

Lead time (days)

R
O

C
 S

co
re

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91
0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9

10 11 12 13 14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

GFS w/ obs: Obs. > 75th %
GFS w/ obs: Obs. > 95th %
GFS w/ sim: Sim. > 75th %
GFS w/ sim: Sim. > 95th %

Figure 6. CRPS (a), CRPS Reliability (b), Potential CRPS (c), and ROC Score (d) for the GFS-based flow ensembles verified with
observed flows (‘GFS w/obs’) and simulated flows (‘GFS w/sim’).

probability threshold. Similarly to the precipitation
results shown in Figure 3, for the very high flows,
the GFS-based flow ensembles have better CRPS than
the climatology-based flow ensembles due to improved
reliability (for the >0.95 non-exceedance probability
threshold, the relative improvement in reliability varies
from 86% at Day 1 to 32% at Day 14).

Regarding the relative contribution of the atmo-
spheric and hydrologic uncertainties, verification
statistics are presented in Figure 6 for the GFS-based
flow ensembles verified with observed flows (solid
lines) and with simulated flows (dashed lines). The
forecasts verified with flows simulated from observed
hydrometeorological inputs exclude the hydrologic
uncertainty (and the observed hydrometeorological
input uncertainty), whereas the verification with ob-
served flows includes all sources of uncertainty. Note
that the 0.75 and 0.95 non-exceedance probability
thresholds correspond to similar flow values for both
the observations and the simulations. All four veri-
fication statistics indicate that the hydrologic uncer-
tainty is more significant for short lead times and
depends on the flow values: for example, for the CRPS
(Figure 6(a)), it significantly degrades the score up to
Day 7 for all flows and up to Day 2 for very high flows.
This indicates that uncertainty in hydrologic initial
conditions is a major source of the hydrologic error.

However, because of the other hydrologic uncertainty
sources (e.g. the model structure and parameters), the
hydrologic error tends to degrade the CRPS Reliabil-
ity, the Potential CRPS, and the ROC Score at all lead
times.

5. Conclusions and future work

A strategy for diagnostic verification of hydrologic
ensembles is proposed, based on the selection of sum-
mary verification metrics and the analysis of the rel-
ative contribution of the different sources of error.
Such verification could be performed using the EVS
software and was illustrated in a case study for exper-
imental ensembles from the HEFS. The results show
that the improvement of using the NWP single-valued
forecasts in the HEFS ensemble preprocessor (vs cli-
matological inputs) for ensemble streamflow predic-
tion is mostly due to improved reliability for very
high events. The relative impact of the hydrologic
uncertainty is significant for short lead times due to
the uncertainty in hydrologic initial conditions. Addi-
tional verification studies are underway to include
ensembles produced from the HEFS components that
account for the hydrologic uncertainty and for other
forecast locations to help target future improvements

Published in 2010 by John Wiley & Sons, Ltd. Atmos. Sci. Let. 11: 114–122 (2010)



122 J. Demargne et al.

of the forecasting system and show the value of such
improvements to forecasters and users. These verifica-
tion studies include more detailed verification statis-
tics (including statistics conditioned on the forecast)
and more user-oriented verification statistics for oper-
ational forecasting. Also planned enhancements to the
EVS include the ability to separate the timing (phase)
and amplitude errors in hydrologic forecasts. Further-
more, the OHD, the NCEP, and the NWS forecast-
ers are working together and with users to develop
meaningful verification products and capabilities to
effectively help forecasters and external users in their
decision making.

This paper aims to motivate the meteorological and
hydrologic research and operations communities for
collaborative research and development of verification
capabilities and services to generate and communi-
cate verification information for weather, climate, and
water forecasts at the catchment scale. One such initia-
tive is the cross-cutting HEPEX verification test-bed,
for which the EVS is proposed as one of the verifi-
cation tools. This verification test-bed aims to address
the following challenges in hydrologic ensemble ver-
ification: verification of rare events, characterization
of the timing error, definition of an optimal set of
reference forecasts for skill evaluation, definition of
quality measures to be easily integrated in forecast-
ers’ and end users’ decision process, and development
of appropriate methods for multivariate forecasts (e.g.
forecasts issued for multiple locations and time steps)
and methods to analyze forecast predictability on mul-
tiple spatial and temporal scales.
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